
NExt ApplicationS of Quantum Computing

D5.9: Benchmarking of QAOA-based
algorithms for mesh segmentation, against

K-Means, normalized and randomized cuts,
and core extraction methods

Document Properties

Contract Number 951821

Contractual Deadline 30-04-2024

Dissemination Level Public

Nature Report

Editors Yagnik Chatterjee, TotalEnergies, Université de Montpellier

Authors Yagnik Chatterjee, TotalEnergies, Université de Montpellier
Henri Calandra, TotalEnergies
Eric Bourreau, Université de Montpellier

Reviewers Vedran Dunjko, ULEI
Alfons Laarman , ULEI
Alexis Gais, EVIDEN

Date 18-03-2024

Keywords Quantum variational algorithms, combinatorial optimization, mesh seg-
mentation

Status Submitted

Release 0.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

© NEASQC Consortium Partners. All rights reserved. Page 1 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

History of Changes

Release Date Author, Organisation Description of Changes

0.1 31/01/2024 Yagnik Chatterjee, TotalEn-
ergies, Université de Mont-
pellier
Henri Calandra, TotalEner-
gies
Eric Bourreau, Université de
Montpellier

Submitted for first review

0.2 18/03/2024 Yagnik Chatterjee, TotalEn-
ergies

Submitted for second review

© NEASQC Consortium Partners. All rights reserved. Page 2 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

Table of Contents

1 Executive Summary 4

2 Description of the project task 5
2.1 Mesh Segmentation . 5
2.2 Mesh Segmentation as a graph optimization problem . 6
2.3 Description of the Objective Function . 7

3 A Quantum algorithm for solving QUBO problems 9

4 Results 11

5 Conclusions 14

List of Acronyms 15

List of Figures 16

List of Tables 17

Bibliography 18

6 Appendix 19
6.1 Calculating the Expectation value of an observable . 19

© NEASQC Consortium Partners. All rights reserved. Page 3 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

1 Executive Summary

This report constitutes the Deliverable 5.9 for Task 5.4, namely the benchmarking of QAOA-based algorithms for
mesh segmentation, of the Work Package 5 of the NEASQC Project.

In this report we demonstrate and benchmark a quantum algorithm that solves Quadratic Unconstrained Binary Op-
timization (QUBO) problems using a logarithmic encoding. In other words, an algorithm that solves a combinatorial
optimization problem of size n using log2(n) qubits, as opposed to linear scaling algorithms like the Quantum Ap-
proximate Optimization Algorithm (QAOA). The algorithm used was initially proposed as a Maximum Cut algorithm
(Rančić, 2023). It was eventually generalized for a larger pool of problems (Chatterjee et al., 2023).

A triangular mesh consists of a collection of triangles that together form a surface or solid representation of a 2D or
3D object. Each triangle is defined by its three vertices, and the entire mesh is formed by connecting these vertices.
Each node of the mesh has an associated color or property. In this deliverable we will use only 2D triangular meshes.
In order to solve the problem of mesh segmentation using our algorithm, we first need to convert it into a graph
optimization problem consisting of an objective function and constraints if necessary.

To do this we create a graph from the mesh. The nodes of the graph are the nodes of the mesh and the edges of the
graph are the sides of the triangle. The edges are then weighted with a weight equal to the difference in color between
the nodes. Hence we have an edge-weighted graph.

Once we have a graph, we need to define an objective function that will help us get the different segments of the mesh.
Here we will use the maximization of modularity (Newman, 2006) for meshing. Modularity is a measure of how
well a network is split into different groups or clusters. It helps us see if these groups have more connections within
themselves than we’d expect just by random chance.

We define the modularity objective function in form of a QUBO problem and then use our algorithm to get the solution.

Despite the algorithm being able generate multiple segments as required, the performance is still quite inferior com-
pared to the classical algorithm. However this serves as a good initial attempt to solve the mesh segmentation problem
using our quantum algorithm.

© NEASQC Consortium Partners. All rights reserved. Page 4 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

2 Description of the project task

The task for this deliverable is to generate the segmentation of a given mesh using a quantum variational optimization
algorithm. In this deliverable we will use our algorithm which we will henceforth refer to as the LogQ encoding. In
this chapter we will first describe mesh segmentation, then convert the problem of mesh segmentation into a graph
optimization problem. We the proceed to define the objective function for the problem. This objective function is
in the form of a Quadratic Unconstrained Binary Optimization (QUBO) in order to be compatible with the LogQ
encoding.

