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1 Executive Summary

This document is a continuation of deliverable D4.3 of the NEASQC project and is concerned with benchmarking the
applications for quantum computing researched and implemented within the quantum chemistry work package of the
project.

In D4.3 we reported assessments contributed from three of the partners within the work package:

AstraZeneca presented a benchmarking study for chemical reactivity with our previously implemented Pre-Born-
Oppenheimer quantum computing computational package [1], where the showcase was the reaction of water hydro-
genation.

HQS Quantum Simulations demonstrated a performance analysis of their implemented variational algorithms [1],
comparing a Variational Quantum Eigensolver (VQE) implementing UCCSD, an Adaptive Variational Quantum
Eigensolver (AdaptVQE) using UCCSD, a variational Hamiltonian ansatz (VHA), and a variational imaginary time
evolution (VITE) with two-local ansatz [2–5].

TotalEnergies estimated the feasibility to execute families of Hardware Efficient (HE) quantum computing ansatzes
and quantum Unitary Coupled Cluster (qUCC) ansatzes on (noisy) near-term quantum computers, applied to a calcu-
lation of the ground state energy of strained benzene [6, 7].

In this report, that constitutes deliverable D4.9 of the NEASQC project, we extend on these contributions:

In Chap. 2, AstraZeneca extended their investigations to the interaction of CO2 with a hydrogen radical using the
Nuclear-Electronic Orbital (NEO) Quantum Computing Framework [8, 9], with a specific focus on simulating the
reduction of CO2.

In Chap. 3, HQS Quantum Simulations focuses here on the evaluation of methods to improve quantum measure-
ments, one utilizing shadow measurement in the context of spectroscopy [10], one based on enhanced sampling using
Bayesian statistics [11], and one based on projecting the result to fulfill so-called n-representability constraints which
may be violated in a noisy quantum computation [12]. This is reported on in more detail in deliverable D4.7, with
software implementations available on the NEASQC GitHub [1].

In Chap. 4, TotalEnergies continued their studies regarding benzene to a calculation of a system of graphene and a CO2
molecule using a VQE approach, which could be used in the context of understanding recapture processes of carbon
dioxide. Similar to above, this study is reported on in more detail in deliverable D4.8, with related software found on
the NEASQC GitHub [13].

Finally, in Chap. 5, ICHEC gives an overview of the software tool KraChem which was developed within the
NEASQC project. The tool is designed to automatically fragment molecular systems into smaller subsystems, allow-
ing breaking down large problems into subproblems, making them digestible for NISQ computations. This automatic
subspace generation was reported on earlier in detail in deliverable D4.6, and is available on the NEASQC GitHub as
well [14].

© NEASQC Consortium Partners. All rights reserved. Page 4 of 20
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2 CO2 Reduction via Hydrogen Radical Collision

This chapter investigates the interaction of CO2 with a hydrogen radical using the Nuclear-Electronic Orbital (NEO)
Quantum Computing Framework [8, 9], with a specific focus on simulating CO2 reduction. The proton from the
hydrogen radical is treated quantum mechanically, and additional momentum is applied to the proton in the direction
of the collision with CO2, mimicking high-pressure conditions or the collision of accelerated hydrogen radicals. We
will explain how the additional momentum modifies the proton’s kinetic energy, introduces coupling terms, and why
potential energy terms remain unchanged. We also provide explanations summarizing the Hamiltonian’s components.

2.1 System Setup and Computational Methods

The system studied involves the following components: Reactants include carbon dioxide (CO2) molecule and a
hydrogen radical (H˙); Product is a formate radical (HCOO˙); and Transition State where the hydrogen radical starts
interacting with CO2 (highest point in reaction pathway). The initial structures for the reactants, transition state, and
product were optimized using the MP2 method with the CC-pVDZ basis set [15] for the electronic orbitals available
in GAMESS-US software package [16]. The optimized structures are shown in Fig. 1. These optimized structures

Figure 1: Optimized structures of the reactants (CO2 and H˙), transition state, and product (HCOO˙) as obtained
from MP2/CC-pVDZ calculations. The potential energy surface was fitted using PCHIP to visually represent the

reaction path.

were then used for generation of the Qubit Hamiltonian in the NEO Quantum Computing Framework. Within this
framework both the electrons and the proton are treated quantum mechanically, allowing for simultaneous treatment
of electron and proton degrees of freedom. For the protonic orbitals, the PB4-F2 Cartesian basis set [17] was employed
to accurately describe the quantum behavior of the proton. A minimal active space was created, consisting of 4 active
orbitals for electrons and 6 active orbitals for protons, representing the key interactions between the particles. This
approach enables a more accurate description of proton transfer processes within the reaction mechanism.

