
NExt ApplicationS of Quantum Computing

D6.14: Final QRBS software and IDC
application

Document Properties

Contract Number 951821

Contractual Deadline December-2023

Dissemination Level Public

Nature Other

Editors Vicente Moret-Bonillo, UDC

Authors Vicente Moret-Bonillo, UDC
Samuel Magaz-Romero, UDC
Eduardo Mosqueira-Rey, UDC
Diego Álvarez-Estévez, UDC

Reviewers Mohamed HIBTI, EDF
Alfons W. Laarman, ULEI

Date 19-mar-2024

Keywords software implementation, IDC application, QRBS

Status Final

Release 1.0

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

Ref. Ares(2024)2080607 - 19/03/2024

D6.14 Final QRBS software and IDC application (1.0- Final)

History of Changes

Release Date Author, Organisation Description of Changes

0.1 20/11/2023 Samuel Magaz-Romero, UDC First draft.

0.2 19/01/2024 Samuel Magaz-Romero, UDC First review.

0.3 12/03/2024 Samuel Magaz-Romero, UDC Second review.

1.0 19/03/2024 Samuel Magaz-Romero, UDC Final review.

© NEASQC Consortium Partners. All rights reserved. Page 2 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

Table of Contents

1. Executive Summary 4

2. Context 5
2.1. Project . 5
2.2. Work package . 5

3. Final QRBS Software 6
3.1. Introduction . 6

3.1.1. Revised use cases . 6
3.2. Models . 9

3.2.1. Certainty factors . 9
3.2.2. Fuzzy logic . 10
3.2.3. Bayesian networks . 11

3.3. Code documentation . 12

4. IDC application 13
4.1. Introduction . 13
4.2. Specification . 14

4.2.1. API implementation . 14
4.2.2. API documentation . 14

4.3. Experiments and results . 15

5. Testing 16
5.1. Traceability with use cases . 16
5.2. Testing metrics . 17

6. Conclusions 18

List of Acronyms 19

List of Figures 20

List of Tables 21

Bibliography 22

A. Achievements 23
A.1. Scientific material . 23

A.1.1. Articles . 23
A.1.2. Poster presentations . 23
A.1.3. Dissemination activities . 23

A.2. Academical works . 23
A.2.1. BSc theses . 23
A.2.2. MSc theses . 24
A.2.3. PhD theses . 24

B. QRBS software documentation 25
B.1. Module knowledge rep . 25
B.2. Module qrbs . 29

© NEASQC Consortium Partners. All rights reserved. Page 3 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

1. Executive Summary

This report is the fifth deliverable of Task 6.2 – Quantum Rule-Based Systems (QRBS) for breast cancer detection
of the NEASQC project. The document presents the work carried out so far, and is complementary to the other
deliverables of this task (Moret-Bonillo, Mosqueira-Rey, & Magaz-Romero, 2021; Moret-Bonillo, Mosqueira-Rey,
Magaz-Romero, & Gómez-Tato, 2021; Moret-Bonillo et al., 2022, 2023).

D6.14 (M40) will include the final version of the RBS and QRBS software along with the IDC application that has
been developed.

The report begins with an introduction of the final version of the QRBS software, presenting the different function-
alities it provides, as well as the revisions that have taken place regarding the previous work, the different models
developed to implement QRBS, and a commentary on the library’s documentation current state, which is extended in
the appendix.

Following that, we present the implementation of the Invasive Ductal Carcinoma (IDC) application, based on previous
work on quantum computing techniques and applying them to the clinical problem specifically.

We continue by extending the work on previous deliverables regarding traceability and testing of both the QRBS
software and the IDC application, which is a critical part on making sure that the developed software projects provide
valid and verified functionalities.

Closing the report, we present the conclusions obtained during the elaboration of this work, along with ideas for future
work.

© NEASQC Consortium Partners. All rights reserved. Page 4 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

2. Context

Some of the concepts referenced in this document have been explained in deliverables D6.2, D6.5, D6.9 and D6.11.
We encourage to read them for contextual information.

2.1. Project

In the context of this project, this document provides insight into two different objectives: the final version of the
Quantum Rule-Based Systems software library and the implementation for the Invasive Ductal Carcinoma application.

On the one hand, following the work of previous deliverables, the development of the QRBS software library has been
continued by adding new functionalities for the final version, while still following the Unified Process of software
development (Kruchten, 2004). This final version serves as a milestone regarding the development of the project, by
achieving one of the main goals established at its beginning: the development of the QRBS library. There is room yet
for more revisions and the addition of new functionalities, but this version satisfies the requirements defined for the
software library.

On the other hand, we provide the IDC application implementation, following the current manuals of medicine for
cancer staging (Amin et al., 2017). While this work has already been introduced with the knowledge model in the
previous deliverables, we provide a brief revision here to clarify its implementation.

2.2. Work package

In the context of the Work Package 6 – “Symbolic AI and graph algorithmics”, this document illustrates the final step
(prior to maintenance) of the process that must be followed in order to develop the framework of Quantum Rule-Based
Systems, and the implementation details for the IDC application.

In our previous deliverable, “D6.11 Preliminary QRBS software and IDC application specification” (Moret-Bonillo
et al., 2023), we provided an initial version that illustrated what the software library for Quantum Rule-Based Systems
must achieve. With this version, the implementation stage was integrated into the overall process, providing a basic
version of the software which we used to test whether the former steps were well defined. Using that work as a
base, we now expand the capabilities of the library to provide the final version, with new models, like fuzzy logic or
Bayesian networks, to implement QRBS.

Regarding the IDC application, we provide an implementation to be used for the case of breast cancer diagnosing. This
application is implemented using the QRBS software library, and made available through a web API. This approach
has been followed in order to facilitate the incorporation of this useful tool in the workflow of users that want to
implement it.

The final deliverable will be complementary to this one, since it will provide the evaluation of the work that has been
carried out through the previous deliverables, including this one.

© NEASQC Consortium Partners. All rights reserved. Page 5 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

3. Final QRBS Software

In this chapter, we continue the work carried out in the previous deliverables regarding the development of the QRBS
software library, this time presenting the final version of the software. We divide this chapter in: (1) introducing the
functionalities of the software library, (2) presenting the different models implemented for QRBS, and (3) giving a
glimpse of its documentation.

3.1. Introduction

For the final version of the QRBS software library, we have focused on providing different models to implement the
systems. This effort, along with the work carried out up to this point, has led to the following functionalities:

• RBS modelling: through the package knowledge rep, users can model any rule-based system by encoding
declarative and procedural knowledge into a system, establishing different facts with their respecting impreci-
sion, and relate them through rules with uncertainty.

