
NExt ApplicationS of Quantum Computing

D6.17: QRBS Evaluation Report

Document Properties

Contract Number 951821

Contractual Deadline 31-10-2024

Dissemination Level Public

Nature Report

Editors Gonzalo Ferro, CESGA
Andrés Gómez, CESGA

Authors Gonzalo Ferro, CESGA
Samuel Magaz-Romero, UDC
Vicente Moret-Bonillo, UDC
Andrés Gómez, CESGA

Reviewers Mohamed Hibti, EDF
Sebastiaan O. Brand, ULEI

Date 24-10-2024

Keywords Software implementation, IDC, application, QRBS

Status Submitted

Release 1.0

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

Ref. Ares(2024)7948362 - 08/11/2024

D6.17 QRBS Evaluation Report (1.0- Submitted)

History of Changes

Release Date Author, Organisation Description of Changes

0.1 18/07/2024 Gonzalo Ferro (CESGA) First draft

0.2 17/09/2024 Andrés Gómez, Gonzalo
Ferro (CESGA)

Second draft version. Conclusions added.

0.3 23/09/2024 Andrés Gómez (CESGA) Reviewers added. Minor changes before submis-
sion for internal review.

0.4 15/10/2024 Gonzalo Ferro (CESGA) Added the reviewer comments and corrections. A
new appendix for membership functions was in-
cluded.

1.0 24/10/2024 Andrés Gómez (CESGA) Final version for submission.

© NEASQC Consortium Partners. All rights reserved. Page 2 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

Table of Contents

1. Executive Summary 4

2. Context 5

3. QRBS evaluation 6
3.1. Testing programmability . 6

3.1.1. Introductory tutorial notebook: 01 QRBS for dummies . 6
3.1.2. Tutorial to QRBS software: 02 QRBS Uncertainty.ipynb . 7

3.2. Integration into Eviden Qaptiva environment: the QPU package . 8
3.2.1. Ideal noiseless QPU . 9
3.2.2. Ideal noiseless QPU with circuit rewriting . 9
3.2.3. Noisy QPU . 10

3.3. Synthetic case: Basket problem . 11
3.4. QRBS for Invasive Ductal Carcinoma staging . 15

3.4.1. Imprecision in QRBS IDC . 16
3.5. Noisy simulations . 17

3.5.1. Basket problem . 18
3.5.2. Noisy simulations for QRBS IDC . 19

4. Conclusions 22

List of Acronyms 23

List of Figures 24

List of Tables 25

Bibliography 26

A. Matlab code for implementing classical Rube-Based System (RBS) 27

B. Membership functions 28

© NEASQC Consortium Partners. All rights reserved. Page 3 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

1.Executive Summary

This report is the last deliverable of use case 6 – Quantum Rule-Based Systems (QRBS) for breast cancer detection - of
the NEASQC project. It presents the results of the software evaluation and benchmarking against classical solutions.

The evaluation was done in five steps:

1. Check the programmability of the developed library, i.e., the possibility of developing applications by other
programmers.

2. Integration of the library into Eviden Qaptiva environment.

3. Test the proposed algorithms using a basic synthetic case.

4. Benchmark the solution against classical standard for Invasive Ductal Carcinoma (IDC) diagnosis.

5. Evaluate the solution on noisy emulated Quantum Processing Units (QPU).

As a consequence of this work, the QRBS software release was extended with four tutorials using notebooks, some
issues that limited the usability were identified and corrected, and additional support for emulators with larger capacity
and other capabilities (such as the possibility of emulating noise using Qaptiva software) was introduced.

The main conclusions extracted from the evaluation are:

• The results obtained for all the cases in a noiseless environment are those expected for the defined problems.
These values present a high degree of similarity with those of classical models, as shown by the comparison of
QRBS with fuzzy logic. In fact, the problem is not inferential; the problem is derived from the classification
criteria.

• When comparing classical and quantum methods, it can be observed that the corresponding results are consis-
tent. However, the QRBS approach improves the outputs adding intrinsic uncertainties to the inferences, which
are not available in the classical approach. The results obtained show an almost identical behaviour among them,
thus reinforcing the hypothesis (in both, qualitatively and quantitatively perspectives) that Quantum Computing
is a more general paradigm, with the capacity to encompass the different classical models of symbolic reasoning.

• Noise affects the results catastrophically when is higher than a threshold, producing for the current QPUs useless
results. However, for the tested models, a moderate improvement in the quality of the QPUs could produce
acceptable results. Of course, the executed models do not justify yet the usage of real QPUs, because they are
still small, allowing the classical ideal emulation. Experiments with larger models are needed to assess clearly
the effect of the noise.

© NEASQC Consortium Partners. All rights reserved. Page 4 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

2.Context

NEASQC WP6 is devoted to research on quantum algorithms for artificial intelligence (AI) and graphs. Within
this Workpackage, the Use Case 6 (UC6) is devoted to the development of a Quantum Rule-Based System (QRBS)
for Invasive Ductal Carcinoma (IDC) diagnosis. This last deliverable of this UC describes the evaluation of the
proposed QRBS software (Magaz-Romero, 2024), making a benchmarking against the standard classical solution for
IDC diagnosis.

To have a better understanding of this evaluation, the reader can rely on the contents of previous deliverables of this
UC (D6.2 (Moret-Bonillo, Mosqueira-Rey, Magaz-Romero, & Gómez-Tato, 2021), D6.5 (Moret-Bonillo, Mosqueira-
Rey, & Magaz-Romero, 2021), D6.9 (Moret-Bonillo, Gomez Tato, et al., 2022), D6.11 (Moret-Bonillo, Gomez
Tato, Magaz-Romero, et al., 2023a) and D6.14 (Moret-Bonillo, Magaz-Romero, Mosqueira-Rey, & Alvarez-Estevez,
2023)). They described the requirements and developments of the set of quantum algorithms evaluated in this docu-
ment.

This evaluation was performed by a CESGA team that was not involved directly in the development of the solution.
This guarantees a fair test of the proposed software.

The document is divided into only two parts. In the first section, the process for evaluating the QRBS proposed
solution is described. It is composed of 5 steps, devoting a subsection to each of them. The last section discusses the
results and extract the main conclusions.

© NEASQC Consortium Partners. All rights reserved. Page 5 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

3.QRBS evaluation

The main objectives of this evaluation are:

• Evaluate the usability of the library for developing different QRBS systems.

• Comparing the obtained results with classical software, especially for IDC diagnosis.

• Evaluation of the performance of the software in emulated quantum devices.

• Provide feedback about possible errors or improvements of the library to the UDC.

The evaluation consisted of several steps:

1. Check the programmability of the developed library, i.e., the possibility of developing applications by other
programmers.

2. Integration of the library into Eviden Qaptiva environment.

3. Test the proposed algorithms using a basic synthetic case.

4. Benchmark the solution against the classical standard for IDC diagnosis.

5. Evaluate the solution on noisy emulated Quantum Processing Units.

The next subsections describe the performed work and the results of each step.

3.1. Testing programmability

This first step permitted the CESGA team to understand deeply the QRBS software and familiarize themselves with
its capabilities. At the same time, this step allowed CESGA to test the usability of the library and its documentation.

For this purpose, two different tutorial notebooks were developed. These notebooks, added now to the QRBS GitHub1

repository under the /misc/notebooks folder, were:

• An introductory tutorial notebook: 01 QRBS for dummies.ipynb. It is a brief tutorial about the Rule-Based
System (RBS) and how to implement them in QRBS.

• A tutorial to QRBS software package: 02 QRBS Uncertainty.ipynb. This notebook presents the capability of
the software for modelling the evolution of indetermination.

3.1.1. Introductory tutorial notebook: 01 QRBS for dummies

This notebook presents the different concepts of a Rule-Based System (RBS) and how to implement them in the
QRBS software. The examples implemented in this notebook are very simple and only deal with categorical facts and
rules. Despite this simplicity, the notebook explains how to use the software for creating the corresponding quantum
version of a classical RBS. This implies the following steps:

• Defininition of the facts, the rules and the logical operators the QRBS needs.