2.1 Mesh Segmentation

A mesh is a representation of a surface or object formed by connecting vertices, edges, and faces. Each face of the
mesh is defined by the vertices and the edges connecting them. Meshes are widely used in computer graphics and
simulations because they provide a simple and efficient way to approximate complex surfaces. The vertices store
positional information (x, y, z coordinates), edges connect pairs of vertices, and faces define the surface geometry.
Figure 1 (taken from (Shamir, 2008)) gives an example of an object and its corresponding mesh.

Figure 1: An example of a 3D mesh of an object

Mesh segmentation refers to the process of dividing a complex mesh (composed of vertices, edges, and faces) into
meaningful and semantically coherent parts or regions. The goal is to identify and isolate distinct components within
the mesh, which may correspond to different objects, substructures, or functional units. Take for example figure 2,
wherein by the segmentation of the mesh of the human body, we can decipher the different parts of the body.

Meshes can be in various types, such as triangle meshes, quadrilateral meshes, or polygonal meshes, depending on the
type of polygons used to construct the faces. In this deliverable we will deal with only 2D triangular meshes.

© NEASQC Consortium Partners. All rights reserved. Page 5 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

Figure 2: An example for the segmentation of a 3D mesh

2.2 Mesh Segmentation as a graph optimization problem

In order to tackle the problem of mesh segmentation, we first convert it into a graph optimization problem. Figure 3
shows a 2D triangular mesh. It has 64 nodes and every node has a color (or property) associated with it. The color is
a number ranging from 10 to 110. In order to translate this problem of mesh segmentation into a graph problem, we
create a graph of 64 nodes having the same edges as the edges of the triangular mesh, as shown in Figure 4. Then the
edges of the graph are assigned weights equal to the difference in color between the nodes of the edge. The goal is to
divide the graph into clusters of nodes. The number of segments or clusters required needs to be specified.

0 20 40 60 80 100
X

0

20

40

60

80

100

Y

20

30

40

50

60

70

80

90

100

Figure 3: 2D Triangular Mesh of Size 64

© NEASQC Consortium Partners. All rights reserved. Page 6 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

50 51 52 53 54 55 56

57 58 59 60 61 62 63

Figure 4: 2D Triangular Mesh of Size 64 as a Graph Problem

2.3 Description of the Objective Function

Once the mesh is represented as an edge-weighted graph, we need to define an objective function to divide it into
segments. Here we will use the maximization of modularity (Newman, 2006) as our objective.

Modularity is a measure to evaluate the quality of a partition of a network into communities or clusters (also called
communities or groups). The idea of maximizing the modularity is to maximize the number of connections between
the nodes within clusters while having sparse connections between nodes in different clusters.

Consider an edge-weighted graph G(V,E,w) with weights wij , i, j ∈ V . Let the variable xi ∈ {1,−1} decide
whether the node i is in one subgroup or the other. Then its modularity for division into 2 subgroups is defined as
follows :

M =
1

4m

∑
i,j∈V

(
Aij −

kikj
2m

)
xixj (2.1)

where ki is the weighted degree of node i, Aij is the adjacency matrix of G,

Aij =

{
wij if (i, j) ∈ E

0 if (i, j) /∈ E
(2.2)

m =
1

2

∑
i∈V

ki (2.3)

Equation (2.1) is in the form of QUBO can be written as :

M =
1

4m
xTQx (2.4)

© NEASQC Consortium Partners. All rights reserved. Page 7 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

Qij = Aij −
kikj
2m

(2.5)

Q is the required QUBO matrix that can be used in LogQ.

In order to get more than two divisions, we use the algorithm repeatedly on the graph.