• Automated QRBS implementation in different models: after defining a RBS, users can employ the qrbs
package to automatically obtain the corresponding QRBS in the different models available (as we see in Sec-
tion 3.2) without providing any additional information.

• Evaluate and execute QRBS: through the QPU classes (for example, the MyQlmQPU class provided in the
library) users can evaluate their QRBS to analyse whether their system can be run on said QPU, and if so
execute it to obtain the corresponding results. The results are encoded as the certainty values of the facts that
conform the right-hand side of the rules, also known as consequents, which users can consult after the execution.

With these functionalities, the QRBS software library provides the tools and means for users to work and experiment
in the area of Artificial Intelligence and Quantum Computing.

3.1.1. Revised use cases

The addition of new models to implement QRBS’s quantum circuits calls for the revision of the use cases involved in
this process. Since this scenario was already contemplated (having to revisit any of the previous steps when developing
new functionalities or extending the existing ones), few modifications were necessary (Moret-Bonillo, Mosqueira-Rey,
& Magaz-Romero, 2021).

In this case, the revised use cases are UC-06: QRBS evaluation and UC-07: QRBS execution, which are affected by
the selection of the model to implement the QRBS in. While the changes are minimal, it is crucial to document them
to preserve the traceability of the whole software engineering process. Tables 1 and 2 illustrate the new specification
of UC-06 and UC-07 respectively.

© NEASQC Consortium Partners. All rights reserved. Page 6 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

Table 1: Specification of use case UC-06
UC-06: QRBS evaluation

Use case ID UC-06
Name QRBS evaluation
Description User must be able to evaluate the feasibility of the QRBS. This means to evaluate

whether, given a quantum backend for its execution, the system can or cannot run on
it.

Actor User
Basic flow 1. User selects the QRBS to evaluate.

2. User indicates the quantum backend to evaluate with.
3. The model to implement the QRBS is selected.
4. The QRBS is evaluated regarding the quantum backend and the model.

Alternative flows 3a. The user selects a model.
1. The QRBS is implemented in the model indicated by the user.

3b. The user selects no model or a model that does not exist.
1. The QRBS is implemented in the default model.

4a. The evaluation returns a positive result.
1. The system displays information of each knowledge island (number of qubits and
gates required).

4b. The evaluation returns a negative result (the QRBS cannot run in the indi-
cated backend).
1. The system displays a message with the causes why it cannot run (e.g.: a knowledge
island is too large, the given backend does not support certain operation).

Scenarios 1. Model indicated, positive evaluation: Basic flow, alternative 3a, alternative 4a
2. Model indicated, negative evaluation: Basic flow, alternative 3a, alternative 4b
3. No model indicated/non-existing, positive evaluation: Basic flow, alternative 3b, al-
ternative 4a
4. No model indicated/non-existing, negative evaluation: Basic flow, alternative 3b, al-
ternative 4b

Additional information

© NEASQC Consortium Partners. All rights reserved. Page 7 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

Table 2: Specification of use case UC-07
UC-07: QRBS execution

Use case ID UC-07
Name QRBS execution
Description User must be able to execute the system (by default, running all of its knowledge islands)

and obtain the results.
Actor User
Basic flow 1. User selects the QRBS to execute.

2. User indicates the quantum backend to execute with.
3. The model to implement the QRBS is selected.
4. The QRBS is evaluated: Includes UC-06: QRBS Evaluation.
5. The QRBS is executed regarding the quantum backend and the model.

Alternative flows 1a. User does not specify which knowledge islands to execute.
1. All knowledge islands of the QRBS will be executed.

1b. User specifies which knowledge islands wants to execute.
1. The specified knowledge islands of the QRBS will be executed.

3a. The user selects a model.
1. The QRBS is implemented in the model indicated by the user.

3b. The user selects no model or a model that does not exist.
1. The QRBS is implemented in the default model.

4a. The execution returns a positive result, with information of said execution
(results for each of the knowledge island, time and duration of execution).

4b. The execution returns a negative result (the QRBS cannot run in the indicated
backend).
1. The system will display a message with the causes why it cannot run (e.g.: a left-hand
side of the rule is not initialised, a runtime error occurred).

Scenarios 1. Default execution, model indicated, successful: Basic flow, alternative 1a, alternative
3a, alternative 3a (UC-06), alternative 4a
2. Default execution, model indicated, failed (because of evaluation): Basic flow, alter-
native 1a, alternative 3a, alternative 3b (UC-06)
3. Default execution, model indicated, failed (because of execution): Basic flow, alter-
native 1a, alternative 3a, alternative 3a (UC-06), alternative 4b
4. Specified execution, model indicated, successful: Basic flow, alternative 1b, alterna-
tive 3a, alternative 3a (UC-06), alternative 4a
5. Specified execution, model indicated, failed (because of evaluation): Basic flow, al-
ternative 1b, alternative 3a, alternative 3b (UC-06)
6. Specified execution, model indicated, failed (because of execution): Basic flow, alter-
native 1b, alternative 3a, alternative 3a (UC-06), alternative 4b
7. Default execution, no model indicated/non-existing, successful: Basic flow, alterna-
tive 1a, alternative 3b, alternative 3a (UC-06), alternative 4a
8. Default execution, no model indicated/non-existing, failed (because of evaluation):
Basic flow, alternative 1a, alternative 3b, alternative 3b (UC-06)
9. Default execution, no model indicated/non-existing, failed (because of execution):
Basic flow, alternative 1a, alternative 3b, alternative 3a (UC-06), alternative 4b
10. Specified execution, no model indicated/non-exisiting, successful: Basic flow, alter-
native 1b, alternative 3b, alternative 3a (UC-06), alternative 4a
11. Specified execution, no model indicated/non-exisiting, failed (because of evalua-
tion): Basic flow, alternative 1b, alternative 3b, alternative 3b (UC-06)
12. Specified execution, no model indicated/non-exisiting, failed (because of execution):
Basic flow, alternative 1b, alternative 3b, alternative 3a (UC-06), alternative 4b

Additional information

© NEASQC Consortium Partners. All rights reserved. Page 8 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

3.2. Models

In this section we present the three models of QRBS implementation that have been defined for the final version of the
software library. These models are classical-inspired quantum models, and while they provide sufficient requirements
to develop QRBS, it is important to keep in mind that some of their aspects may evolve with future research.