• Conversion of the inferential circuits obtained by the QRBS to their quantum counterpart.

• Provision of the input facts to the QRBS.

• Execution of the inference of the QRBS and obtain the output.

The development of this first notebook allowed CESGA team to discover several weak points. The original software
version automatically generated the inferential circuits and transformed them into quantum circuits, but could only
execute them using:

• A fixed myqlm 2 Quantum Process Unit (QPU): the PyLinalg algebra simulator3.

• 1024 shots for measuring the quantum circuits results.

1https://github.com/NEASQC/qrbs
2https://myqlm.github.io/
3PyLinalg

© NEASQC Consortium Partners. All rights reserved. Page 6 of 29

https://github.com/NEASQC/qrbs/tree/main/misc/notebooks
https://myqlm.github.io/
https://myqlm.github.io/04_api_reference/module_qat/%3Amyqlm%3Amodule_pylinalg/module_simulator.html

D6.17 QRBS Evaluation Report (1.0- Submitted)

The QPU limitation was very important for different reasons:

• PyLinalg is very slow compared with other available QPUs in the myqlm like CLinAlg (see subsection 3.2)

• Both myqlm simulators (PyLinalg and CLinAlg) have a limit on the number of qubits to simulate (not more
than 25).

• With a fixed QPU the user cannot take advantage of the Qaptiva machines, like the installed in CESGA4, which
allow to simulate quantum circuits with higher number of qubits.

• Additionally, the QRBS software won’t allow, in the future, to send the quantum circuits to real quantum
devices.

The number of shots weakness was important too because the precision of the measurements in a quantum system is
related to this parameter.

To solve both weak points, CESGA team developed the following Python module and package:

• selectable qpu.py: this module implements the SelectableQPU class. This class allows to evaluate and execute
a QRBS circuit by providing a QPU object. Additionally, the number of shots to measure for each generated
quantum circuit can be provided as input.

• qpu/ package: this package allows to instantiate the different available Qaptiva QPUs easily. All the instanti-
ated QPUs using this package can be used with the SelectableQPU class. More information about this package
is provided in the subsection 3.2.

3.1.2. Tutorial to QRBS software: 02 QRBS Uncertainty.ipynb

This notebook presents the main functionality of the QRBS software package: modelling the evolution of indetermi-
nation propagating through an inferential network using quantum circuits.

As explained in other deliverables, the indetermination in inferential circuits can arise due to:

1. Imprecision of the facts: In this case, the facts are not categorical variables. Now the facts can be affected by a
degree of belief, probability or even intensity. In the QRBS, this is modelled by assigning a number between 0
and 1 to the precision of the facts (the attribute precision of a fact object).

2. Uncertainty of the rules: in this case, some indetermination appears when the rule is created. Again, this
indetermination is modelled as a number between 0 and 1 and in the QRBS is associated with the certainty of
the rule object.

The notebook provides several examples of Imprecision and Uncertainty and how the QRBS package deals with them.
Additionally, the notebook explores how the inferential generated circuits are translated into their quantum counterpart
depending on the selected model for indetermination propagation. Up to three different models can be used (for more
information about them, please refer to section 3.2 of D6.14 (Moret-Bonillo, Magaz-Romero, Mosqueira-Rey, &
Alvarez-Estevez, 2023)):

• Certainty Factor model: based on the work of (Shortliffe & Buchanan, 1975). This model is the one initially
proposed at the beginning of the project, as the first approach to Quantum Rule-Based Systems (Moret-Bonillo,
Magaz-Romero, & Mosqueira-Rey, 2022; Moret-Bonillo, Magaz-Romero, Mosqueira-Rey, & Alvarez-Estevez,
2023).

• Fuzzy logic: based on the fuzzy logic initially introduced by Lofti A. Zadeh in 1965 (Zadeh, 1965).

• Bayesian networks: University of Coruña (UDC) proposal for a classical-inspired quantum approach to QRBS
through Bayesian networks (Borujeni et al., 2021).

The logical inferential gates (OR, NOT, AND), the precision and the rules are translated into different types of quantum
circuits depending on the selected model.

4CESGA QLM

© NEASQC Consortium Partners. All rights reserved. Page 7 of 29

https://cesga-docs.gitlab.io/qlm-user-guide/qlm.html

D6.17 QRBS Evaluation Report (1.0- Submitted)

3.2. Integration into Eviden Qaptiva environment: the QPU package

One of the main software contributions of the evaluation part of the QRBS is the integration of the qpu package to
the software. This section explains what the main purpose of this package is and how to use it for configuring Eviden
QPUs.

The ecosystem of quantum simulation tools of Eviden Qaptiva can be split into 2 different well-differentiated (and
interconnected) tools:

• myQLM: is the quantum software stack developed by Eviden, for writing, simulating, optimizing and executing
quantum programs. This software is a freeware Python package which comes with interoperability connectors.
With this tool only two basic simulators are available to the user: CLinAlg and PyLinAlg.

• Qaptiva 800 series: is the Quantum Appliance Toolset developed by Eviden. This software product extends
the capabilities of myQLM, adding more functionalities, more emulators and the capability of executing on real
quantum hardware. In the case of the emulators, it expands the maximum number of simulated qubits beyond
25. For example, CESGA QLM30 guarantees the possibility of simulating circuits up to 30 qubits, but in some
cases, it can simulate larger ones. Also, it includes other advanced simulators as a linear-algebra-based quantum
emulator (LinAlg) or a Matrix Product State (MPS) one. Additionally, this software comes with a lot of extra
functionalities like circuit rewriting and optimization tools and the possibility for configuring and simulating
noisy Quantum Processing Units using the Noisy Quantum Emulator (NoisyQProc object).

These tools have the same semantics to create quantum circuits, so the user can write a quantum program using
myQLM and optimize, rewrite and execute the circuit using the Qaptiva 800 series. Additionally, a third tool called
Qaptiva Access allows the user to submit myQLM heavy computation to a remote Qaptiva machine.

One of the main problems that arises with this approach is dealing with the different functionalities of these tools. To
solve this issue, the qpu/ package integrates several of them to configure different types of QPUs easily.

The main module of the qpu/ package is the qpu/select qpu one. This module implements a wrapper function called
select qpu. The input is a Python dictionary, whose scheme is shown in listing 3.1, that configures a QPU.

1

2 qpu_cfg = {
3 "qpu_type": str,
4 "qpu_name": str,
5 "kak_compiler": str,
6 "sim_method": {
7 "sim_method": str,
8 "bond_dimension": int,
9 "n_samples": int

10 },
11 "t_gate_1qb": int,
12 "t_gate_2qbs": int,
13 "t_readout": int,
14 "depol_channel" : {
15 "active": bool,
16 "error_gate_1qb": float,
17 "error_gate_2qbs": float
18 },
19 "idle": {
20 "amplitude_damping": bool,
21 "dephasing_channel": bool,
22 "t1": int,
23 "t2": int
24 },
25 "meas": {
26 "active": bool,
27 "readout_error": float
28 }
29 }

Listing 3.1: Python dictionary schema for select qpu function from qpu/select qpu module.

The Python dictionary allows the user to configure 3 different types of QPUs:

• Ideal noiseless QPU.

• Ideal noiseless QPU with circuit rewriting.

© NEASQC Consortium Partners. All rights reserved. Page 8 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

• Noisy QPU (includes circuit rewriting).

The following subsections explain how to configure the Python dictionary for these different types of QPU.

3.2.1. Ideal noiseless QPU

The ideal noiseless QPU is basically an algebra simulator. In this case, the quantum circuit will be emulated without
any modification or rewriting of the circuit. There are several available ideal QPUs on Eviden Qaptiva software:

• PyLinalg: lineal algebra simulator based on Python. For selecting it, the string python should be provided to
qpu type key of the input dictionary.