© NEASQC Consortium Partners. All rights reserved. Page 8 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

3 A Quantum algorithm for solving QUBO problems

NP-hard optimization problems are problems that are expected to not admit algorithms that can give an exact solution
in polynomial time, whereas it is ’easy’ to verify the solution if it is known. While finding exact solutions to large
problems is difficult, there exist many algorithms that find approximate solutions to these problems. In the scope of
quantum computing, a huge amount of research has been carried out on hybrid quantum-classical algorithms (Callison
& Chancellor, 2022; Cerezo et al., 2021; Farhi et al., 2014; Hadfield et al., 2019; Moll et al., 2018; Nakanishi et al.,
2020; Peruzzo et al., 2014; Stokes et al., 2020). In such algorithms, quantum circuit measurements are used in tandem
with a classical optimization loop to obtain an approximate solution.

In this deliverable we use the LogQ encoding (Chatterjee et al., 2023), a hybrid quantum-classical algorithm that scales
logarithmically with problem size. This means that if the problem size is n then the number of qubits required is of the
order of log2 n. This is in contrast with one of the most commonly used hybrid algorithms, the Quantum Approximate
Optimization Algorithm (QAOA) (Farhi et al., 2014), which scales linearly with problem size, meaning that a graph
of n nodes would require an n-qubit quantum computer to be solved.

The goal of LogQ is to represent larger problems using a smaller number of qubits, thus potentially achieving faster
solutions compared to classical algorithms for sufficiently large instances, while maintaining reliability in the results
produced. LogQ was developed in-house in the TotalEnergies Quantum Computing group. It was originally proposed
as a MAXIMUM CUT algorithm, which is presented in (Rančić, 2023). Later, we generalized this algorithm for
Quadratic Unconstrained Binary Optimization (QUBO) problems in (Chatterjee et al., 2023).

LogQ takes as input a Quadratic Unconstrained Binary Optimization (QUBO) matrix Q as generated in the section
2.3. Then the algorithm proceeds as follows:

1. Let the size of the matrix be n × n, then the number of qubits required will be N = ⌈log2 n⌉. A N -qubit
parameterized state |Ψ(θ)⟩ is created as follows:

|Ψ(θ)⟩ = U(θ)H⊗N |0⟩⊗N (3.1)

The equation above represents the application of N Hadamard (H) gates on N qubits, all initially in state |0⟩;
followed by the application of a diagonal gate U(θ) which is of the following form:

U(θ) =

eiπR(θ1) 0 0

0 eiπR(θ2) 0
....
0 0 0 eiπR(θn)

 (3.2)

where

R(θk) =

{
0 if 0 ≤ θk < π

1 if π ≤ θk < 2π
(3.3)

Using (3.2) and (3.3) in (3.1), we have:

|Ψ(θ)⟩ = 1√
n

eiπR(θ1)

eiπR(θ2)

......
eiπR(θn)

 (3.4)

|Ψ(θ)⟩ is therefore a vector whose terms belong to the set {1,−1}n subject to the normalization factor of 1√
n

.

2. Since |Ψ(θ)⟩ ∈ {1,−1}n, we need to define our QUBO matrix using variables x ∈ {1,−1}. If the QUBO
formulation of the optimization problem is done using variables x ∈ {1,−1} (as is the case for us) we can use
the matrix Q in the following steps as is. If the variables used in the formulation are {0, 1} binary variables, the
QUBO matrix can be converted to the spin-QUBO or sQUBO matrix (Chatterjee et al., 2023) and we can then
follow the next steps.

© NEASQC Consortium Partners. All rights reserved. Page 9 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

3. Equation (2.4) can have the following quantum equivalent:

M(θ) = − 1

4m
⟨Ψ(θ)|Q |Ψ(θ)⟩ (3.5)

where θ = {θ1...θn} is a set of parameters and |Ψ(θ)⟩ is a parameterized ansatz that represents that vector x.
The interesting thing about this representation is that we need only log n qubits to represent Q of size 2n× 2n.
Therefore, only N = ⌈log n⌉ qubits will be required if we have a problem of size n. We put the negative sign
as we want to make it a minimization problem.

4. Measure the expectation value (3.5) on a quantum computer or a simulator. In order to calculate this expectation
value we need to decompose Q into a sum of Pauli strings (see Appendix 6.1).