3.2.1. Certainty factors

This model is the one initially proposed at the beginning of the project, as the first approach to Quantum Rule-Based
Systems (Moret-Bonillo, Mosqueira-Rey, Magaz-Romero, & Gómez-Tato, 2021).

Proposed by Shortliffe and Buchanan (Shortliffe & Buchanan, 1975) the certainty factors model shook the founda-
tions of the, at that moment, incipient world of artificial intelligence. It was immediately accepted due to its easy
understanding and the quality of the results obtained after its application.

The idea behind certainty factors can be condensed as the fact that, for any hypothesis h, an evidence e cannot
simultaneously increase belief and disbelief in h. Therefore, Shortliffe and Buchanan define the Measure of Increasing
Belief, MB(h, e), and the Measure of Increasing Disbelief, MD(h, e). This measures are used to give a third index,
the Certinaty Factor CF (h, e) =MB(h, e)−MD(h, e).

This new index allows to solve several problems that can be found in RBS, like splitting the implications when several
evidences point at the same hypothesis, which can be used to handle the uncertainty found in implication. It appears
that, despite its ad hoc nature, probabilities are in the core of the certainty factors (Heckerman, 1986), a fact that
inspired its quantum counterpart that we refresh here.

This quantum model provides the M gate (Moret-Bonillo, Mosqueira-Rey, Magaz-Romero, & Gómez-Tato, 2021)
to encode inaccurate knowledge into the system (mapping their [0, 1] value into a [0, π] angle rotation), for both the
imprecision of the facts and the uncertainty of the rules (see Figure 1).

|0⟩ M(θa) |a⟩

(a) M gate

|0⟩ M(θa) |a⟩

|0⟩ M(θa⇒b) |a⇒ b⟩

|0⟩ |b⟩

(b) Implication operator

Figure 1: Certainty factors’ uncertainty managers

The model provides the quantum equivalent of the logical operators NOT , AND and OR to relate different facts for
the precedents of the rules that require them (see Figure 2). Notice how for each of the operators the input qubits are
preserved, to be reused if needed, reducing the total amount of qubits for the system. This approach is followed in all
of the models presented.

|a⟩ |a⟩

|0⟩ X |¬a⟩

(a) NOT gate

|a⟩ |a⟩

|b⟩ |b⟩

|0⟩ |a ∧ b⟩

(b) AND gate

|a⟩ |a⟩

|b⟩ |b⟩

|0⟩ |a ∨ b⟩

(c) OR gate

Figure 2: Certainty factors’ operators

Since this model has been under development the longest, and therefore has been tested and experimented with the
most, it is the one that we have defined as default for our software library.

© NEASQC Consortium Partners. All rights reserved. Page 9 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

3.2.2. Fuzzy logic

This model implements the quantum operators by using the logical connectives of fuzzy logic as a base.

Fuzzy logic, initially introduced by Lofti A. Zadeh in 1965 (Zadeh, 1965), is an extension of classical logic, where
variables can have any value in the range [0, 1] rather than being limited to the binary set. This extension allows for a
wider representation of knowledge, as it is sustained by the fact that people do not make decisions categorically, but
based on imprecise information.

This new domain for the knowledge variables calls for a revision of the logical connectives: the operators of classical
logic are not defined for values different than 0 or 1. However, the newly defined operators for fuzzy variables must
preserve the behaviour of their classical counterparts, as fuzzy logic is an extension of classical logic. For our case,
we need to redefine the NOT , AND and OR operators.

In the first place, we must model the fuzzy variables in a quantum circuit. In this case, we employ the RY gate, in
which we map the value of a fuzzy variable in the range [0, 1] to the rotation range [0, π]. After applying this gate with
the corresponding rotation to any qubit, we will have a qubit in a state |ψ⟩ = α |0⟩+ β |1⟩ = cos(θ2) |0⟩+ sin(θ2) |1⟩,
where β will be used as the representation of the fuzzy value. We use this gate to model both the imprecision of the
facts and the uncertainty of the rules (see Figure 3).

|0⟩ RY (θa) |a⟩

(a) RY gate

|0⟩ RY (θa) |a⟩

|0⟩ RY (θa⇒b) |a⇒ b⟩

|0⟩ |b⟩

(b) Implication operator

Figure 3: Fuzzy logic’s uncertainty managers

As previously mentioned, the logical connectives must be redefined to work with the fuzzy variables. In fuzzy logic,
a common approach to model these connectives are triangular norms and conorms (Klement et al., 2000).

A triangular norm (t-norm for short) is a function T : [0, 1]× [0, 1] −→ [0, 1] such that satisfies:

∀x, y, x ∈ [0, 1]

(T1) T (x, y) = T (y, x) (commutativity)
(T2) T (x, T (y, z)) = T (T (x, y), z) (associativity)
(T3) T (x, y) ≤ T (x, z) whenever y ≤ z (monotonicity)
(T4) T (x, 1) = x (boundary condition)

A triangular conorm (t-conorm for short) is a function S : [0, 1]× [0, 1] −→ [0, 1] such that satisfies (T1− 3) and:

(S4) S(x, 0) = x (boundary condition)

Furthermore, a pair (T, S) is said to be conjugated if they are related though DeMorgan’s law:

T (x, y) = ¬S(¬x,¬y)
S(x, y) = ¬T (¬x,¬y)

}
T and S are conjugated

In fuzzy logic, t-norms can be used to model the conjunction logical connective and t-conorms for the disjunction
logical connective. With these terms presented, we can define a quantum approach for the logical connectives.

For the negation, we use the X gate, mainly because of its importance in the Quantum Computing literature as the
NOT operator. For the conjunction, we use a CCNOT gate, where the two control qubits act as the input of the
logical connective and the third qubit is used to store the result. Following this conjunction operator, we built its
conjugated operator for the disjunction, using DeMorgan’s law (see Figure 4).

© NEASQC Consortium Partners. All rights reserved. Page 10 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

|a⟩ |a⟩

|0⟩ X |¬a⟩

(a) NOT gate

|a⟩ |a⟩

|b⟩ |b⟩

|0⟩ |a ∧ b⟩

(b) AND gate

|a⟩ X X |a⟩

|b⟩ X X |b⟩

|0⟩ X |a ∨ b⟩

(c) OR gate

Figure 4: Fuzzy logic’s operators

One of the aspects of this model that will evolve as we research on it is the implication, since for now we use the same
modus ponens approach as in the certainty factors model.