• CLinalg: lineal algebra simulator based on C. For selecting it, the string c should be provided to qpu type key
of the input dictionary.

• LinAlg: lineal algebra simulator only available in Qaptiva. For selecting it, the string linalg should be provided
to qpu type key of the input dictionary. To use it, the user must be in a Qaptiva server.

• MPS: MPS simulator only available in in Qaptiva. For selecting it, the string mps should be provided to
qpu type key of the input dictionary. To use it, the user must be on a Qaptiva server.

Additionally, the user can submit the circuit via Qaptiva Access to a Qaptiva hardware. In this scenario, the user can
access the LinAlg by providing qlmass linalg or the MPS by providing qlmass mps to the qpu type key.

For the ideal noiseless QPUs the only key that should be provided is the qpu type key. Other keys can be set to None.

3.2.2. Ideal noiseless QPU with circuit rewriting

BE AWARE!! To use this type of QPU the user should be connected directly to a Qaptiva hardware

The select qpu function from qpu/select qpu module can build an ideal noiseless QPU with some circuit rewriting
capabilities. To activate these capabilities, the string ideal should be provided to the qpu type key of the dictionary
shown in listing 3.1.

In this case, two rewriting Qaptiva 800 functionalities are enabled:

1. KAK compression plugin 5: merge consecutive one qubit gates into a temporary unitary matrix, and decompose
this temporary matrix using a selected pattern. The pattern can be selected by providing the following strings to
the kak compiler key:

• ZXZ: the unitary matrix is decomposed using the following pattern: Rz −Rx −Rz .

• XZX: the unitary matrix is decomposed using the pattern: Rx −Rz −Rx.

• ZYZ: the unitary matrix is decomposed using the pattern: Rz −Ry −Rz .

• ions or ions: the unitary matrix is decomposed using the pattern: Rz −Rx

(
π
2

)
−Rz −Rx

(
π
2

)
−Rz .

2. Toffoli Rewritter: using the Pattern Manager plugin from Qaptiva, all the Toffoli gates of the quantum circuit
will be decomposed in 1 and 2 qubit gates.

For example, figure 1 shows a quantum circuit obtained from a QRBS, where the gate M is given by the equation
(3.1).

M =

(
sin θ cos θ
cos θ − sin θ

)
(3.1)

When KAK compression plugin with pattern ions is used, it decomposes the operator M into a set of gates with the
pattern Rz − Rx

(
π
2

)
− Rz − Rx

(
π
2

)
− Rz , adding the corresponding angles to the three rotations around z. The

transformed circuit is shown in Figure 2.

Similarly, the Toffoli rewriter changes all the Toffoli gates into their corresponding decomposition into 2 and 1 qubit
gates, producing the final circuit shown in figure 3.

5Plugin available in Qaptiva 800.

© NEASQC Consortium Partners. All rights reserved. Page 9 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

q0

q1

q2

q3

q4

q5

q6

q7

M (0.90)

M (0.70)

M (0.60)

M (0.40)

Figure 1: Typical quantum circuit from a QRBS.

q0

q1

q2

q3

q4

q5

q6

q7

Rz (6.28) Rx

(
π
2

)
Rz (0.31) Rx

(
π
2

)
Rz (0.0)

Rz (6.28) Rx

(
π
2

)
Rz (0.94) Rx

(
π
2

)
Rz (0.0)

Rz (6.28) Rx

(
π
2

)
Rz (1.26) Rx

(
π
2

)
Rz (0.0)

Rz (6.28) Rx

(
π
2

)
Rz (1.88) Rx

(
π
2

)
Rz (0.0)

Figure 2: One qubit gate decomposition of quantum circuit of figure 1 using KAK compression with ions pattern.

q0

q1

q2

q3

q4

q5

q6

q7

Rz (6.28) Rx

(
π
2

)
Rz (0.31) Rx

(
π
2

)
Rz (0.0) PH

(
π
4

)
Rz (6.28) Rx

(
π
2

)
Rz (0.94) Rx

(
π
2

)
Rz (0.0) PH

(
π
4

)
PH

(
−π

4

)
PH

(
π
4

)
Rz (6.28) Rx

(
π
2

)
Rz (1.26) Rx

(
π
2

)
Rz (0.0) PH

(
π
4

)
PH

(
−π

4

)
H PH

(
π
4

)
PH

(
−π

4

)
PH

(
π
4

)
PH

(
−π

4

)
H

H PH
(
π
4

)
PH

(
−π

4

)
PH

(
π
4

)
PH

(
−π

4

)
H PH

(
π
4

)
H PH

(
π
4

)
PH

(
−π

4

)
PH

(
π
4

)
PH

(
−π

4

)
H PH

(
π
4

)
PH

(
−π

4

)
H PH

(
π
4

)
PH

(
−π

4

)
PH

(
π
4

)
PH

(
−π

4

)
H PH

(
π
4

)
PH

(
−π

4

)
Rz (6.28) Rx

(
π
2

)
Rz (1.88) Rx

(
π
2

)
Rz (0.0) PH

(
π
4

)

Figure 3: Final circuit from Figure 2 after applying Toffoli gate decomposition.

3.2.3. Noisy QPU

BE AWARE!! To use this type of QPU the user should be connected locally to a Qaptiva hardware

The select qpu function from qpu/select qpu module allows the user to configure noisy simulation, using different
Qaptiva 800 series functionalities and plugins. To activate these capabilities, the string noisy should be provided to
the qpu type key of the dictionary shown in listing 3.1.

The noisy simulation model is composed of three different, configurable, parts:

• Depolarization channel: in this noisy model, any unitary gate can have a probability of not being applied
correctly. To enable it, the depol chanel dictionary should be modified. The active key should be set to
True. The error gate 1qb and error gate 2qbs keys set the failure probability of one and two-qubit gates
respectively.

• Idle noise: this part models the behaviour of the qubits during the time that no gate is being applied to them
(idle time). The subdictionary key idle configures the two different types of idle noises that can be applied:

© NEASQC Consortium Partners. All rights reserved. Page 10 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

1. Amplitude Damping channel: this is related to the decoherence time T1 of the qubits. To enable it, the
amplitude damping key should be set to True. The T1 time (nanoseconds) should be provided to the t1
key.

2. Phase Damping channel: this is related to the decoherence time T2 of the qubits. To enable it, the dephas-
ing channel key should be set to True. The T2 time (nanoseconds) should be provided to the t2 key. This
case needs the amplitude damping enabled.

• Readout error: models the error in the measurement. To configure it, the sub-dictionary meas should be used.
To enable it, the corresponding active key should be set to True. The specific measurement error value should
provided to the readout error key.

Once the hardware model noise is modelled, the final step is to configure the type of simulation. This is done by the
sub-dictionary sim method shown in Listing 3.1. The most important key is the sim method one that selects the type
of simulation:

• deterministic simulation: in this case, the complete density matrix evolution for the quantum circuit is simu-
lated. This simulation has a high memory usage but there is no statistical error. To use it the following strings
can be provided to the sim method key: deterministic or deterministic-vectorized. This type of simulation can
be used when the number of qubits of the quantum circuits is not too large (for the QLM 30 in CESGA facilities
the thumb rule is no more than 15 qubits).

• stochastic simulation: this kind of simulation performs a stochastic sampling over all possible trajectories. To
use it the string stochastic should be provided to the sim method key. The storage cost is lower than in the
deterministic but it has some statistical error given by the number of trajectories. The number of trajectories
should be provided to the sub-dictionary sim method using the n samples key.

• Matrix Product Operator (MPO) simulation: in this case, the simulation uses tensor networks and matrix
product state techniques for approximating the final result. To use it, the string mpo should be provided to the
sim method key. An additional parameter is the bond dimension of the MPO that should be provided (as an
integer) to the key bond dimension of the sim method sub-dictionary.

