Parametrized Quantum Policies for Reinforcement Learning



With the advent of real-world quantum computing, the idea that parametrized quantum computations can be used as hypothesis families in a quantum-classical machine learning system is gaining increasing traction. Such hybrid systems have already shown the potential to tackle real-world tasks in supervised and generative learning, and recent works have established their provable advantages in special artificial tasks. Yet, in the case of reinforcement learning, which is arguably most challenging and where learning boosts would be extremely valuable, no proposal has been successful in solving even standard benchmarking tasks, nor in showing a theoretical learning advantage over classical algorithms. In this work, we achieve both. We propose a hybrid quantum-classical reinforcement learning model using very few qubits, which we show can be effectively trained to solve several standard benchmarking environments. Moreover, we demonstrate, and formally prove, the ability of parametrized quantum circuits to solve certain learning tasks that are intractable to classical models, including current state-of-art deep neural networks, under the widely-believed classical hardness of the discrete logarithm problem.

Type :
conference proceedings
Authors :
Sofiene Jerbi, Casper Gyurik, Simon C. Marshall, Hans J. Briegel, Vedran Dunjko
Location :
Date :
Publication link :
Our website uses cookies to give you the most optimal experience online by: measuring our audience, understanding how our webpages are viewed and improving consequently the way our website works, providing you with relevant and personalized marketing content. You have full control over what you want to activate. You can accept the cookies by clicking on the “Accept all cookies” button or customize your choices by selecting the cookies you want to activate. You can also decline all cookies by clicking on the “Decline all cookies” button. Please find more information on our use of cookies and how to withdraw at any time your consent on our privacy policy.
Accept all cookies
Decline all cookies
Privacy Policy