3.2.3. Bayesian networks

The final model included in the software library is based on Bayesian networks. Since there is work already published
on this subject, we found it interesting to include it as a model to build QRBS, with the required adjustments.

A Bayesian network is a probabilistic graphical model that represents a set of variables and their conditional depen-
dencies via a directed acyclic graph (DAG) that represents the joint probability distribution over those variables. A
significant advantage of Bayesian networks is that, exploiting conditional dependencies present in the original distri-
bution, we can reduce the space complexity of the model. This is done by using the edges of the graph to represent
conditional dependencies associated to a conditional probability table (or a conditional probability distribution) (Rus-
sell & Norvig, 2010).

In (Borujeni et al., 2021) we find the following framework proposal for quantum Bayesian networks:

1. Map each node in a Bayesian network to one or more qubits (depending on the number of discrete states of the
node).

2. Map the marginal/conditional probabilities of each node to the probability amplitudes (or probabilities) associ-
ated with various states of the qubit(s).

3. Apply the required probability amplitudes of quantum states using (controlled) rotation gates.

With these concepts in mind, we define our proposal for a classical-inspired quantum approach to QRBS through
Bayesian networks.

We begin by modelling the codification of knowledge into the system. On the one hand, we use the RY gate to model
the imprecision of the facts. On the other hand, we use its controlled version, the CRY gate, to model the uncertainty
of the facts and at the same time the implication itself (see Figure 5).

|0⟩ RY (θa) |a⟩

(a) RY gate

|0⟩ RY (θa) |a⟩

|0⟩ RY (θa⇒b) |b⟩

(b) Implication operator

Figure 5: Bayesian networks’ uncertainty managers

Regarding the operators to relate the facts (see Figure 6), we make use once again of the NOT implementation that
we previously used in the other models, and base the AND and OR operators on the relationship between nodes of
a Bayesian network. Both the AND and OR operators are inspired by their quantum implementation in (Borujeni
et al., 2021), where they are ”activated” depending on the state of the qubits that represent the nodes of the network.

While this model is not as developed as the two former ones, we included it in this version of the software library
because (1) there is room to further develop its software implementation as we research it and (2) the use of the CRY

© NEASQC Consortium Partners. All rights reserved. Page 11 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

|a⟩ |a⟩

|0⟩ X |¬a⟩

(a) NOT gate

|a⟩ |a⟩

|b⟩ |b⟩

|0⟩ |a ∧ b⟩

(b) AND gate

|a⟩ X X |a⟩

|b⟩ X X |b⟩

|0⟩ |a ∨ b⟩

(c) OR gate

Figure 6: Bayesian networks’ operators

gate for the implication reduces the number of qubits required to implement a QRBS, and can therefore be interesting
for those edge cases that need to reduce the amount of qubits of their systems.

We are aware of the similarities that are present between the models, for example regarding their operators, as they
are derived from the same classical logical operators. The idea behind having different implementations is to further
develop them as we keep researching the subject; we ask the reader to keep this in mind.

3.3. Code documentation

We provide source documentation for the library, which is available at https://neasqc.github.io/qrbs/index.html.

In comparison to the last documented version (Moret-Bonillo et al., 2023), we have added sections for (1) the instal-
lation of the library, (2) usage examples with some basic ones and some more advanced ones, and (3) the updated
version of the software specification (see Fig. 7).

Figure 7: Snapshot of the web documentation’s landing page

Appendix B presents the software specification section of the library documentation up to this point.

© NEASQC Consortium Partners. All rights reserved. Page 12 of 31

https://neasqc.github.io/qrbs/index.html

D6.14 Final QRBS software and IDC application (1.0- Final)

4. IDC application

In this chapter we illustrate the IDC (Invasive Ductal Carcinoma) application developed for this use case, by (1) intro-
ducing how it works, (2) providing its specification and (3) presenting the results of the experiments carried out.

4.1. Introduction

The IDC application that we have developed is supported by a knowledge model based on the TNM classification
system (Giuliano et al., 2018), where the three sets of variables T, N and M (see Figure 3) are used to classify the
current state of the patient (Moret-Bonillo et al., 2023).

Figure 8: Variables or symptoms that are considered in the knowledge model for IDC staging.

Once the patient has been classified regarding the TNM system, the IDC stage is determined through the correspon-
dence of Table 3. However, there are several TNM possible classifications that fit in more than one IDC stage (for
example, the classification T0N1M0 corresponds to both stages I-B and II-A).

Table 3: Invasive Ductal Carcinoma stages according with TNM classification system.
IDC Stage Compatible TNM classification
I-A T1 N0 M0
I-B T0 N1 M0 / T1 N1 M0
II-A T0 N1 M0 / T1 N1 M0 / T2 N0 M0
II-B T2 N1 M0 / T3 N0 M0
III-A T0 N2 M0 / T1 N2 M0 / T2 N0 M0 / T3 N2 M0 / T3 N1 M0
III-B T4 N0 M0 / T4 N1 M0 / T4 N2 M0
III-C TX N3 M0
IV TX NY M1

With this context, we have developed as an application for IDC a web API (Application Programming Interface), a
type of software interface for two programs to interact between each other. In this case, any software project that can
use web APIs (most of them nowadays) will be able to integrate our application as it suits them best.

We have opted to implement our application as a web API since it follows the project goal of aiming its use cases
towards users. With a web API, users are able to use the application in different ways: making requests to a server
with the API running (public or private), modifying our proposal to achieve different results, etc.

© NEASQC Consortium Partners. All rights reserved. Page 13 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

4.2. Specification

In this section we present (1) the technical details of the implemented web API and (2) the specifications to use it.

4.2.1. API implementation

Since the IDC application makes use of the QRBS software library, which is developed in Python, we have chosen
the same programming language to develop the web API, and use Flask to implement it. Flask is a lightweight Web
Server Gateway Interface web application framework. It is designed to make getting started quick and easy, with the
ability to scale up to complex applications. In our case, it provides more than enough utilities to provide the level of
functionality we want to achieve.

We use Flask to define our web API, which users can send requests to with the corresponding information about a
patient, and obtain the IDC stage calculated with the QRBS software library. This is done by having previously defined
the QRBS based on the IDC knowledge model, and initialising the variables with the data from the users.

We provide two options for the users: (1) they can send their TNM classification, just like specified in the knowledge
model, or (2) they can provide the values for each of the TNM variables, and the systems calculates the TNM classi-
fication. In both cases, the output that users receive is the corresponding IDC stage to their input data (this is further
specified in subsection 4.2.2). The source code of the web API can be found in https://github.com/NEASQC/idc-app.