3.3. Synthetic case: Basket problem

To perform an initial evaluation of the QRBS software, a toy problem was used: the basketball selection problem.

The problem is the following: a basketball coach wants a new player for a team. To select the best player, he decides
to evaluate them based on 2 inputs: the height of the player (in cm) and the scored throws (over 20). With these 2
inputs, the coach defines a RBS that returns a score between 0 and 100 to evaluate a player’s suitability.

First of all, the coach categorizes each one of these 2 inputs into 5 different groups as shown in Table 1 where, for each
possible category, the corresponding membership function (see appendix B for definition and notation) is presented:
columns Throws (of 20) for throws and Height (cm) for height.

Throw category Throws (of 20) Height Category Height (cm)
Very bad 1/0-1/3-0/7 Very Small 1/150-1/170-0/180

Bad 0/3-1/5-1/7-0/9 Small 0/170-1/175-1/180-0/185
Regular 0/7-1/10-0/13 Normal 0/180-1/190-0/195
Good 0/11-1/13-1/15-0/17 Tall 0/190-1/195-1/205-0/210

Very Good 0/15-1/17-1/20 Very Tall 0/200-1/210-1/250

Table 1: Categorization of the 2 inputs features for the basket problem.

Figure 4 plots the corresponding membership functions for the categorization of the throws (Figure 4a) and the heights
(Figure 4b). To understand how Table 1 and Figure 4 work some examples are provided:

© NEASQC Consortium Partners. All rights reserved. Page 11 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Throws (of 20)

T
hr

ow
Pr

ob
ab

ili
ty

Very Bad
Bad

Regular
Good

Very Good

(a) Throws

160 180 200 220 240

0

0.2

0.4

0.6

0.8

1

Height (cm)

H
ei

gh
tP

ro
ba

bi
lit

y

Very Small
Small

Normal
Tall

Very Tall

(b) Heights

Figure 4: Membership functions for Table 1.

• A player with 12 of 20 throws will be categorized as a Good player (so this player will have a one in the Good
player category and a zero in the others).

• A player with a height of 180 cm will be categorized as a small player (so this player will have a one in the
Small player category and a zero in the others).

• A player with 16 of 20 in throws will have a 0.5 in Good and Very Good player categories and zero in the others.

• A player with a height of 192 cm will have a 0.6 in Normal a 0.4 in Tall categories and zero in the others.

Number Rule Output
Rule 1 IF height = normal AND Throws = Good

OR height = normal AND Throws = Very Good
OR height = tall And Throws = Regular
OR height = Very tall And Throws = Regular

Normal

Rule 2 IF height = Tall AND Throws = Good
OR height = Very Tall AND Throws = Good

Good

Rule 3 IF height = Tall AND Throws = Very Good
OR height = Very Tall AND Throws = Very Good

Very Good

Rule 4 IF shots = Very Bad OR Throws = Bad Bad
Rule 5 IF height = Very small OR height = Small Bad
Rule 6 IF height = Normal OR Throws = Regular Bad

Table 2: Rules for the basket RBS.

Secondly, based on his own experience, the basketball coach decides to categorize the players into 4 groups: I =
{Bad,Normal,Good,Very Good} and develop the rules presented in Table 2 for this RBS. The problem is that the
inputs are not categorical (a player can have a 0.5 in Good and Very Good throw and a 0.6 in Normal and 0.4 in Tall
categories) so the output facts, I = {Bad,Normal,Good,Very Good}, won’t be categorical, they will be affected by
some imprecision, aI ∈ [0, 1], (a player can be 0.4 Normal, 0.6 Good and 0 for the other categories).

The final ingredient of the basket QRBS is the Table 3. This table presents the membership function that relates a
final score between 0 and 100 with the output category (Bad, Normal ...) of a player. Figure 5 plots them for the final
score domain. In the proposed QRBS the inverse problem is presented: a score for each of the four output categories
is obtained and it is needed to convert it to a final score.

© NEASQC Consortium Partners. All rights reserved. Page 12 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

Final player Category Final Score
Bad 1/0

Normal 1/0-1/25-0/40
Good 0/25-1/40-1/60-0/75

Very Good 0/60-1/75-1/100

Table 3: Final Categorization of the players and
corresponding membership function.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Final Score

Sc
or

e
C

la
ss

ifi
ca

tio
n

Bad
Normal
Good

Very Good

Figure 5: Membership function graphic for
Scoring categorization showed in Table 3.

To solve this inverse problem, given the score of the player for each possible output category, aI , it is mandatory to
compute the degree of membership function of the player to each category pI(x) given by (3.2) where µI(x) is the
membership function for the I output fact (see Figure 5).

pI(x) = min (µI(x), aI)) (3.2)

Finally, a Z(x) function should be built using a Mamdani implication, defined as

Z(x) = max
I

(pI(x))) (3.3)

The final score is given by:

final score =

∫
Z(x) x dx∫
Z(x) dx

(3.4)

where the integration should be done over the final score domain (between 0 and 1).

For executing this case, a third notebook was developed (qrbs/misc/03 Basket.ipynb). It includes a full description
of this easy basket example and an implementation using the QRBS software. To evaluate it, the basket RBS was
developed using a fuzzy logic Matlab implementation as well. The corresponding .fis Matlab file with the basket RBS
implementations is presented in Listing A.1 in the annex A.

Name Throws Height Final Score (QRBS) Final Score (Matlab)
Player 1 16 198 64.6 64.6
Player 2 17 193 59.5 56.1
Player 3 17 188 16.5 16.9
Player 4 15 203 50.0 50.0
Player 5 18 176 0.0 0.0
Player 6 18 186 17.4 17.6

Table 4: Evaluation of different players under the basket QRBS and the fuzzy logic Matlab implementation.

Table 2 shows the evaluation for different players, using the QRBS and the Matlab fuzzy logic implementations. As
can be seen, both final scores are compatible.

© NEASQC Consortium Partners. All rights reserved. Page 13 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

(a) QRBS. (b) Fuzzy logic.

Figure 6: Control surface for the basket problem.

Figure 6 shows the 2 surface control plots for the basket problem when implemented using the QRBS (Figure 6a) and
the fuzzy logic Matlab program (Figure 6b). As can be seen, the two surfaces are very similar, as expected, so the
QRBS works similarly to classical (not quantum) tools.

A more representative view can be found in Figure 7 where the difference between the 2 surface control plots is
depicted (so this figure is the difference between Figures 6a and 6b). The surface control plots are not identical but
they are very similar and the differences are compatible.

Finally, Figure 8 presents the relationship between the final scores using Fuzzy logic and QRBS. The dashed line is a
slope 1 line for eye-guided purposes.

As a consequence of the previous data, it can be concluded that the basket problem was implemented correctly using
the QRBS and that this system works in a similar way to classical indetermination propagation models (like fuzzy
logic).

Figure 7: Surface control plot difference between QRBS
and Fuzzy Logic ones..

Figure 8: Comparison between QRBS and Fuzzy Logic
final scores. The dashed line of slope one is presented for

eye guide purposes.

© NEASQC Consortium Partners. All rights reserved. Page 14 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

3.4. QRBS for Invasive Ductal Carcinoma staging

The main objective for UC6 was the development of QRBS for breast cancer detection, in concrete to Invasive Ductal
Carcinoma staging (IDC). Here we briefly glimpse the IDC staging system. Please refer to other deliverables for a
more detailed explanation.

The QRBS developed implementation of the IDC staging system, is supported by a knowledge model based on the
TNM classification system (Giuliano et al., 2018) where the three sets of variables T, N and M (see Figure 9) are used
to classify the current state of the patient (Moret-Bonillo, Gomez Tato, Magaz-Romero, et al., 2023b).

Figure 9: Variables or symptoms that are considered in the knowledge model for IDC staging.