5. Using a classical optimizer such as the genetic algorithm (GA), optimize the parameters θ.

M∗(θ∗) = minM(θ) (3.6)

From the optimized parameters we can get the binary solution using:

xi = exp(iπR(θ∗i)) =

{
1 if 0 ≤ θ∗i < π

−1 if π ≤ θ∗i < 2π
(3.7)

© NEASQC Consortium Partners. All rights reserved. Page 10 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

4 Results

In this section we show the results obtained for meshes of sizes 32, 64 and 128. The meshes are generated synthetically
using packages numpy and matplotlib on Python. Results of the KMeans clustering method (Jin & Han, 2010) are
used as a benchmark. KMeans clustering is also an NP-Hard problem and therefore has exponential complexity. The
KMeans algorithm of the scikit-learn Python package is used here. This package uses Lloyd’s algorithm (Lloyd, 1982)
as the default algorithm and this is what was used here. The worst case complexity is given by O(n

k+2
p) where n is

the number of nodes, k is the number of segments and p is the number of attributes. Here we have only one attribute
for every node (color) so p = 1.

The quantum simulations as well as the classical algorithm runs are carried out using the following computational
resources: Chip: Apple M2 Pro, RAM: 32 GB. For the LogQ runs, the meshes of sizes 32, 64 and 128 required 5, 6
and 7 qubits respectively. The genetic algorithm is used as the classical optimizer for the variaitonal loop in LogQ.
The parameters of the genetic algorithm such as the population size and the maximum number of iterations have an
impact on the quality of the solutions and the execution time. In order to choose these parameters, one must consider
a balance between execution time and the quality of solution. Increasing the population size and number of iterations
will improve the solution up to a certain point after which it will stabilize. Conversely, augmenting these parameters
also leads to a linear increase in execution time. In our case, both the population size and maximum number of
iterations are set to 40.

In figures 5 and 6 we can visualize the mesh segmentation results for the instance of size 128 for 8 segments, using
KMeans and the quantum algorithm respectively. We can see that in KMeans it is perfectly separated into 8 different
clusters while for the quantum algorithm it is less consistent, with some of the clusters being a bit scattered. This
might be due to the repeated bi-partitioning and sometimes the algorithm has no choice but to split the clusters.

0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74
75 76 77 78 79 80 81 82 83 84 85
86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106

107 108 109 110 111 112 113 114 115 116 117
118 119 120 121 122 123 124 125 126 127

Figure 5: Mesh Segmentation of 128-Node Mesh into 8 segments using KMeans

The benchmarks shown in tables 1, 2 and 3, namely cut discrepancy (Huang & Dom, 1995), consistency error (Martin
et al., 2001), adjusted Rand index (Rand, 1971) and Hamming distance (Huang & Dom, 1995) are generated by
comparing the segments generated by the quantum algorithm and the segments generated by KMeans. For every

© NEASQC Consortium Partners. All rights reserved. Page 11 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60 61 62 63
64 65 66 67 68 69 70 71 72 73 74
75 76 77 78 79 80 81 82 83 84 85
86 87 88 89 90 91 92 93 94 95
96 97 98 99 100 101 102 103 104 105 106

107 108 109 110 111 112 113 114 115 116 117
118 119 120 121 122 123 124 125 126 127

Figure 6: Mesh Segmentation of 128-Node Mesh into 8 segments using LogQ

instance, we generate the segments using both LogQ and KMeans. Then, we consider the KMeans solution to be the
true solution and the LogQ solution to be the predicted solution. Note that KMeans does not necessarily provide the
optimal solution, but we consider it as a classical benchmark.

For cut discrepancy, consistency error and hamming distance, smaller values are better while for rand index, larger
is better. The Rand index ranges from 0 to 1, where 1 indicates perfect agreement between the two clusters, and 0
indicates no agreement beyond what would be expected by random chance. Consistency error quantifies the discrep-
ancy or inconsistency between clusters from different partitions. It ranges from 0 (perfect consistency) to 1 (complete
inconsistency). Cut discrepancy is the difference in normalized cuts between the two clusters. It varies from 0 to a
positive number, 0 being the best.

Hamming distance measures the number of points of disagreement between 2 vectors. The range of the Hamming
distance depends on the length of the vectors being compared. If the concerned mesh has a size n, then the Hamming
distance can range from 0 to n, inclusively.