The energies computed Fermionic AdaptVQE method [18] for Reactants, Transition State, and Products are shown
in Fig. 1. These values correspond to the important reaction points, providing insight into the nuclear and electronic
interactions across the reaction pathway. A spline interpolation of the reaction potential energy surface (PES) was
performed using the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) method, which provides a smooth
fit for the calculated energies along the reaction pathway.
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2.2 NEO Hamiltonian and Additional Momentum

In the NEO approach, the Hamiltonian for the system includes three main components: The electronic Hamiltonian
(Ĥe), the protonic Hamiltonian (Ĥp), and the electron-proton coupling Hamiltonian (Ĥep)

ĤNEO = Ĥe + Ĥp + Ĥep.

The electronic Hamiltonian describes the motion and interaction of the electrons in the system

Ĥe =
∑
ij

hija
†
iaj +

1

2

∑
ijkl

gijkla
†
ia

†
jakal,

where hij are one-electron integrals (kinetic energy and electron-nuclei attraction), gijkl are two-electron integrals
(electron-electron repulsion), a†i and aj are electron creation and annihilation operators. The protonic Hamiltonian
has a similar form and reads as follows

Ĥp =
∑
mn

Tmnb
†
mbn +

1

2

∑
mnop

Vmnopb
†
mb†nbobp

where Tmn are the one-proton integrals (kinetic energy and proton-nuclear attraction), Vmnop are proton-proton re-
pulsion terms, b†m,n and bo,p are proton creation and annihilation operators. The interaction between the electrons and
the proton is accounted for by the electron-proton coupling Hamiltonian

Ĥep =
∑
ij,mn

Cijmna
†
iajb

†
mbn

where Cijmn represents the electron-proton interaction integrals.

We now modify the Hamiltonian to include the effect of an additional momentum ∆p to the proton, mimicking an
accelerated hydrogen radical collision with CO2. The momentum boost operator Û(∆p) = ei

∆p·r̂
ℏ is used to add

momentum ∆p to the proton without changing its position. This operator shifts the proton’s momentum but leaves
the position space unchanged. When the boost operator is applied to the proton’s Hamiltonian, it modifies the kinetic
energy and introduces new coupling terms between the proton’s original momentum and the added momentum

Ĥboosted
p =

∑
mn

(
Tmn + δmn

∆p2

2mp

)
b†mbn +

∑
mn

(
∆p · Pmn

mp

)
b†mbn.

The first term represents the proton’s kinetic energy with the added constant ∆p2 term. The second term introduces
off-diagonal coupling between the proton’s original momentum and the added momentum. While the boost operator
introduces new terms in the kinetic energy and momentum-dependent interactions, it does not modify the potential
energy terms in the Hamiltonian. This is because the boost operator only shifts momentum and has no direct effect
on position. Potential energy terms are typically functions of the position operator r̂, such as V̂ (r̂). Since the boost
operator commutes with the position operator (i.e., it does not change the proton’s position),

Û†(∆p)V̂ (r̂)Û(∆p) = V̂ (r̂),

applying the boost operator to the potential energy term does not introduce any new terms. Thus including the modified
proton Hamiltonian, the full NEO Hamiltonian with additional momentum becomes

Ĥboosted
total =

∑
mn

(
Tmn + δmn

∆p2

2mp

)
b†mbn + Ĥe +

∑
mn

(
∆p · Pmn

mp

)
b†mbn + Ĥep.

2.3 Impact of Added Momentum on Reaction Pathways

In the hydrogenation of CO2, we investigate the effect of imparting additional momentum to the proton on the reaction
pathway. The momentum is applied in the direction of the proton’s collision with the carbon atom of the CO2 molecule,
simulating a high-energy collision event. This added momentum increases the initial kinetic energy of the proton,
influencing its ability to overcome the activation energy required to reach the transition state (TS). The momenta
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applied to the proton are
∆p = [0, 2.5, 5.0, 7.0, 10.0, 12.5, 15.0] a.u.

The energies along the reaction pathway were computed using our NEO quantum computing framework, as discussed
in detail in deliverable D4.4. The calculation of these energies was done using the Fermionic Adapt-VQE ansatz,
which optimizes the quantum state by adaptively selecting fermionic operators that efficiently describe the system’s
correlation. The Adapt-VQE method was particularly useful in capturing the complex electron-proton interactions in
the NEO framework, enabling the precise evaluation of energies at different points along the reaction coordinate. The
reaction pathways, showing the potential energy surface (PES) from reactants to products, were fitted using the PCHIP
method. Figure 2 illustrates the reaction pathways with no added momentum (∆p = 0) as well as the energy shift
caused by increasing the proton’s momentum.

Figure 2: Reaction pathways for different proton momenta (∆p = [0, 2.5, 5.0, 7.0, 10.0, 12.5, 15.0] a.u.), fitted using
the PCHIP method. The transition state (TS) represents the highest energy point along the pathway. For

∆p = 15.0 a.u., the proton’s initial energy is nearly equal to the TS energy, significantly facilitating the reaction.