Once the patient has been classified regarding the TNM system, the IDC stage is determined through the correspon-
dence of Table 5. However, several TNM possible classifications fit in more than one IDC stage (for example, the
classification T0 N1 M0 corresponds to both stages I-B and II-A).

IDC Stage Compatible TNM classification
I-A T1 N0 M0
I-B T0 N1 M0 / T1 N1 M0
II-A T0 N1 M0 / T1 N1 M0 / T2 N0 M0
II-B T2 N1 M0 / T3 N0 M0
III-A T0 N2 M0 / T1 N2 M0 / T2 N0 M0 / T3 N2 M0 / T3 N1 M0
III-B T4 N0 M0 / T4 N1 M0 / T4 N2 M0
III-C TX N3 M0
IV TX NY M1

Table 5: Invasive Ductal Carcinoma stages according with TNM classification system.

An IDC application using the QRBS software was developed into the framework of the project and well documented
in (Moret-Bonillo, Magaz-Romero, Mosqueira-Rey, & Alvarez-Estevez, 2023).

For this evaluation, a fourth notebook was developed (03 IDC.ipynb) where the IDC was built using the QRBS
software. The notebook explains the case and how to program it using the QRBS software.

The validation test of the QRBS implementation of the IDC was performed by executing each possible TMN classifi-
cation and verifying that the precision of the different output stages is compatible with the TMN classification of Table
5. In the notebook, the mandatory code for reproducing this validation text is provided, but the user must have access
to Qaptiva hardware (connected locally or using the Qaptiva Access tool) to execute it. Additionally, the obtained
validation results can be found in the notebook. Table 6 summarizes them when the generated quantum circuits were
simulated with an ideal noiseless QPU. The table presents, for each TMN classification, all the compatible inputs and

© NEASQC Consortium Partners. All rights reserved. Page 15 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

the stage or stages that had a 1.0 precision (the other stages had a 0.0 precision). As can be seen, the obtained results
reproduce the classical and standard staging presented in Table 5.

The last line of Table 6 presents input symptoms that are not compatible with any TMN classification of Table 5 and
there is no valid staging output. In this case, all the outputs for the precision provided by IDC QRBS are 0.0.

TNM Compatible inputs Precision 1.0
T1 N0 M0 T1N0AM0, T1N0BM0 Stage I-A
T0 N1 M0 T0N1AM0, T0N1BM0 Stage I-B, Stage II-A
T1 N1 M0 T1N1AM0, T1N1BM0 Stage I-B, Stage II-A
T2 N0 M0 T2N0AM0, T2N0BM0 Stage II-A, Stage III-A
T2 N1 M0 T2N1AM0, T2N1BM0 Stage II-B
T3 N0 M0 T3N0AM0, T3N0BM0 Stage II-B
T0 N2 M0 T0N2AM0, T0N2BM0 Stage III-A
T1 N2 M0 T1N2AM0, T1N2BM0 Stage III-A
T3 N1 M0 T3N1AM0, T3N1BM0 Stage III-A
T3 N2 M0 T3N2AM0, T3N2BM0 Stage III-A
T4 N0 M0 T4N0AM0, T4N0BM0 Stage III-B
T4 N1 M0 T4N1AM0,T4N1BM0 Stage III-B
T4 N2 M0 T4N2AM0,T4N2BM0 Stage III-B

TX N3 M0
T0N3AM0, T0N3BM0, T0N3CM0, T1N3AM0, T1N3BM0,
T1N3CM0, T2N3AM0, T2N3BM0, T2N3CM0, T3N3AM0,
T3N3BM0, T3N3CM0, T4N3AM0, T4N3BM0, T4N3CM0

Stage III-C

TX NY M1

T0N0AM1, T0N0BM1, T0N1AM1, T0N1BM1, T0N2AM1,
T0N2BM1, T0N3AM1, T0N3BM1, T0N3CM1, T1N0AM1,
T1N0BM1, T1N1AM1, T1N1BM1, T1N2AM1, T1N2BM1,
T1N3AM1, T1N3BM1, T1N3CM1, T2N0AM1, T2N0BM1,
T2N1AM1, T2N1BM1, T2N2AM1, T2N2BM1, T2N3AM1,
T2N3BM1, T2N3CM1, T3N0AM1, T3N0BM1, T3N1AM1,
T3N1BM1, T3N2AM1, T3N2BM1, T3N3AM1, T3N3BM1,
T3N3CM1, T4N0AM1, T4N0BM1, T4N1AM1, T4N1BM1,
T4N2AM1, T4N2BM1, T4N3AM1, T4N3BM1, T4N3CM1

Stage IV

No Stage T2N0AM0, T0N0BM0, T2N2AM0, T2N2BM0 Neither

Table 6: Validation test results for QRBS implementation ofIDC. For each TMN classification, all the compatible
inputs and the stages with 1.0 precision are presented.

3.4.1. Imprecision in QRBS IDC

In the validation test presented in sub-section 3.4, the input symptoms of the QRBS implementation of the IDC were
used as categorical variables (so the precision was set to 0 or to 1). In real-life medicine, the input symptoms can
be affected by some indetermination and the practitioners can assign some probability to them based on their own
experience. QRBS can propagate, in a natural way, this indetermination (by assigning the desired probability to the
input symptoms) and provide a final probability for each output staging.

labels T0 T1 T2 T3 T4 T5 N0A N0B N1A N1B N2A N2B N3A N3B N3C M0 M1
T0T1/N0/M0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0.0
T0T1/N1N2/M0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.2 0.0 0.0 0.0 0.0 1 0.0
T0T1/N2N3/M0 0.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.3 0.0 0.0 1 0.0
T1T2/N0/M0 0.0 0.8 0.2 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0.0
T1T2/N1N2/M0 0.0 0.8 0.2 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.2 0.0 0.0 0.0 0.0 1 0.0
T1T2/N2N3/M0 0.0 0.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.3 0.0 0.0 1 0.0
T2T3/N0/M0 0.0 0.0 0.6 0.4 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1 0.0
T2T3/N1N2/M0 0.0 0.0 0.6 0.4 0.0 0.0 0.0 0.0 0.8 0.0 0.2 0.0 0.0 0.0 0.0 1 0.0
T2T3/N2N3/M0 0.0 0.0 0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.3 0.0 0.0 1 0.0

Table 7: Imprecision input facts for testing indetermination propagation in the IDC QRBS implementation.

To show how the system deals with some degree of imprecision in the input symptoms, several simulations with ideal
QPU (presented in the last part of the 03 IDC.ipynb notebook) were performed. Table 7 shows the configuration of

© NEASQC Consortium Partners. All rights reserved. Page 16 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

the different input symptoms used. The imprecision was assigned arbitrarily (and without any medical knowledge).
The corresponding results are presented in Figure 10 where, for each tested input from Table 7, the obtained Stage
precisions are plotted as a heat map.

Figure 10: Precision of all the stages for the TMN inputs of Table 7.

As can be seen, the stages that before were categorical (had a 1.0) now have some probability assigned and even some
stages that before were impossible, now appear with some probability.

The results obtained do not significantly differ from those that could be expected when considering the subjectivity
of the clinician who analyzes the case. The same case evaluated by two different experts would produce slightly
different results depending on the practitioner. Therefore, the variability of the outputs is merely a consequence of the
clinician’s subjectivity when interpreting the results. In other words, we are not talking about mathematical conditional
probability, but introducing the concept of subjective conditional probability.

This QRBS functionality is beyond the capabilities of the standard classical software used for this benchmarking and
could represent a future advantage of the proposed method.

3.5. Noisy simulations

The last step is the evaluation of the resilience of QRBS to noise. Currently, QPUs have an important noise that is
decreasing continuously, and with important advances in logical qubits. But maybe in the next years, there will still be
noise during the execution of the quantum programs. So, it is important to know how it will affect the programs and,
also, to assess the level of noise that it is acceptable for each case. In this section, using emulated noise as described
in previous sections, the resilience to noise of QRBS is evaluated using the two previous cases: the synthetic basket
problem and the IDC diagnosis.