Cut discrepancy depends heavily on the accuracy of boundaries. This is why as the number of segments increases,
it becomes harder to maintain a low cut discrepancy as the precision of the boundary recognition plays an important
role. For all 3 mesh sizes, the cut discrepancy is close to 0 for k = 2 and gets significantly worse as we increase the
number of segments. This indicates that both KMeans and LogQ find a very similar boundary for k = 2 and then the
boundaries of the segments grow more and more different.

Rand index measures the likelihood that a pair of faces are either in the same segment in both clusters, or in different
segments in both clusters. Note that rand index is actually getting better with higher number of segments. Therefore
with increasing number of segments while segment boundaries are not as consistent, as demonstrated by the cut
discrepancy, the number of pairs belonging to the same segment increases.

Finally, Hamming distance and consistency error give rather poor results. The consistency error is around 0.9 for
almost all the instances (with 1 being the worst). As for Hamming distance, for a vector of size 128, we see disagree-
ments on 100 and 107 elements respectively for k = 4 and k = 8, while it is a bit better for k = 2. Similar values
are found for sizes 32 and 64 as well. This could to be due to the fact that Hamming distance and consistency error

© NEASQC Consortium Partners. All rights reserved. Page 12 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

depend on the labeling of the segmentations. This means that, despite the segments being the same, it could be that in
one of the segments it is labeled 1 and in another 2, resulting in poor benchmark values.

The main takeaway from the benchmarks is that the method works well for bi-partition but the segment boundaries get
worse with an increase in k. Further work is therefore required to improve the consistency of the segment boundaries
as the number of segments increase.

Number of Segments Cut Discrepancy Consistency Error Adjusted Rand Index Hamming Distance
2 0.004 0.95 0.22 8
4 0.08 0.83 0.4 23
8 0.77 0.77 0.62 28

Table 1: 32-Node Mesh Segmentation.

Number of Segments Cut Discrepancy Consistency Error Adjusted Rand Index Hamming Distance
2 0.002 0.86 0.05 24
4 0.03 0.83 0.17 56
8 0.36 0.93 0.37 54

Table 2: 64-Node Mesh Segmentation.

Number of Segments Cut Discrepancy Consistency Error Adjusted Rand Index Hamming Distance
2 0.0003 0.86 0.07 46
4 0.012 0.92 0.11 100
8 0.32 0.96 0.15 107

Table 3: 128-Node Mesh Segmentation.

While all the algorithm runs above were carried out using a quantum simulator, the effect of noise of an actual quantum
computer (from IBM) on the algorithm can be found in (Chatterjee et al., 2023). In addition, a study demonstrating
the time taken by the quantum simulator versus the time taken to solve the same instance on real hardware is shown in
the appendix of (Chatterjee et al., 2023). Even though this study is on another problem, this can help shed some light
regarding how the runtime of the algorithm evolves with increasing size.

© NEASQC Consortium Partners. All rights reserved. Page 13 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

5 Conclusions

In this deliverable we demonstrate how we can carry out mesh segmentation using a quantum algorithm. Using this
algorithm we are able to perform mesh segmentation of size n using ⌈log2 n⌉ qubits. This allows us to represent
meshes of sizes up to 128 using only 7 qubits, something that would have taken 128 qubits with QAOA. This would
mean that with 30 qubits we can reach a mesh size of 1 billion which is around the industrial size of meshes. However,
there are certain challenges that need to be faced in order to do this. The main challenge is that of the overhead due
to Pauli decomposition. As shown in appendix 6.1, we need to calculate the coefficients of n2 terms where n is the
size of the mesh. For a mesh of size 1 billion, we will need to calculate 1018 terms. There is already some interesting
research to mitigate this issue. For example, much more efficient schemes to decompose the Hamiltonian and calculate
the expectation value exist but only for d-sparse matrices (Bravo-Prieto et al., 2023).

We benchmark LogQ against the well-known KMeans algorithm. Although the quantum algorithm is able to find clus-
ters, the quality of the results is far below that of KMeans as the number of segments increase. This is understandable
for several reasons. One is the choice of objective function. A more appropriate and optimized objective function can
improve performance significantly. An issue with the current objective function is that it can only bi-partition a mesh
into two clusters and therefore requires multiple iterations to get multiple clusters. This could induce errors in the
segmentation. This could be remedied by using an objective function that works for any number of segments and not
just two segments. A further work is therefore to tackle the issue with a modularity generalization or using another
measure like within-cluster variance.