4.2.2. API documentation

Tables 4 and 5 provide the API specification of the two options we have defined for the IDC application.

Table 4: API specification for endpoint /idc
API endpoint: idc

Route /idc
Method POST

Parameters
Name body
Required Yes

Model

{
"model": {

"enum": ["cf", "fuzzy", "bayes"]
},
"classification": {

"tnm": {
"enum": [

"t1n0m0", "t0n1m0", "t1n1m0", "t2n0m0", "t2n1m0",
"t3n0m0", "t0n2m0", "t1n2m0", "t3n2m0", "t3n1m0",
"t4n0m0", "t4n1m0", "t4n2m0", "txn3m0", "txnym1"

],
},
"value": {

"type": "number",
"minimum": 0.0,
"maximum": 1.0

}
}

}
Responses

Code 200 OK
Description The result is returned, everything went as expected
Code 400 BAD REQUEST
Description Validation exception, some data is incorrect

© NEASQC Consortium Partners. All rights reserved. Page 14 of 31

https://flask.palletsprojects.com/en/3.0.x/
https://github.com/NEASQC/idc-app

D6.14 Final QRBS software and IDC application (1.0- Final)

Table 5: API specification for endpoint /idc-deep
API endpoint: idc-deep

Route /idc-deep
Method POST

Parameters
Name body
Required Yes

Model

{
"model": {

"enum": ["cf", "fuzzy", "bayes"]
},
"variables": {

"t0": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"t1": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"t2": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"t3": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"t4": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"t5": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"n0a": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"n0b": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"n1a": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"n1b": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"n2a": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"n2b": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"n3a": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"n3b": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"n3c": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"m0": { "type": "number", "minimum": 0.0, "maximum": 1.0 },
"m1": { "type": "number", "minimum": 0.0, "maximum": 1.0 }

}
}

Responses
Code 200 OK
Description The result is returned, everything went as expected
Code 400 BAD REQUEST
Description Validation exception, some data is incorrect

4.3. Experiments and results

Once the endpoints of the API have been implemented, we test them in order to check that they provide the corre-
sponding results to the inputs provided.

To do this, we use pytest once again, following the guidelines of Flask testing, and test the results for the three different
models, for each possible stage of IDC. We also check the validation of the inputs, according to the model specified
for each endpoint. These tests can be found in https://github.com/NEASQC/idc-app/tree/main/tests.

In this case, the coverage information is not that relevant, since a single call to the API will already check all the steps
of the function. Here, we focus on the quantity of tests, which is a total of: 3 models × 15 TNM classifications ×
2 API endpoints + 2 input validation tests = 90 tests. The results obtained are as expected for each of the possible
diagnoses.

Regarding response times, on our experiments we have an average of 400ms for most of the requests, which is more
than acceptable considering the amount of quantum circuits being executed with 1024 shots. We have run into some
delays with certain routines, mainly for the ones of stages III-A and III-B due to their complexity, where we have
come across response times of 1.5s. However, this is solvable by running the application in a higher end machine, but
we wanted to acknowledge it since we are focusing on developing a user-friendly application.

© NEASQC Consortium Partners. All rights reserved. Page 15 of 31

https://github.com/NEASQC/idc-app/tree/main/tests

D6.14 Final QRBS software and IDC application (1.0- Final)

5. Testing

In this chapter we continue the work on testing that we have been developing in previous deliverables. We present the
new tests to cover the modification of the use cases and present the coverage information for the testing of the QRBS
software library and the IDC application.

5.1. Traceability with use cases

The revision of use cases UC-06: QRBS evaluation and UC-07: QRBS execution has produced new scenarios that must
be tested. We define the corresponding test cases for said scenarios, following the hierarchy established for traceability
(Moret-Bonillo, Mosqueira-Rey, Magaz-Romero, & Gómez-Tato, 2021). With that, the new tests for these use cases
can be found in Table 6.

We have structured the new test cases in separate classes, one for each of the models of QRBS. Therefore, the test
classes TestEvaluation and TestExecution (without a model on its name) corresponds to the default model,
the certainty factors model. The classes TestEvaluationFuzzy and TestExecutionFuzzy correspond to
the fuzzy logic model and the classes TestEvaluationBayes and TestExecutionBayes correspond to the
Bayesian network model, as their names suggest.

Test case ID Test method Test class
T-06-1 test positive evaluation TestEvaluation
T-06-2 test negative evaluation TestEvaluation
T-06-3 test positive evaluation TestEvaluationFuzzy
T-06-4 test negative evaluation TestEvaluationFuzzy
T-06-5 test positive evaluation TestEvaluationBayes
T-06-6 test negative evaluation TestEvaluationBayes

T-07-1 test successful default TestExecution
T-07-2 test failed default evaluation TestExecution
T-07-3 test failed default execution TestExecution
T-07-4 test successful specified TestExecution
T-07-5 test failed specified evaluation TestExecution
T-07-6 test failed specified execution TestExecution
T-07-7 test successful default TestExecutionFuzzy
T-07-8 test failed default evaluation TestExecutionFuzzy
T-07-9 test failed default execution TestExecutionFuzzy
T-07-10 test successful specified TestExecutionFuzzy
T-07-11 test failed specified evaluation TestExecutionFuzzy
T-07-12 test failed specified execution TestExecutionFuzzy
T-07-13 test successful default TestExecutionBayes
T-07-14 test failed default evaluation TestExecutionBayes
T-07-15 test failed default execution TestExecutionBayes
T-07-16 test successful specified TestExecutionBayes
T-07-17 test failed specified evaluation TestExecutionBayes
T-07-18 test failed specified execution TestExecutionBayes

Table 6: Test suite

Besides the new test cases, we have implemented unitary tests for the different Builder implementations we have
for each model. These unitary tests, along with the test cases, can be found in https://github.com/NEASQC/qrbs/tree/
main/tests.

© NEASQC Consortium Partners. All rights reserved. Page 16 of 31

https://github.com/NEASQC/qrbs/tree/main/tests
https://github.com/NEASQC/qrbs/tree/main/tests

D6.14 Final QRBS software and IDC application (1.0- Final)

5.2. Testing metrics

We present the coverage report for the QRBS software library and the IDC application at this point. More specif-
ically, we cover the modelling of RBS, their respectives quantum circuits as we have one per model presented (see
Section 3.2), and the results obtained after running those circuits with the myQLM simulator. We keep following the
testing methodology that has been used during the development of the software projects (Moret-Bonillo et al., 2023).