The main idea was to simulate the problems using QPUs with different levels of noise. The hardware model used for
building them consists of a depolarization channel and idle noise, with amplitude and the phase damping channels
activated. Table 8 shows the settings used in the experiment. The noisy QPUs are labelled by the level of noise. The

© NEASQC Consortium Partners. All rights reserved. Page 17 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

lowest one is the noisy 0 with very low error rates for the gates and long decoherence times. This case is the closest
to an ideal simulation. The highest level of noise is the noisy 5 whose parameters were obtained from the median
values of the IBM Brisbane QPU. Other parameters for the simulation depend on the case and will be explained in
each subsection.

qpu name t gate 1qb (ns) t gate 2qbs (ns) error gate 1qb error gate 2qbs T1 (ns) T2 (ns)
noisy 0 35 660 2.27E-09 7.74E-08 2.32E+10 1.33E+10
noisy 1 35 660 2.27E-08 7.74E-07 2.32E+09 1.33E+09
noisy 2 35 660 2.27E-07 7.74E-06 2.32E+08 1.33E+08
noisy 3 35 660 2.27E-06 7.74E-05 2.32E+07 1.33E+07
noisy 4 35 660 2.27E-05 7.74E-04 2.32E+06 1.33E+06
noisy 5 35 660 2.27E-04 7.74E-03 2.32E+05 1.33E+05

Table 8: Parameter configuration for building the noisy QPUs. The bold values correspond to the median values for
IBM Brisbane QPU.

3.5.1. Basket problem

The generated circuits by the basket QRBS do not demand, in general, a large number of qubits (the widest circuit
uses 19 qubits). So, this case was used as a testing bench for noisy simulation.

The main idea was to simulate the basket QRBS for the players of Table 4 using QPUs with different levels of noise.
Table 9 presents other parameter configurations of the noisy simulation experiments for this test.

Parameter Key Value
Compression Pattern kak compiler ZXZ
Simulation method sim method stochastic

Number of trajectories n samples 10000

Table 9: Simulation parameters for the noisy experiments. The table presents the name of the parameter, the
corresponding key in the QPU configuration dictionary (see Listing 3.1) and the value used.

To all the noisy QPUs from Table 8, a KAK compression plugin with the pattern ZXZ and a Toffoli rewriter were
included. The simulation method was the stochastic one because the basket QRBS can generate circuits with more
than 15 qubits. The number of trajectories was set to 10000 (for the biggest circuits the obtained results do not
change when more trajectories were used). The three models for propagation of indetermination were simulated (i.e.
Certainty Factors, Fuzzy Logic and Bayesian Networks). Finally, due to a problem with the Qaptive 800 series when
the stochastic simulation is used, the number of shots was set to 0. This implies that instead of sampling from the
computed probability distribution, the system returned the desired state probability. The Qaptive 800 series randomly
raises an error when stochastic simulation is used with a number of shots different from 0. It is expected that this issue
will be solved with the following versions of the library.

Figure 11: Basket QRBS noisy
simulation results for player of

Table 4 under the Certainty factor
model. The dashed lines show the

ideal scores.

Figure 12: Basket QRBS noisy
simulation results for player of
Table 4 under the Fuzzy logic

model. The dashed lines show the
ideal scores.

Figure 13: Basket QRBS noisy
simulation results for player of

Table 4 under the Bayesian
networks model. The dashed lines

show the ideal scores.

© NEASQC Consortium Partners. All rights reserved. Page 18 of 29

https://quantum.ibm.com/services/resources?system=ibm_brisbane

D6.17 QRBS Evaluation Report (1.0- Submitted)

The results of the noisy simulation are presented in Figure 11, where the Certainty factor model is used, Figure 12,
corresponding to Fuzzy logic, and in Figure 13 corresponding to the Bayesian networks. The dashed lines in these
figures correspond to the ideal simulation for each player. As can be seen, until the noisy level noisy 2 the difference
between ideal and noisy simulations is negligible. For the noisy 3 and noisy 4 the noisy results are compatible for
all players except player 5 (whose ideal final score is 0). For noisy 5, with the parameters of the IBM Brisbane, the
difference between noise and ideal results is too high and the QRBS is not usable.

The noise model used in the simulation is very simple (only idle and depolarizing channels were used) but provides
some insight into how the acceptable noise (error rate gates and decoherence times) a quantum device should have
to execute the basket QRBS. The maximum noise level should be the noisy 3 because the Final Score order is kept
meanwhile in the noisy 4 model the Player 5 would have a better score than players 3 and 6. If only the best final
scores are important because some threshold will be added (players with a final score lower than 40 are rejected
automatically for example), the noisy 4 can be usable.

Finally, it is clearly seen that increasing the noise makes that the results for all the players converge. Probably, if larger
noise would be simulated, all the scores would converge to a single value, making the results completely useless.

3.5.2. Noisy simulations for QRBS IDC

The same evaluation was performed on the IDC staging system built using QRBS. For all the different compatible
TMN classifications (see Table 5), the QRBS IDC was simulated using the noisy QPUs presented in Table 8.

tnm T0 T1 T2 T3 T4 T5 N0A N0B N1A N1B N2A N2B N3A N3B N3C M0 M1
T1 N0 M0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
T0 N1 M0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
T1 N1 M0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
T2 N0 M0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0
T2 N1 M0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0
T3 N0 M0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0
T0 N2 M0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
T1 N2 M0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
T3 N2 M0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0
T3 N1 M0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0
T4 N0 M0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
T4 N1 M0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
T4 N2 M0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0
TX N3 M0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
TX NY M1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

Table 10: Tested TNM classification and the corresponding input case used for noisy simulations of IDC QRBS
implementation.

Each possible TMN classification can be obtained by different combinations of the variables presented in Figure 9.
Table 10 shows the combination of variables used for each tested TMN classification.

As in the basket problem, to all the noisy QPUs from Table 8, two different plugins were added: one for rewriting
Toffoli gates and a KAK compression one with the pattern ZXZ. The simulation method was the stochastic one
because the IDC QRBS can generate circuits with more than 20 qubits. The number of trajectories was set to 500 (for
the biggest circuits the obtained results did not change when more trajectories were used). Only the Certainty Factors
indetermination propagation model was simulated in the noisy simulations. Again the number of shots was set to 0
(so the desired state probability from the computed probability distribution was returned instead of a sampling).

Figure 14 shows the results of the noisy simulations. This plot presents the evolution of the precision of the correct
stage for each TMN classification of Table 10 with the different noisy QPUs. As can be seen, until the noisy level
noisy 3 the difference between ideal and noisy simulations is negligible. For the noisy 4 level, the precision of the
correct stage decreases but with this level of noise, the outputs can be acceptable. For the noisy 5 level, with noisy
parameters taken from IBM Brisbane quantum device, the precision of the correct stage decreases a lot for many of
the stages and the system does not work properly.

Figure 15 presents the results of the IDC noisy simulation using heat maps. For each possible TMN classification
(y-axis) tested, (see Table 10) the different precision obtained for all the possible stages (x-axis) (see Table 5) is
represented as a colour scale between blue (precision 0) and yellow (precision 1).

© NEASQC Consortium Partners. All rights reserved. Page 19 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

Figure 14: Simulation results for the IDC for the different TMN classifications are shown in Table 10.

As can be seen, the QRBS implementation of IDC works properly until noisy 3 level: the different TMN classifications
provide the corresponding correct stage (or stages). For example, until noisy 3 level, the classification T0N1M0
delivers a 1 precision for Stage I-B and Stage II-A and a 0 for the other possible stages (according to the classification
presented in Table 5). For the noisy 4 level, the precision of the correct staging is not 1.0 (in general) and other
incorrect stages arise with some precision. For example, the T0N1M0 produces a precision of 0.95 for Stage I-B, 0.94
for Stage II-A and a 0.11 for the Stage III-A (an incorrect staging for a T0N1M0 classification). So when the noise
level increases, additional bad staging arises.