As momentum is added to the proton, its initial kinetic energy increases, raising the total energy at the start of the
reaction. The kinetic energies for different proton momenta are presented in Table 1 (next section). For ∆p = 15.0 a.u.,
the initial kinetic energy is approximately 2.672 × 10−19 J (or 0.06131Hartree). As seen in Figure 2, as the proton’s
momentum increases, the total energy progressively approaches the transition state energy. For ∆p = 15.0 a.u., the
Reactant’s energy is almost equal to the transition state energy. This suggests that at such a high momentum, the
proton can overcome the reaction barrier. These results highlight the potential of using momentum-driven approaches
to facilitate reactions involving high activation barriers, such as the hydrogenation of CO2.

2.4 Pressure and Temperature Evaluations

In this section, we calculate the pressures and corresponding temperatures resulting from the additional momentum
imparted to the proton during the collision with CO2 in the hydrogenation reaction. The kinetic energy Ek of the
proton is calculated from its momentum ∆p using the classical relation

Ek =
(∆p)2

2mp

© NEASQC Consortium Partners. All rights reserved. Page 7 of 20
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where ∆p is the momentum of the proton in atomic units (a.u.), mp is the mass of the proton, mp = 1.6726×10−27 kg.
To convert momentum from atomic units to SI units (kg m/s), we use

1 a.u. = 1.9929× 10−24 kg m/s

The kinetic energy of the proton is related to the temperature of the system using the equipartition theorem

Ek =
3

2
kBT

where kB = 1.380649 × 10−23 J/K is the Boltzmann constant and T is the temperature of the system in Kelvin (K).
Rearranging this formula to solve for temperature T :

T =
2Ek

3kB
.

Then the pressure of the system is calculated using the ideal gas law

P = nkBT

where n = 2.6868 × 1025 particles/m3 is the number density. The table below presents the calculated temperatures
and pressures corresponding to each momentum value.

Momentum (a.u.) Kinetic Energy (J) Temperature (K) Pressure (Pa) Pressure (atm)

2.5 7.424× 10−21 3593 1.333× 105 1.32
5.0 2.969× 10−20 14373 5.334× 105 5.26
7.0 5.810× 10−20 28127 1.044× 106 10.3
10.0 1.188× 10−19 57562 2.136× 106 21.1
12.5 1.855× 10−19 89930 3.338× 106 32.9
15.0 2.672× 10−19 129127 4.790× 106 47.3

Table 1: Kinetic energies, temperatures, and pressures for different proton momenta in the CO2 hydrogenation
reaction.

2.5 Conclusion

The temperatures and pressures resulting from the high momenta imparted to the proton reach extreme values. For
instance, the temperature corresponding to ∆p = 15 a.u. is approximately 1.291 × 105 K, and the pressure is around
47.3 atm. Instead of relying on extremely high temperatures, which lead to highly ionized particles and uncontrolled
reactions, a more feasible approach would be to utilize a cryogenic shockwave setup. In this method, the system
is kept at low temperatures while localized high-energy collisions are induced by shockwaves, avoiding excessive
ionization and enabling more controlled chemical reactions. Our computational setup, which incorporates additional
momentum in the protonic part, is designed to model exactly these conditions, simulating the energy transfer and
reaction dynamics that occur in a cryogenic shockwave environment.

The generation of shockwaves at cryogenic temperatures can be achieved through several potential methods. Me-
chanical impact devices or pneumatic systems can generate controlled shockwaves, while laser-driven techniques or
explosive devices could provide rapid energy input to specific regions, creating the necessary high-pressure condi-
tions. Alternatively, particle accelerators could be used to impart high momentum to protons before they collide with
CO2, replicating the high-energy collisions modeled in our system. These techniques, when applied in a cryogenic
environment, would maintain the overall system temperature low while enabling localized high-energy proton-CO2
interactions, closely mimicking the dynamics predicted by our quantum-based calculations.

© NEASQC Consortium Partners. All rights reserved. Page 8 of 20
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3 Measuement Optimization

After focussing on the evolution of quantum states in deliverable D4.3, here we will present a performance analysis
of methods to optimize the measurement of quantum states. It is a widely discussed problem that the number of
measurements needed to obtain an accurate result is a serious resource strain in NISQ computing.

In the sections we present three methods trying to gain the most information out of a limited number measurements
as possible. One method is utilizing shadow measurement in the context of spectroscopy, one is based on enhanced
sampling using Bayesian statistics, and one is based on projecting the result to fulfill so-called n-representability
constraints which may be violated in a noisy quantum computation.

The text in this chapter is a very brief summary of the results, where one can find a more detailed report in deliverable
D4.7, and software implementations available on the NEASQC GitHub [1]. Furthermore, we would like to highlight
that the n-representability projection methods was extensively studied, in particular in the presence of noise, in a
scientific publication of ours [12].