Module statements missing excluded branches partial coverage
neasqc qrbs\knowledge rep.py 329 8 45 69 6 96%
neasqc qrbs\qrbs.py 124 0 12 55 1 99%
Total 455 8 57 124 7 97%

Table 7: Coverage report for QRBS software library

Module statements missing excluded branches partial coverage
idc.py 150 3 0 4 0 98%
Total 150 3 0 4 0 98%

Table 8: Coverage report for IDC application

On both software projects we have a total coverage ≥ 95%, which is more than acceptable (most of the percentage
missing belongs to fail-safe statements). These metrics are nothing but the result of the strong methodology we have
followed throughout the development of the project, from the hierarchy for tracebility to the testing methodology.

© NEASQC Consortium Partners. All rights reserved. Page 17 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

6. Conclusions

In this deliverable we have presented the final version of the QRBS software library. This version provides the func-
tionalities that were established as requirements at the first stages of this use case, completing the development process
up to this point. On top of that, three models have been developed by taking inspiration from classical models to im-
plement QRBS.

While we call this version final, we do not discard the possibility of adding more features in the future, as user get to
know this tool and experiment with it, developing new ideas on their own.

The user-first approach has been supported by the traceability effort that has accompanied this work from the be-
ginning, along with the testing. As we saw, a couple of the use cases of the library had to be revisited, but the
documentation tracing all the process made this task easier to carry out.

Regarding the IDC application, we have revised the knowledge model that was presented in the previous deliverable
and implemented a web API to use it. We provide two endpoints for flexibility, depending on the machine that runs
the application, which we hope aids to the adaptation of this tool in already established workflows of IDC staging.

In summary, this report represents an important achievement in the work of this use case, providing the final version
of the QRBS software library and the implementation of the IDC application. The following deliverable will provide
the evaluation of the work carried out.

© NEASQC Consortium Partners. All rights reserved. Page 18 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

List of Acronyms

Term Definition
API Application Programming Interface
IDC Invasive Ductal Carcinoma
QRBS Quantum Rule-Based System
RBS Rule-Based System
UC Use Case

Table 9: Acronyms and Abbreviations

© NEASQC Consortium Partners. All rights reserved. Page 19 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

List of Figures

Figure 1.: Certainty factors’ uncertainty managers . 9
Figure 2.: Certainty factors’ operators . 9
Figure 3.: Fuzzy logic’s uncertainty managers . 10
Figure 4.: Fuzzy logic’s operators . 11
Figure 5.: Bayesian networks’ uncertainty managers . 11
Figure 6.: Bayesian networks’ operators . 12
Figure 7.: Snapshot of the web documentation’s landing page . 12

Figure 8.: Variables or symptoms that are considered in the knowledge model for IDC staging. 13

© NEASQC Consortium Partners. All rights reserved. Page 20 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

List of Tables

Table 1.: Specification of use case UC-06 . 7
Table 2.: Specification of use case UC-07 . 8

Table 3.: Invasive Ductal Carcinoma stages according with TNM classification system. 13
Table 4.: API specification for endpoint /idc . 14
Table 5.: API specification for endpoint /idc-deep . 15

Table 6.: Test suite . 16
Table 7.: Coverage report for QRBS software library . 17
Table 8.: Coverage report for IDC application . 17

Table 9.: Acronyms and Abbreviations . 19

© NEASQC Consortium Partners. All rights reserved. Page 21 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

Bibliography

Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., Meyer, L., Gress,
D. M., Byrd, D. R., & Winchester, D. P. (2017). The eighth edition ajcc cancer staging manual: Continuing to
build a bridge from a population-based to a more “personalized” approach to cancer staging. CA: A Cancer
Journal for Clinicians, 67(2), 93–99. https://doi.org/10.3322/caac.21388

Borujeni, S. E., Nannapaneni, S., Nguyen, N. H., Behrman, E. C., & Steck, J. E. (2021). Quantum circuit representation
of bayesian networks. Expert Systems with Applications, 176, 114768. https://doi.org/https://doi.org/10.
1016/j.eswa.2021.114768

Giuliano, A. E., Edge, S. B., & Hortobagyi, G. N. (2018). Eighth edition of the ajcc cancer staging manual: Breast
cancer. Annals of Surgical Oncology, 25(7), 1783–1785. https://doi.org/10.1245/s10434-018-6486-6

Heckerman, D. (1986). Probabilistic interpretations for mycin’s certainty factors. In L. N. Kanal & J. F. Lemmer
(Eds.), Uncertainty in artificial intelligence (pp. 167–196, Vol. 4). North-Holland. https : / / doi . org /https :
//doi.org/10.1016/B978-0-444-70058-2.50017-6

Klement, E. P., Mesiar, R., & Pap, E. (2000). Triangular norms. Springer Netherlands. https://doi.org/10.1007/978-
94-015-9540-7

Kruchten, P. (2004). The rational unified process: An introduction. Addison-Wesley.
Moret-Bonillo, V., Gomez Tato, A., Magaz Romero, S., Mosqueira-Rey, E., & Alvarez-Estevez, D. (2022, October).

D6.9: Qrbs software specifications. https://doi.org/10.5281/zenodo.7299193
Moret-Bonillo, V., Gomez Tato, A., Magaz-Romero, S., Mosqueira-Rey, E., & Alvarez-Estevez, D. (2023, July). D6.11

Preliminary QRBS software and IDC application specification. https://doi.org/10.5281/zenodo.8108580
Moret-Bonillo, V., Mosqueira-Rey, E., & Magaz-Romero, S. (2021, December). D6.5 Quantum Rule-Based System

(QRBS) Requirement Analysis. https://doi.org/10.5281/zenodo.5949157
Moret-Bonillo, V., Mosqueira-Rey, E., Magaz-Romero, S., & Gómez-Tato, A. (2021). Quantum rule-based systems

(qrbs) models, architecture and formal specification (D6. 2). https://www.neasqc.eu/wp-content/uploads/
2021/05/NEASQC D6.2 QRBS-Models-Architecture-and-Formal-Specification-V1.5-Final.pdf

Russell, S., & Norvig, P. (2010). Artificial intelligence: A modern approach. Pearson Education, Inc.
Shortliffe, E. H., & Buchanan, B. G. (1975). A model of inexact reasoning in medicine. Mathematical Biosciences,

23(3), 351–379. https://doi.org/https://doi.org/10.1016/0025-5564(75)90047-4
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/doi.org/10.1016/S0019-