This is more clearly presented in the noisy 5 level where the precision of bad stages can be increased to values similar
to the precision of the good stages, For example, the T0N1M0 produces a precision of 0.74 for Stage I-B, 0.65 for
Stage II-A, a 0.62 for the Stage III-A a 0.35 for Stage III-B and so on.

Although the noise model used in the simulation is very simple (only idle and depolarizing channels were used), some
insight about the acceptable noise (error rate gates and decoherence times) a quantum device should have to execute
the QRBS implementation of the IDC can be obtained. It looks like a quantum device with a noisy 3 compatible level
could execute the software properly. Even if the noise level is compatible with noisy 4 the software can be executed
with some confidence. A device compatible with the noisy 5 will produce a lot of bad stagings and the software can
not be executable in a reliable way.

© NEASQC Consortium Partners. All rights reserved. Page 20 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

Figure 15: Results of the noisy simulations performed on IDC. The heat maps present the precision,
range between 0 (blue) and 1 (yellow) obtained for each possible staging (x-axis) for the tested TMN

classifications (y-axis).
© NEASQC Consortium Partners. All rights reserved. Page 21 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

4.Conclusions

In this deliverable, we have presented the evaluation of the QRBS software library. The results of the evaluation permit
to extract the following conclusions:

• The results obtained for all the cases in a noiseless environment are those expected for the defined problems.
These values present a high degree of similarity with those of classical models, as shown by comparing QRBS
with fuzzy logic. In fact, the problem is not inferential; the problem is derived from the classification criteria.

• When comparing classical and quantum methods, it can be observed that the corresponding results are consis-
tent. However, the QRBS approach improves the outputs adding intrinsic uncertainties to the inferences, which
are not available in the classical approach. The results obtained show an almost identical behaviour among them,
thus reinforcing the hypothesis (in both, qualitatively and quantitatively perspectives) that Quantum Computing
is a more general paradigm, with the capacity to encompass the different classical models of symbolic reasoning.

• Noise affects the results catastrophically when it is higher than a threshold, producing for the current QPUs
useless results. However, for the tested models, a moderate improvement in the quality of the QPUs could
produce acceptable results. Of course, the executed models do not justify yet the usage of real QPUs, because
they are still small, allowing the classical ideal emulation. Experiments with larger models are needed to assess
clearly the effect of the noise.

Also, the evaluation produces several improvements to the original QRBS software. Some tutorials were produced as
notebooks, that explain clearly the capabilities of the developed library. These notebooks explain the different QRBS
concepts, some improvements related to the QPU used for solving the quantum circuits generated for the systems, the
generation from scratch of an intermediate RBS using the library and evaluating it in ideal and noisy simulation (the
basketball case). The software was extended with new capabilities that now permit the execution on other emulators
using Qaptiva, and in the future, using it to connect to real QPUs.

© NEASQC Consortium Partners. All rights reserved. Page 22 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

List of Acronyms

Term Definition
API Application Programming Interface
IDC Invasive Ductal Carcinoma
MPO Matrix Product Operator
MPS Matrix Product State
QRBS Quantum Rule-Based System
RBS Rule-Based System
UC Use Case
QPU Quantum Process Unit
QLM Quantum Learning Machine

Table 11: Acronyms and Abbreviations

© NEASQC Consortium Partners. All rights reserved. Page 23 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

List of Figures

Figure 1.: Typical quantum circuit from a QRBS. 10
Figure 2.: One qubit gate decomposition of quantum circuit of figure 1 using KAK compression with

ions pattern. 10
Figure 3.: Final circuit from Figure 2 after applying Toffoli gate decomposition. 10
Figure 4.: Membership functions for Table 1. 12
Figure 5.: Membership function graphic for Scoring categorization showed in Table 3. 13
Figure 6.: Control surface for the basket problem. 14
Figure 7.: Surface control plot difference between QRBS and Fuzzy Logic ones.. 14
Figure 8.: Comparison between QRBS and Fuzzy Logic final scores. The dashed line of slope one is

presented for eye guide purposes. 14
Figure 9.: Variables or symptoms that are considered in the knowledge model for IDC staging. 15
Figure 10.: Precision of all the stages for the TMN inputs of Table 7. 17
Figure 11.: Basket QRBS noisy simulation results for player of Table 4 under the Certainty factor model.

The dashed lines show the ideal scores. 18
Figure 12.: Basket QRBS noisy simulation results for player of Table 4 under the Fuzzy logic model. The

dashed lines show the ideal scores. 18
Figure 13.: Basket QRBS noisy simulation results for player of Table 4 under the Bayesian networks

model. The dashed lines show the ideal scores. 18
Figure 14.: Simulation results for the IDC for the different TMN classifications are shown in Table 10. . 20
Figure 15.: Results of the noisy simulations performed on IDC. The heat maps present the precision, range

between 0 (blue) and 1 (yellow) obtained for each possible staging (x-axis) for the tested TMN
classifications (y-axis). 21

Figure 16.: Plot with the membership function for a z-shape: 1/0-1/3-0/7 28
Figure 17.: Plot with the membership function for a s-shape: 0/3-1/7-1/9 28
Figure 18.: Plot with the membership function for a triangular shape: 0/3-1/5-0/7 29
Figure 19.: Plot with the membership function for a trapezoidal shape 0/3-1/4-1/6-0/7 29

© NEASQC Consortium Partners. All rights reserved. Page 24 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

List of Tables

Table 1.: Categorization of the 2 inputs features for the basket problem. 11
Table 2.: Rules for the basket RBS. 12
Table 3.: Final Categorization of the players and corresponding membership function. 13
Table 4.: Evaluation of different players under the basket QRBS and the fuzzy logic Matlab implemen-

tation. 13
Table 5.: Invasive Ductal Carcinoma stages according with TNM classification system. 15
Table 6.: Validation test results for QRBS implementation ofIDC. For each TMN classification, all the

compatible inputs and the stages with 1.0 precision are presented. 16
Table 7.: Imprecision input facts for testing indetermination propagation in the IDC QRBS implemen-

tation. 16
Table 8.: Parameter configuration for building the noisy QPUs. The bold values correspond to the me-

dian values for IBM Brisbane QPU. 18
Table 9.: Simulation parameters for the noisy experiments. The table presents the name of the parameter,

the corresponding key in the QPU configuration dictionary (see Listing 3.1) and the value used. 18
Table 10.: Tested TNM classification and the corresponding input case used for noisy simulations of IDC

QRBS implementation. 19

Table 11.: Acronyms and Abbreviations . 23

© NEASQC Consortium Partners. All rights reserved. Page 25 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

Bibliography

Borujeni, S. E., Nannapaneni, S., Nguyen, N. H., Behrman, E. C., & Steck, J. E. (2021). Quantum circuit representation
of bayesian networks. Expert Systems with Applications, 176, 114768. https://doi.org/https://doi.org/10.
1016/j.eswa.2021.114768

Giuliano, A. E., Edge, S. B., & Hortobagyi, G. N. (2018). Eighth edition of the ajcc cancer staging manual: Breast
cancer. Annals of Surgical Oncology, 25(7), 1783–1785. https://doi.org/10.1245/s10434-018-6486-6

Magaz-Romero, S. (2024). Neasqc: Qrbs. https://github.com/NEASQC/qrbs
Moret-Bonillo, V., Gomez Tato, A., Magaz Romero, S., Mosqueira-Rey, E., & Alvarez-Estevez, D. (2022, October).

D6.9: Qrbs software specifications. https://doi.org/10.5281/zenodo.7299193
Moret-Bonillo, V., Gomez Tato, A., Magaz-Romero, S., Mosqueira-Rey, E., & Alvarez-Estevez, D. (2023a, July).