Secondly, the performance also depends on the population size and number of the iterations of genetic algorithm in
our algorithm and hence on computation time. The computation time increases linearly with the increase in either
population size or number of iterations or both. As mentioned in the previous section, it is important to find the right
balance between the performance and the computation time.

Nevertheless this deliverable serves as a first proof of concept on how the problem of mesh segmentation can be
tackled using a quantum variational algorithm.

© NEASQC Consortium Partners. All rights reserved. Page 14 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

List of Acronyms

Term Definition
QAOA Quantum Approximate Optimization Algorithm
QUBO Quadratic Unconstrained Binary Optimization

Table 4: Acronyms and Abbreviations

© NEASQC Consortium Partners. All rights reserved. Page 15 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

List of Figures

Figure 1: An example of a 3D mesh of an object . 5
Figure 2: An example for the segmentation of a 3D mesh . 6
Figure 3: 2D Triangular Mesh of Size 64 . 6
Figure 4: 2D Triangular Mesh of Size 64 as a Graph Problem . 7

Figure 5: Mesh Segmentation of 128-Node Mesh into 8 segments using KMeans 11
Figure 6: Mesh Segmentation of 128-Node Mesh into 8 segments using LogQ 12

© NEASQC Consortium Partners. All rights reserved. Page 16 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

List of Tables

Table 1: 32-Node Mesh Segmentation. 13
Table 2: 64-Node Mesh Segmentation. 13
Table 3: 128-Node Mesh Segmentation. 13

Table 4: Acronyms and Abbreviations . 15

© NEASQC Consortium Partners. All rights reserved. Page 17 of 19

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

Bibliography

Bravo-Prieto, C., LaRose, R., Cerezo, M., Subasi, Y., Cincio, L., & Coles, P. J. (2023). Variational quantum linear
solver. Quantum, 7, 1188.

Callison, A., & Chancellor, N. (2022). Hybrid quantum-classical algorithms in the noisy intermediate-scale quantum
era and beyond. Phys. Rev. A, 106, 010101. https://doi.org/10.1103/PhysRevA.106.010101

Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., McClean, J. R., Mitarai, K., Yuan,
X., Cincio, L., et al. (2021). Variational quantum algorithms. Nature Reviews Physics, 3(9), 625–644. https:
//www.nature.com/articles/s42254-021-00348-9

Chatterjee, Y., Bourreau, E., & Rančić, M. J. (2023). Solving various np-hard problems using exponentially fewer
qubits on a quantum computer. arXiv preprint arXiv:2301.06978.

Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv:1411.4028.
https://arxiv.org/abs/1411.4028

Hadfield, S., Wang, Z., O’Gorman, B., Rieffel, E. G., Venturelli, D., & Biswas, R. (2019). From the quantum approx-
imate optimization algorithm to a quantum alternating operator ansatz. Algorithms, 12(2). https://doi.org/10.
3390/a12020034

Huang, Q., & Dom, B. (1995). Quantitative methods of evaluating image segmentation. Proceedings of the 1995
International Conference on Image Processing (Vol. 3)-Volume 3 - Volume 3, 3053.

Jin, X., & Han, J. (2010). K-means clustering. In C. Sammut & G. I. Webb (Eds.), Encyclopedia of machine learning
(pp. 563–564). Springer US. https://doi.org/10.1007/978-0-387-30164-8 425

Lloyd, S. (1982). Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2), 129–137.
https://doi.org/10.1109/TIT.1982.1056489

Martin, D., Fowlkes, C. C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its
application to evaluating segmentation algorithms and measuring ecological statistics. 2, 416–423. https :
//doi.org/10.1109/ICCV.2001.937655

Moll, N., Barkoutsos, P., Bishop, L. S., Chow, J. M., Cross, A., Egger, D. J., Filipp, S., Fuhrer, A., Gambetta, J. M.,
Ganzhorn, M., et al. (2018). Quantum optimization using variational algorithms on near-term quantum de-
vices. Quantum Science and Technology, 3(3), 030503. https://iopscience.iop.org/article/10.1088/2058-
9565/aab822