3.1 Shadow spectroscopy

Determining energy spectra of quantum systems is a fundamental task in quantum physics and chemistry. Methods like
quantum phase estimation require significant quantum resources, making them challenging to implement on near-term
quantum devices.

Shadow spectroscopy [10] is a quantum algorithm designed to estimate energy differences (gaps) in a system’s Hamil-
tonian by analyzing the time evolution of quantum states. It requires relatively few quantum resources (no ancilla
qubits, very few shots) and demonstrates resilience to noise, making it well-suited for noisy intermediate-scale quan-
tum (NISQ) devices. The method exploits the fact that observable quantities evolve over time according to the system’s
energy differences, which can be extracted through harmonic analysis of the measured signals. It leverages classical
shadows [19] – a technique based on randomized measurements – to access a broad set of observables that encode
information about the energy spectrum.

As a benchmarking case, we provide a jupyter notebook in our repository [1] where we apply shadow spectroscopy to
estimate the energy spectrum of a trimethylenebenzene (TMB) molecule, modeled by the spin Hamiltonian:

HS = 3(ϵ+ J −K) +
3JS
4

− JS
4

(σ1σ2 + σ1σ3 + σ2σ3) , (3.1)

where σi are Pauli operators acting on qubit i, and ϵ, J , K, and JS are system-specific constants.

In our simulation (see Figure 3), we perform shadow measurements with two different numbers of shots per Trotter
step: 10 and 1000 shots. Note, that even 1000 shots is few in the context of quantum computing where one would
estimate expectation values; 10 measurements to obtain the estimate of an expectation value would yield a highly
inaccurate estimate. Here, the resulting spectra successfully identify a peak at 0.029 (= 3/2JS) Hartree for both
simulations, corresponding to the energy gap of the Hamiltonian.

In conclusion, shadow spectroscopy provides an efficient and practical approach to estimating energy gaps in quantum
systems using NISQ devices. By harnessing classical shadows and time-evolution techniques, it overcomes limitations
of traditional methods, requiring extremely few quantum resources and offering resilience to noise. This method opens
pathways for studying complex quantum systems and advances the capabilities of early quantum hardware.

© NEASQC Consortium Partners. All rights reserved. Page 9 of 20
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Figure 3: Spectral estimation of the TMB molecule using shadow spectroscopy with 10 and 1000 shots per Trotter
step. A peak at 0.029 Hartree corresponds to the energy gap of interest.

3.2 Enhanced sampling

In this section, we give an overview of our investigated method of enhanced sampling based on Bayesian statistics.

The enhanced sampling method proposed in Ref. [11] is a technique that maximizes the statistical power of noisy
quantum devices. This method is inspired by quantum-enhanced metrology, phase estimation, and the more recent
“alpha-VQE” and aims to improve the efficiency of quantum amplitude estimation.

In standard sampling, as used in Variational Quantum Eigensolver (VQE), the estimation process is insensitive to small
deviations in the expectation value, leading to low information gain from measurement outcomes when increasing to
higher number of measurements. This results in a high runtime cost for interesting practical problems.

Enhanced sampling addresses this issue by engineering likelihood functions that increase the rate of information gain,
thereby reducing the runtime of amplitude estimation. The method involves preparing an ansatz state, applying an
operator, adding a phase shift about the ansatz state, and then measuring the operator. The phase shift can be achieved
by performing the inverse of the ansatz circuit, then a phase shift about the initial state, and then re-applying the ansatz
circuit. An example with 1 layer is shown in Fig. 4

Figure 4: Circuit for standard sampling vs enhanced sampling. Source [1].

In Ref. [11], the Engineered Likelihood Function (ELF) is used to estimate the parameters of a quantum circuit. The
ELF maps the parameters of the quantum circuit to a likelihood value, which measures how well the circuit fits the
data. It is constructed by defining a prior distribution over the parameters, and then using Bayes’ rule to compute the
posterior distribution given the data. The likelihood function is then defined as the marginal distribution of the data
given the parameters. The ELF is used to perform maximum likelihood estimation of the parameters, which involves

© NEASQC Consortium Partners. All rights reserved. Page 10 of 20
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finding the parameters that maximize the likelihood function. This is done using a classical optimization algorithm,
such as gradient descent.

In our work [1], we have chosen to implement an alternative approach where, for a given ansatz and some pre-
sampling, the algorithm selects between two enhanced-circuit with different number of layers, instead of using the
Engineered Likelihood Function (ELF). This method involves selecting the enhanced circuit with the highest Fisher
information to be used for sampling. Fisher information is a measure of the amount of information that an observable
random variable carries about an unknown parameter, and maximizing it can lead to more efficient sampling.

By selecting the circuit with the highest Fisher information, we aim to maximize the information gain from each
measurement, thereby reducing the total number of measurements needed. This approach is more practical for our
purposes than implementing the ELF, as it does not require the time-consuming adaptive scheme to be applied at every
shot.