9958(65)90241-X

© NEASQC Consortium Partners. All rights reserved. Page 22 of 31

https://doi.org/10.3322/caac.21388
https://doi.org/https://doi.org/10.1016/j.eswa.2021.114768
https://doi.org/https://doi.org/10.1016/j.eswa.2021.114768
https://doi.org/10.1245/s10434-018-6486-6
https://doi.org/https://doi.org/10.1016/B978-0-444-70058-2.50017-6
https://doi.org/https://doi.org/10.1016/B978-0-444-70058-2.50017-6
https://doi.org/10.1007/978-94-015-9540-7
https://doi.org/10.1007/978-94-015-9540-7
https://doi.org/10.5281/zenodo.7299193
https://doi.org/10.5281/zenodo.8108580
https://doi.org/10.5281/zenodo.5949157
https://www.neasqc.eu/wp-content/uploads/2021/05/NEASQC_D6.2_QRBS-Models-Architecture-and-Formal-Specification-V1.5-Final.pdf
https://www.neasqc.eu/wp-content/uploads/2021/05/NEASQC_D6.2_QRBS-Models-Architecture-and-Formal-Specification-V1.5-Final.pdf
https://doi.org/https://doi.org/10.1016/0025-5564(75)90047-4
https://doi.org/doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/doi.org/10.1016/S0019-9958(65)90241-X

D6.14 Final QRBS software and IDC application (1.0- Final)

A. Achievements

This appendix presents the achievements that have been produced during the development of the project up to this
point with the work carried out.

A.1. Scientific material

A.1.1. Articles

• Uncertainty in Quantum Rule-Based Systems. Vicente Moret-Bonillo, Diego Alvarez-Estevez,
Isaac Fernandez-Varela, Archives of Clinical and Biomedical Research (Fortune Journals), 11/01/2021,
10.26502/acbr.50170149

• Quantum Computing for Dealing with Inaccurate Knowledge Related to the Certainty Factors Model. Vi-
cente Moret-Bonillo, Samuel Magaz-Romero and Eduardo Mosqueira-Rey, Mathematics (MDPI), 08/01/2022,
10.3390/math10020189

• Hybrid Classic-Quantum Computing for Staging of Invasive Ductal Carcinoma of Breast. Vicente
Moret-Bonillo, Eduardo Mosqueira-Rey, Samuel Magaz-Romero and Diego Alvarez-Estevez, 17/03/2023,
10.48550/arXiv.2303.10142

• Quantum Factory Method: A Software Engineering Approach to Deal with Incompatibilities in Quan-
tum Libraries. Samuel Magaz-Romero, Eduardo Mosqueira-Rey, Diego Alvarez-Estevez and Vicente
Moret-Bonillo, Proceedings of the ICCS - International Conference on Computational Science, 26/06/2023,
10.1007/978-3-031-36030-5 6

A.1.2. Poster presentations

• Quantum Rule-Based Systems: Managing Uncertain Information with Quantum Computing. Vicente
Moret-Bonillo, Eduardo Mosqueira-Rey, Samuel Magaz-Romero, Andrés Gómez-Tato and Daniele Musso,
EQTC 2021, 29/11-02/12/2023, Virtual Conference

• Quantum Factory Method: A Software Engineering Approach to Deal with Incompatibilities in Quan-
tum Libraries. Samuel Magaz-Romero, Eduardo Mosqueira-Rey, Diego Alvarez-Estevez and Vicente Moret-
Bonillo, ICCS 2023, 03-05/07/2023, Prague (Czech Republic)

A.1.3. Dissemination activities

• NEASQC webinar on QRBS. Media source

• EDF Scientific Rounds. Media source

• NEASQC in Corunna Innovate Summit (DataSpartan). Media source

• Teaching presentation of the course on “Nanoscience, Quantum Computing and Nanotechnology”. Media
source

A.2. Academical works

A.2.1. BSc theses

• Methodological study of quantum representation of fuzzy knowledge. Alejandro Mayorga Redondo,
30/06/2023, Computer Science

• Benchmarking of classical digital system, simulated quantum system and real quantum system. Miguel
Pérez Gómara, In progress, Computer Science

© NEASQC Consortium Partners. All rights reserved. Page 23 of 31

https://www.youtube.com/watch?v=ShgwYLfzdd0
https://www.youtube.com/watch?v=rncqcrL02uo
https://www.youtube.com/watch?v=o161nPymgoU
https://www.youtube.com/watch?v=tagJ3HrzVO4
https://www.youtube.com/watch?v=tagJ3HrzVO4

D6.14 Final QRBS software and IDC application (1.0- Final)

A.2.2. MSc theses

• Web application for quantum rule-based systems management. Samuel Magaz Romero, 22/09/2022, Soft-
ware Engineering

• Development of a knowledge based model for the staging of invasive ductal carcinoma. Romina Riveron
Martinez, 20/07/2023, Medicine

• Study and implementation of quantum bayesian networks. Alejandro Mayorga Redondo, In progress, Quan-
tum Computing

A.2.3. PhD theses

• Quantum treatment of classical uncertainty. Samuel Magaz Romero, In progress, Computer Science

© NEASQC Consortium Partners. All rights reserved. Page 24 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

B. QRBS software documentation

This appendix presents the software library documentation up to the point of development when this document is
published. The current version of the documentation can be found in https://neasqc.github.io/qrbs/neasqc qrbs.html.

B.1. Module knowledge rep

class neasqc qrbs.knowledge rep.Buildable Bases: ABC

Interface for knowledge elements that can be built into quantum routines.

abstract build(builder) → qat.lang.AQASM.QRoutine

class neasqc qrbs.knowledge rep.LeftHandSide Bases: Buildable

Interface for elements that can be part of the left hand side of a rule. This class is used to model the Composite
design pattern, acting as the Component interface.

build(builder) → qat.lang.AQASM.QRoutine

class neasqc qrbs.knowledge rep.Fact(attribute, value, precision=0.0) Bases: LeftHandSide

Class representing a Fact.

A Fact is the smallest unit of knowledge that can be represented. This class is used to model the Composite
design pattern, acting as the Leaf class.

attribute Attribute that the fact is representing.

Type: str

value Value of the attribute that the fact is representing.

Type: float

precision Precision of the fact; the certainty of the attribute having said value (0 if not specified). Must be in
range [0,1].