Nakanishi, K. M., Fujii, K., & Todo, S. (2020). Sequential minimal optimization for quantum-classical hybrid algo-
rithms. Physical Review Research, 2(4), 043158. https : / / journals . aps . org / prresearch / abstract / 10 . 1103 /
PhysRevResearch.2.043158

Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of the National Academy of
Sciences, 103(23), 8577–8582. https://doi.org/10.1073/pnas.0601602103

Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., Aspuru-Guzik, A., & O’brien, J. L.
(2014). A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5(1), 1–7.
https://www.nature.com/articles/ncomms5213

Rančić, M. J. (2023). Noisy intermediate-scale quantum computing algorithm for solving an n-vertex maxcut problem
with log (n) qubits. Physical Review Research, 5(1), L012021.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical
Association, 66(336), 846–850. https://doi.org/10.1080/01621459.1971.10482356

Shamir, A. (2008). A survey on mesh segmentation techniques. Computer graphics forum, 27(6), 1539–1556.
Stokes, J., Izaac, J., Killoran, N., & Carleo, G. (2020). Quantum natural gradient. Quantum, 4, 269. https://quantum-

journal.org/papers/q-2020-05-25-269/

© NEASQC Consortium Partners. All rights reserved. Page 18 of 19

https://doi.org/10.1103/PhysRevA.106.010101
https://www.nature.com/articles/s42254-021-00348-9
https://www.nature.com/articles/s42254-021-00348-9
https://arxiv.org/abs/1411.4028
https://doi.org/10.3390/a12020034
https://doi.org/10.3390/a12020034
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/ICCV.2001.937655
https://doi.org/10.1109/ICCV.2001.937655
https://iopscience.iop.org/article/10.1088/2058-9565/aab822
https://iopscience.iop.org/article/10.1088/2058-9565/aab822
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.043158
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.043158
https://doi.org/10.1073/pnas.0601602103
https://www.nature.com/articles/ncomms5213
https://doi.org/10.1080/01621459.1971.10482356
https://quantum-journal.org/papers/q-2020-05-25-269/
https://quantum-journal.org/papers/q-2020-05-25-269/

D5.9 Benchmarking of QAOA-based algorithms for mesh segmentation, against K-Means,
normalized and randomized cuts, and core extraction methods (0.2- Submitted)

6 Appendix

6.1 Calculating the Expectation value of an observable

Given the observable O, we first need to convert into a sum of tensor products of Pauli strings.

Let O be a n × n matrix and S = {I,X, Y, Z}N = {S1, S2, S3, S4}N be the set of Pauli matrices. We can consider
n to be a power of 2 without any loss of generality. If the size of the Hamiltonian matrix is n′ which is not a power of
2, we can easily convert it to a size of n = 2log2(n

′), which is a power of 2. The extra space in the matrix is filled with
0’s.

This Hamiltonian can now represented on N = log2(n) qubits. Consider the set J = {Si1 ⊗Si2...⊗SiN |i1, i2....iN ∈
{0, 1, 2, 3}} which consists of all tensor product combinations of the Pauli matrices.

Then the Hamiltonian can decomposed as:

O =

4N∑
i=1

ciJi (6.1)

where the coefficients are:
ci =

1

n
Tr(Ji · O) (6.2)

The Hamiltonian therefore becomes:

O =
1

n

4N∑
i=1

Tr(Ji · O)Ji (6.3)

Therefore we need to calculate 4N = 4log2n = n2 terms in order to get the full decomposition of the observable into
Pauli matrices. The expectation value then becomes a sum of the expectation values of all the terms.

⟨Ψ| O |Ψ⟩ = 1

n

4N∑
i=1

Tr(Ji · O) ⟨Ψ| Ji |Ψ⟩ (6.4)

© NEASQC Consortium Partners. All rights reserved. Page 19 of 19

	1 Executive Summary
	2 Description of the project task
	2.1 Mesh Segmentation
	2.2 Mesh Segmentation as a graph optimization problem
	2.3 Description of the Objective Function

	3 A Quantum algorithm for solving QUBO problems
	4 Results
	5 Conclusions
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography
	6 Appendix
	6.1 Calculating the Expectation value of an observable