D6.11 Preliminary QRBS software and IDC application specification. https : / / doi . org / 10 . 5281 / zenodo .
8108580

Moret-Bonillo, V., Gomez Tato, A., Magaz-Romero, S., Mosqueira-Rey, E., & Alvarez-Estevez, D. (2023b, July).
D6.11 Preliminary QRBS software and IDC application specification. https : / / doi . org / 10 . 5281 / zenodo .
8108580

Moret-Bonillo, V., Magaz-Romero, S., & Mosqueira-Rey, E. (2022). Quantum computing for dealing with inaccurate
knowledge related to the certainty factors model. Mathematics, 10(2). https://doi.org/10.3390/math10020189

Moret-Bonillo, V., Magaz-Romero, S., Mosqueira-Rey, E., & Alvarez-Estevez, D. (2023, December). D6.14 Final
QRBS software and IDC application. https://doi.org/10.5281/zenodo.10868936

Moret-Bonillo, V., Mosqueira-Rey, E., & Magaz-Romero, S. (2021, December). D6.5 Quantum Rule-Based System
(QRBS) Requirement Analysis. https://doi.org/10.5281/zenodo.5949157

Moret-Bonillo, V., Mosqueira-Rey, E., Magaz-Romero, S., & Gómez-Tato, A. (2021). Quantum rule-based systems
(qrbs) models, architecture and formal specification (D6. 2). https://www.neasqc.eu/wp-content/uploads/
2021/05/NEASQC D6.2 QRBS-Models-Architecture-and-Formal-Specification-V1.5-Final.pdf

Shortliffe, E. H., & Buchanan, B. G. (1975). A model of inexact reasoning in medicine. Mathematical Biosciences,
23(3), 351–379. https://doi.org/https://doi.org/10.1016/0025-5564(75)90047-4

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/doi.org/10.1016/S0019-
9958(65)90241-X

© NEASQC Consortium Partners. All rights reserved. Page 26 of 29

https://doi.org/https://doi.org/10.1016/j.eswa.2021.114768
https://doi.org/https://doi.org/10.1016/j.eswa.2021.114768
https://doi.org/10.1245/s10434-018-6486-6
https://github.com/NEASQC/qrbs
https://doi.org/10.5281/zenodo.7299193
https://doi.org/10.5281/zenodo.8108580
https://doi.org/10.5281/zenodo.8108580
https://doi.org/10.5281/zenodo.8108580
https://doi.org/10.5281/zenodo.8108580
https://doi.org/10.3390/math10020189
https://doi.org/10.5281/zenodo.10868936
https://doi.org/10.5281/zenodo.5949157
https://www.neasqc.eu/wp-content/uploads/2021/05/NEASQC_D6.2_QRBS-Models-Architecture-and-Formal-Specification-V1.5-Final.pdf
https://www.neasqc.eu/wp-content/uploads/2021/05/NEASQC_D6.2_QRBS-Models-Architecture-and-Formal-Specification-V1.5-Final.pdf
https://doi.org/https://doi.org/10.1016/0025-5564(75)90047-4
https://doi.org/doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/doi.org/10.1016/S0019-9958(65)90241-X

D6.17 QRBS Evaluation Report (1.0- Submitted)

A.Matlab code for implementing classical Rube-Based System (RBS)

1

2 [System]
3 Name=’basket’
4 Type=’mamdani’
5 Version=2.0
6 NumInputs=2
7 NumOutputs=1
8 NumRules=9
9 AndMethod=’min’

10 OrMethod=’max’
11 ImpMethod=’min’
12 AggMethod=’max’
13 DefuzzMethod=’centroid’
14

15 [Input1]
16 Name=’shots’
17 Range=[0 20]
18 NumMFs=5
19 MF1=’throw_very_bad’:’linzmf’,[3 7]
20 MF2=’throw_bad’:’trapmf’,[3 5 7 9]
21 MF3=’throw_regular’:’trimf’,[7 10 13]
22 MF4=’throw_good’:’trapmf’,[11 13 15 17]
23 MF5=’throw_very_good’:’linsmf’,[15 17]
24

25 [Input2]
26 Name=’skill’
27 Range=[150 250]
28 NumMFs=5
29 MF1=’height_very_small’:’linzmf’,[170 180]
30 MF2=’height_small’:’trapmf’,[170 175 180 185]
31 MF3=’height_normal’:’trimf’,[180 190 195]
32 MF4=’height_tall’:’trapmf’,[190 195 205 210]
33 MF5=’height_very_tall’:’linsmf’,[200 210]
34

35 [Output1]
36 Name=’score’
37 Range=[0 100]
38 NumMFs=4
39 MF1=’bad’:’linzmf’,[25 40]
40 MF2=’regular’:’linzmf’,[25 40]
41 MF3=’good’:’trapmf’,[25 40 60 75]
42 MF3=’very_good’:’linsmf’,[60 75]
43

44 [Rules]
45 1 1, 1 (1) : 1
46 2 1, 1 (1) : 1
47 3 1, 1 (1) : 1
48 1 2, 1 (1) : 1
49 2 2, 1 (1) : 1
50 3 2, 1 (1) : 1
51 1 3, 1 (1) : 1
52 2 3, 1 (1) : 1
53 3 3, 1 (1) : 1

Listing A.1: Matlab .fis code for implementing the RBS using fuzzy logic.

© NEASQC Consortium Partners. All rights reserved. Page 27 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

B.Membership functions

A membership function is a curve that defines how each point in the input space is mapped to a membership value (or
degree of membership) between 0 and 1.

In this deliverable, we assume that all membership functions are linear-piecewise. We have used a simplified notation
to define the membership functions: each function is a list of pairs where the first element is the degree of membership
and the second one is the domain coordinate.

The following membership functions were used in this deliverable:

• With three elements:

– linear z-shape: the first two elements have a degree of membership of 1 and the third a 0. Example:
1/0-1/3-0/7 (see Figure 16).

Figure 16: Plot with the membership function for a z-shape: 1/0-1/3-0/7

– linear s-shape: the first element has a degree of membership of 0 and the other two have a 1. Example:
0/3-1/7-1/10 see Figure 17.

Figure 17: Plot with the membership function for a s-shape: 0/3-1/7-1/9

– triangular shape: the first and the last elements have a degree of membership of 0 meanwhile the second
has a 1. Example: 0/3-1/5-0/7 (see Figure 18)

© NEASQC Consortium Partners. All rights reserved. Page 28 of 29

D6.17 QRBS Evaluation Report (1.0- Submitted)

Figure 18: Plot with the membership function for a triangular shape: 0/3-1/5-0/7

• With four elements:

– trapezoidal shape. The two first elements define the first slope and the other two define the second slope.
0/3-1/4-1/6-0/7

Figure 19: Plot with the membership function for a trapezoidal shape 0/3-1/4-1/6-0/7

© NEASQC Consortium Partners. All rights reserved. Page 29 of 29

	1 Executive Summary
	2 Context
	3 QRBS evaluation
	3.1 Testing programmability
	3.1.1 Introductory tutorial notebook: 01_QRBS_for_dummies
	3.1.2 Tutorial to QRBS software: 02_QRBS_Uncertainty.ipynb

	3.2 Integration into Eviden Qaptiva environment: the QPU package
	3.2.1 Ideal noiseless QPU
	3.2.2 Ideal noiseless QPU with circuit rewriting
	3.2.3 Noisy QPU

	3.3 Synthetic case: Basket problem
	3.4 QRBS for Invasive Ductal Carcinoma staging
	3.4.1 Imprecision in QRBS IDC

	3.5 Noisy simulations
	3.5.1 Basket problem
	3.5.2 Noisy simulations for QRBS IDC

	4 Conclusions
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography
	A Matlab code for implementing classical Rube-Based System (RBS)
	B Membership functions