3.2.1 Results

In our repository, we offer a demonstrative notebook that showcases the capabilities of the algorithm. Specifically,
given a Hamiltonian and an ansatz, we evaluate the root mean square error of the measured energy relative to the
exact energy. As illustrated in Fig. 5, following an initial shared presampling phase (standard), we compare the per-
formance of the enhanced sampling technique to that of standard sampling as additional measurements are conducted
in both scenarios. In a noiseless environment, it is evident that the enhanced sampling technique outperforms standard
sampling. However, this improvement is accompanied by a rise in complexity and, more significantly, an increase in
circuit depth. The latter is particularly disadvantageous in noisy environments such as those experienced by Near-Term
Intermediate-Scale Quantum (NISQ) devices. This drawback is evident in the case of the noisy 3-qubit system de-
picted in Fig. 5d. Here, the performance of enhanced sampling deteriorates to a point below that of standard sampling.

(a) 5 Runs on a 2-qubit EfficientSU2 ansatz on a
noiseless simulator.

(b) 5 Runs on a 2-qubit EfficientSU2 ansatz on a
noisy simulator.

(c) 5 Runs on a 3-qubit EfficientSU2 ansatz on a
noiseless simulator.

(d) 5 Runs on a 3-qubit EfficientSU2 ansatz on a
noisy simulator.

Figure 5: Root mean square errors for various experimental setups and configurations.

While the ELF formalism offers a promising method for enhancing the power of sampling on quantum devices, its
practical implementation can be challenging due to the time required for the adaptive scheme. The two enhanced-
circuit choice offers a practical alternative that can reduce the number of measurements and runtime compared to
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standard sampling, making it a promising approach for the implementation of quantum algorithms in practical appli-
cations.

3.3 Post-processing noisy quantum computations utilizing n-representability
constraints

In this section, we consider a method for improving the results of a noisy quantum computation, e.g., obtained from a
NISQ device. We will describe here briefly how the method works in the following theory subsection and show some
selected results in the subsequent subsection. A thorough analysis of the approach, including a detailed explanation of
the method and the motivation behind it, as well extensive numerical data and a discussion of its caveats are given in
our publication on this subject [12].

We would like to find the internal energy given by the expectation value of the Hamiltonian,

⟨H⟩ = E0 +
∑
ij

tij(
1Dij) +

∑
ijkl

Vijkl(
2Dijkl), (3.2)

with the annihilation (creation) operators c(†)i of an electron in orbital i, the energy offset E0, the one- and two-electron
integrals tij and Vijkl, as well as the one-particle RDM 1Dij = ⟨c†i cj⟩, and the two-particle RDM 2Dijkl = ⟨c†i c

†
jclck⟩.

If 1D and 2D of the ground state are obtained from a quantum computation on a NISQ device, they are obscured
by decoherence and shot noise. We assume, that the dominating noise source is decoherence, and in this case, the
calculated energy would be higher then the actual ground state energy.

One can mitigate this error and the statistical variance from shot noise by imposing constraints that the RDMs need to
fulfill: From the anti-commutation relations of the fermionic operators, on can derive that they are Hermitian and obey
a certain set of anti-symmetry relations. These constraints are usually fulfilled in a quantum computation by simply
calculating only a minimal necessary set of matrix elements and reconstructing the rest through the Hermiticity and
anti-symmetry constraints. Less trivial are the constraints that the RDMs need to be positive semi-definite and the
trace depend on the particle number n via tr(1D) = n, and tr(2D) = n(n− 1).

We impose these by projecting; we find the RDM that fulfills these conditions and is, in some norm, closest to the
RDM calculated on the quantum computer. Furthermore, one can transform the one- and two-particle RDMs into
the hole and particle-hole sector. This means we can transform to the one- and two-hole RDMs, 1Qij = ⟨cic†j⟩ and
2Qijkl = ⟨cicjc†l c

†
k⟩, and the particle-hole RDM 2Gijkl = ⟨c†i cjc

†
l ck⟩. In these sectors, the same constraints hold

(where the trace now depends not only on the number of electrons in the system, but also the number of holes). We
perform the projection of the measured RDMs in all three sectors, and return the energetically best of these results, as
we assume the noise to be dominated by decoherence.

3.3.1 Results

To showcase the performance of the method, we give here examples of a ground state calculation of H2 under the
influence of damping noise in Fig. 6, and under the influence of damping noise and shot noise in Fig. 7. For damping
noise only we look at the energy difference of the calculation with respect to the actual ground state energy, as well as
the final state fidelity. When including shot noise, we looked at the energy difference with respect to the ground state
and the measurement variance.

In Fig. 6, one can see the improvement of the energy difference of almost an order of magnitude. Note also the general
improvement in fidelity, but obtaining the best energy does not guarantee the best fidelity.

In Fig. 7, we should mention that Best is strictly lower than other projections in this case, as here we average over 100
repetitions of the same measurement with different shot noise, to obtain a variance, and in each repetition different
projections might lead to the energetically best result. The plot shows significant improvement of the energy difference,
but also – and arguably more importantly – the reduction of the measurement variance up to two orders of magnitude.
Note also that there is general reduction in the variance, but that the energetically best result does not guarantee the
smallest variance.

Once more, for a detailed numerical analysis see our manuscript [12].
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Figure 6: Energy difference w.r.t. the ground state and fidelity of the final state towards the exact ground state for H2;
directly from the quantum calculation (QC), the three individual projection in the particle, hole, or particle-hole

sector (D, Q, or G) and the energetically best result (Best).
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Figure 7: Energy difference w.r.t. the ground state and measurement variance for H2; directly from the quantum
calculation (QC), the three individual projection in the particle, hole, or particle-hole sector (D, Q, or G) and the

energetically best result (Best).
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4 Adsorption of CO2 on Graphene

In this chapter, we show the effort of TotalEnergies that continued their studies regarding benzene in deliverable D4.3,
which also lead to a publication [6]. Here we present a calculation of a system of graphene and a CO2 molecule using
a VQE approach, which could be used in the context of understanding recapture processes of carbon dioxide. This
chapter is a very brief summary of this study which is reported on in more detail in deliverable D4.8, with related
software found on the NEASQC GitHub [13].

The setup of the graphene sheet and the CO2 molecule is shown in Fig. 8. For the size of the graphene sheet we chose
nx = 4 and ny = 1, and a parameterized distance of α · 1.39 Å between the atoms. As a basis for the system sto-3g
was used, where we defined a small active space of 4 LUMO plus 4 HOMO, leading to calculations with 8 molecular
orbitals that were mapped onto 16 qubits. The geometry relaxation using Hartree-Fock calculations to get initial values
for α, θ, and ϕ was unfortunately ambiguous likely due to the small basis, hence, the values α = 1, θ = 90°, and
ϕ = 0° were chosen to compare to results from literature (see hollow setup in Ref. [20]).

Figure 8: Geometry of the graphene plus CO2 system with parameters for the orientation of the carbon dioxide
molecule as well as the size of the graphene sheet.

Fig. 9 shows results that can be obtained with our code: The qUCCSD energy and the exact energy, obtained with a
full diagonalization of the active space Hamiltonians (FDASH) of 16 qubits. The main plot is the ground state energy
as a function of dgraph–CO2

, while a sub-figure shows the dissociation energy ∆E = E − E[5 Å] around 3.5 Å.

One can see that with 16 qubits, the ground state energy is minimal around 3.45 Å, which is slightly different from lit-
erature [20], where equilibrium distance is mostly between 3.38 Å and 3.40 Å, although it remains within the interval
given in Table 2 of Ref. [20]. On the other hand, the exact binding energy of these 16 qubits systems is approximately
∆E ≃ 23 kJ · mol−1, which is consistent with experimental values [20, 21]; despite the choice of sto-3g as chem-
ical basis set. Given that one can consider our geometry is between the 3’3-zigzag and the 5’3-armchair studied in
Ref. [20], the exact binding energy obtained with 16 qubits Hamiltonians is significatively different from the values of
Ref. [20], which can be explained by the difference of chemical basis set as well as the strong active space selection
(from 422 qubits to 16 qubits).

On the qUCCSD side, the binding energy is approximately ∆E ≃ 23.3 kJ · mol−1, which is very close to the target.
However, the shape of the curve between the minimal energy and the dissociation part is not exactly expected: We
should reach smoothly an asymptotic when increasing dgraph–CO2

instead of having a sudden jump in values. Further-
more, in CASCI calculations with larger active spaces of up to 16 HUMO plus 16 HOMO such a dissociation energy
minimum could not be observed. This suggests that the basis choice is suboptimal, and it is likely that the active spaces
are not large enough for the given problem. Additionally, we observed a very slow convergence for the qUCCSD runs,
requiring over 104 iteration steps of the COBYLA optimizer to reach chemical precision, even in this small system
(for larger systems this problem would worsen quickly). Overall, we conclude that this problem and concrete model
seems not to be suited for NISQ devices, but our analysis inspires new directions of research that extend beyond the
NEASQC project.
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Figure 9: Ground state energy of the 16 qubits graphene plus CO2 system as a function of dgraph–CO2
.
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5 KraChem for Automatic Subspace Generation (ASG)

Among the challenges one faces when working with NISQ devices are a limited number of available qubits and a
limited quantum circuit depth. This in turn restricts the size of molecular systems that could be simulated on such
machines.

ICHEC’s software tool for automatic subspace generation, KraChem [14], is designed to automatically fragment
molecular systems into smaller subsystems, allowing breaking down large problems into subproblems, making them
digestible for NISQ computations. It was reported on in detail in deliverable D4.6, where the software itself can be
found on the NEASQC GitHub [14].

5.1 About KraChem

KraChem is a Python library designed for working with chemical molecules, fragmentation, based on chemical files
input and mathematical tools from graph theory.

The KraChem package has two main functionalities:

• Intermolecular fragmentation: Separation of two or more independent interacting moieties (typically two
molecules). This find the collection of disconnected molecules in a given chemical compound.

• Intramolecular fragmentation: Separation of two or more moieties which belong to the same molecule, chain or
system. This breaks a molecule into smaller parts, each of which is a collection of subsets of atoms, in a given
molecule defined by its atoms and connections.

Although the fragmentation of a single molecule is a priori simple, the number of possible fragments increases expo-
nentially with the number of atoms and is unviable for large systems. The AGS tool systematically explores, analyses
and creates inter- and intra-molecular fragments keeping the chemical meaning, and provide with a full fragmentation
scheme.

The KraChem library is implemented using Object-Oriented Programming (OOP), composed of the main class called
Molecule and its methods and attributes.

5.2 Accessing and using KraChem

The KraChem library is available on the NEASQS GitHub as a repository at https://github.com/NEASQC/
qfrag/tree/master [14].

A user guide is available in the form of a Jupyter notebook at https://github.com/NEASQC/qfrag/blob/
master/krachem_user_guide.ipynb [14].

A set of input molecules that can be used as examples are provided at https://github.com/NEASQC/qfrag/
tree/master/input_molecules [14].

5.3 Experiments and results

The KraChem repository also includes the following candidate input molecules and their fragmentation results:

• Benzene-CO2

– Input molecule file: https://github.com/NEASQC/qfrag/blob/master/input_
molecules/benzene_co2.sdf

– Fragmentation output files: https://github.com/NEASQC/qfrag/tree/master/results/
fragmentation_intra_benzene_co2

• Caffine

– Input molecule file: https://github.com/NEASQC/qfrag/blob/master/input_
molecules/caffeine.sdf
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– Fragmentation output files: https://github.com/NEASQC/qfrag/tree/master/results/
fragmentation_leaves_caffeine

In summary, the package performs as expected and with good performance, meaning that in larger scale calculations,
the fragmentation process would likely not be a bottleneck. Furthermore, while the process scales exponentially in
principle, even for molecule sizes where the complete system represented in a basis to achieve reasonable accuracy
would exceed the number of qubits currently available on NISQ devices (∼ 100), KraChem should still be able to
perform the fragmentation. This means the tool does indeed possess the means to make quantum chemical problems
digestible for NISQ computers, which otherwise would not be simulatable.

5.4 Towards further benchmarking

The primary focus of Task 4.1 in the chemistry work package WP4 was to develop the ASG tool, which has been
realized by ICHEC as KraChem, delivered in D4.6 of the project [14]. The second focus of Task 4.1 was for HQS to
benchmark the fragmentation outputs using approximate classical methods to solve the whole problem and compare
to the solutions from solving the fragments individually.

The second focus to benchmark the fragments requires a supporting theoretical framework to treat finite fragments in
the presence of a surrounding molecular or bulk environment, which is not implemented within the scope of KraChem
as defined in the work description. Consequently, the Task 4.1 team (ICHEC and HQS) have identified that one of the
objectives beyond the NEASQC project in Task 4.1 or WP4 should be to expand KraChem to use methods such as
the DMET methodology [22] to calculate the energy of each fragment and regenerate the total energy of the molecule
studied. Furthermore, it will be of interest to incorporate this fragmentation scheme and DMET in the VQE-based
quantum chemistry workflow that has been built in other use-case applications in WP4. A starting point for this will
be to consider the QC-DMET [23, 24] code and PySCF to perform DMET calculations and integrate them within the
KraChem code.

© NEASQC Consortium Partners. All rights reserved. Page 17 of 20

https://github.com/NEASQC/qfrag/tree/master/results/fragmentation_leaves_caffeine
https://github.com/NEASQC/qfrag/tree/master/results/fragmentation_leaves_caffeine


D4.9 Benchmarking Report (1.0- Under Review)

List of Figures

Figure 1: Optimized structures of the reactants (CO2 and H˙), transition state, and product (HCOO˙) as ob-
tained from MP2/CC-pVDZ calculations. The potential energy surface was fitted using PCHIP
to visually represent the reaction path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2: Reaction pathways for different proton momenta (∆p = [0, 2.5, 5.0, 7.0, 10.0, 12.5, 15.0] a.u.),
fitted using the PCHIP method. The transition state (TS) represents the highest energy point
along the pathway. For ∆p = 15.0 a.u., the proton’s initial energy is nearly equal to the TS
energy, significantly facilitating the reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 3: Spectral estimation of the TMB molecule using shadow spectroscopy with 10 and 1000 shots
per Trotter step. A peak at 0.029 Hartree corresponds to the energy gap of interest. . . . . . . . 10

Figure 4: Circuit for standard sampling vs enhanced sampling. Source [1]. . . . . . . . . . . . . . . . . . 10
Figure 5: Root mean square errors for various experimental setups and configurations. . . . . . . . . . . 11
Figure 6: Energy difference w.r.t. the ground state and fidelity of the final state towards the exact ground

state for H2; directly from the quantum calculation (QC), the three individual projection in the
particle, hole, or particle-hole sector (D, Q, or G) and the energetically best result (Best). . . . . 13

Figure 7: Energy difference w.r.t. the ground state and measurement variance for H2; directly from the
quantum calculation (QC), the three individual projection in the particle, hole, or particle-hole
sector (D, Q, or G) and the energetically best result (Best). . . . . . . . . . . . . . . . . . . . . 13

Figure 8: Geometry of the graphene plus CO2 system with parameters for the orientation of the carbon
dioxide molecule as well as the size of the graphene sheet. . . . . . . . . . . . . . . . . . . . . 14

Figure 9: Ground state energy of the 16 qubits graphene plus CO2 system as a function of dgraph–CO2
. . . . 15

© NEASQC Consortium Partners. All rights reserved. Page 18 of 20



D4.9 Benchmarking Report (1.0- Under Review)

Bibliography

1NEASQC GitHub repository, Variational Algorithms and Measurement Optimization, https://github.com/
NEASQC/Variationals_algorithms, 2024.

2A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, “A
variational eigenvalue solver on a photonic quantum processor”, en, Nature Communications 5, 4213 (2014).

3H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, “An adaptive variational algorithm for exact molec-
ular simulations on a quantum computer”, en, Nature Communications 10, 3007 (2019).

4D. Wecker, M. B. Hastings, and M. Troyer, “Progress towards practical quantum variational algorithms”, en, Physical
Review A 92, 042303 (2015).

5S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin, and X. Yuan, “Variational ansatz-based quantum simulation
of imaginary time evolution”, en, npj Quantum Information 5, 1–6 (2019).

6W. Sennane, J.-P. Piquemal, and M. J. Rančić, “Calculating the ground-state energy of benzene under spatial defor-
mations with noisy quantum computing”, en, Physical Review A 107, 012416 (2023).

7NEASQC GitHub repository, D4.2, https://github.com/NEASQC/D4.2, 2022.
8A. Kovyrshin, M. Skogh, A. Broo, S. Mensa, E. Sahin, J. Crain, and I. Tavernelli, “A quantum computing implemen-
tation of nuclear-electronic orbital (neo) theory: toward an exact pre-born–oppenheimer formulation of molecular
quantum systems”, J. Chem. Phys. 158, 214119 (2023).

9A. Kovyrshin, M. Skogh, L. Tornberg, A. Broo, S. Mensa, E. Sahin, B. C. B. Symons, J. Crain, and I. Tavernelli,
“Nonadiabatic nuclear–electron dynamics: a quantum computing approach”, J. Phys. Chem. Lett. 14, 7065–7072
(2023).

10H. H. S. Chan, R. Meister, M. L. Goh, and B. Koczor, Algorithmic shadow spectroscopy, arXiv:2212.11036 (2022).
11G. Wang, D. E. Koh, P. D. Johnson, and Y. Cao, “Minimizing estimation runtime on noisy quantum computers”,

PRX Quantum 2, 010346 (2021).
12T. Piskor, F. G. Eich, M. Marthaler, F. K. Wilhelm, and J.-M. Reiner, Post-processing noisy quantum computations

utilizing n-representability constraints, arxiv:2304.13401 (2023).
13NEASQC GitHub repository, D4.8, https://github.com/NEASQC/D4.8, 2024.
14B. Chagas, G. Sánchez-Sanz, P. L. M. de Rituerto, and V. Kannan, “NEASQC D4.6 Automatic Subspace Generation

(AGS) v1.0”, https://github.com/NEASQC/qfrag/tree/master (2023).
15J. Dunning Thom H., “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through

neon and hydrogen”, The Journal of Chemical Physics 90, 1007–1023 (1989).
16G. M. J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J. E. Deustua, D. G. Fedorov, J. R. Gour, A. O.

Gunina, E. Guidez, T. Harville, S. Irle, J. Ivanic, K. Kowalski, S. S. Leang, H. Li, W. Li, J. J. Lutz, I. Magoulas,
J. Mato, V. Mironov, H. Nakata, B. Q. Pham, P. Piecuch, D. Poole, S. R. Pruitt, A. P. Rendell, L. B. Roskop, K.
Ruedenberg, T. Sattasathuchana, M. W. Schmidt, J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari,
J. L. Galvez Vallejo, B. Westheimer, M. Wloch, P. Xu, F. Zahariev, and M. S. Gordon, “Recent developments in the
general atomic and molecular electronic structure system”, The Journal of Chemical Physics 152, 154102 (2020).
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