Type: float, optional

property precision

build(builder) → qat.lang.AQASM.QRoutine

class neasqc qrbs.knowledge rep.AndOperator(left child, right child) Bases: LeftHandSide

Class representing an AndOperator.

An AndOperator relates the statements of its children with an AND relationship. This class is used to model the
Composite design pattern, acting as (one of) the Composite class.

left child One of the children which is relating.

Type: LeftHandSide

right child One of the children which is relating.

Type: LeftHandSide

build(builder) → qat.lang.AQASM.QRoutine

class neasqc qrbs.knowledge rep.OrOperator(left child, right child) Bases: LeftHandSide

Class representing an OrOperator.

An OrOperator relates the statements of its children with an OR relationship. This class is used to model the
Composite design pattern, acting as (one of) the Composite class.

left child One of the children which is relating.

© NEASQC Consortium Partners. All rights reserved. Page 25 of 31

https://neasqc.github.io/qrbs/neasqc_qrbs.html

D6.14 Final QRBS software and IDC application (1.0- Final)

Type: LeftHandSide

right child One of the children which is relating.

Type: LeftHandSide

build(builder) → qat.lang.AQASM.QRoutine

class neasqc qrbs.knowledge rep.NotOperator(child) Bases: LeftHandSide

Class representing a NotOperator.

A NotOperator negates the statement of its child. This class is used to model the Composite design pattern,
acting as (one of) the Composite class.

child Child which statement is negating.

Type: LeftHandSide

build(builder) → qat.lang.AQASM.QRoutine

class neasqc qrbs.knowledge rep.Rule(left hand side, right hand side, certainty=0.0) Bases:
Buildable

Class representing a Rule.

A Rule which establishes a relationship (to some level of uncertainty) between a left hand side element and a
right hand side, which in this context is a Fact.

left hand side Left hand side element of the rule (also known as precedent).

Type: LeftHandSide

right hand side Right hand side element of the rule (also known as consequent).

Type: Fact

certainty Certainty of the relationship between precedent and consequent (0 if not specified). Must be in range
[0,1].

Type: float, optional

property certainty

build(builder) → qat.lang.AQASM.QRoutine

class neasqc qrbs.knowledge rep.KnowledgeIsland(rules) Bases: Buildable

Class representing a Knowledge Island.

A Knowledge Island is a set of rules that conform the inferential reasoning towards a hypothesis.

rules Set of rules that conform the knowledge island.

Type: List[]

build(builder) → qat.lang.AQASM.QRoutine

class neasqc qrbs.knowledge rep.Builder Bases: ABC

Interface for building the corresponding quantum routine from a Buildable element.

abstract static build fact(fact) → qat.lang.AQASM.QRoutine Builds the quantum routine of a fact.

Parameters: fact (Fact) – The Fact whose quantum routine is being built.

Returns: The corresponding quantum routine.

Return type: QRoutine

abstract static build and() → qat.lang.AQASM.QRoutine Builds the quantum routine of an and oper-
ator.

Returns: The corresponding quantum routine.

© NEASQC Consortium Partners. All rights reserved. Page 26 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

Return type: QRoutine

abstract static build or() → qat.lang.AQASM.QRoutine Builds the quantum routine of an or operator.

Returns: The corresponding quantum routine.

Return type: QRoutine

abstract static build not() → qat.lang.AQASM.QRoutine Builds the quantum routine of a not operator.

Returns: The corresponding quantum routine.

Return type: QRoutine

abstract static build rule(rule) → qat.lang.AQASM.QRoutine Builds the quantum routine of a rule.

Parameters: rule (Rule) – The Rule whose quantum routine is being built.

Returns: The corresponding quantum routine.

Return type: QRoutine

abstract static build island(island) → Tuple[qat.lang.AQASM.QRoutine, Dict[, int]] Builds the
quantum routine of a knowledge island.

Parameters: island (KnowledgeIsland) – The KnowledgeIsland whose quantum routine is being
built.

Returns: A tuple containing the corresponding quantum routine and the index of which qubit corre-
sponds to each LeftHandSide element.

Return type: Tuple[QRoutine, Dict[LeftHandSide, int]]

class neasqc qrbs.knowledge rep.BuilderImpl Bases: Builder

Implementation of Builder interface.

M = ’M’

static build fact(fact) → qat.lang.AQASM.QRoutine Builds the quantum routine of a fact.

Parameters: fact (Fact) – The Fact whose quantum routine is being built.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build and() → qat.lang.AQASM.QRoutine Builds the quantum routine of an and operator.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build or() → qat.lang.AQASM.QRoutine Builds the quantum routine of an or operator.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build not() → qat.lang.AQASM.QRoutine Builds the quantum routine of a not operator.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build rule(rule) → qat.lang.AQASM.QRoutine Builds the quantum routine of a rule.

Parameters: rule (Rule) – The Rule whose quantum routine is being built.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build island(island) → Tuple[qat.lang.AQASM.QRoutine, Dict[, int]] Builds the quantum
routine of a knowledge island.

© NEASQC Consortium Partners. All rights reserved. Page 27 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

Parameters: island (KnowledgeIsland) – The KnowledgeIsland whose quantum routine is being
built.

Returns: A tuple containing the corresponding quantum routine and the index of which qubit corre-
sponds to each LeftHandSide element.

Return type: Tuple[QRoutine, Dict[LeftHandSide, int]]

class neasqc qrbs.knowledge rep.BuilderFuzzy Bases: Builder

Implementation of Builder interface for the fuzzy logic model.

static build fact(fact) → qat.lang.AQASM.QRoutine Builds the quantum routine of a fact.

Parameters: fact (Fact) – The Fact whose quantum routine is being built.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build and() → qat.lang.AQASM.QRoutine Builds the quantum routine of an and operator.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build or() → qat.lang.AQASM.QRoutine Builds the quantum routine of an or operator.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build not() → qat.lang.AQASM.QRoutine Builds the quantum routine of a not operator.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build rule(rule) → qat.lang.AQASM.QRoutine Builds the quantum routine of a rule.

Parameters: rule (Rule) – The Rule whose quantum routine is being built.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build island(island) → Tuple[qat.lang.AQASM.QRoutine, Dict[, int]] Builds the quantum
routine of a knowledge island.

Parameters: island (KnowledgeIsland) – The KnowledgeIsland whose quantum routine is being
built.

Returns: A tuple containing the corresponding quantum routine and the index of which qubit corre-
sponds to each LeftHandSide element.

Return type: Tuple[QRoutine, Dict[LeftHandSide, int]]

class neasqc qrbs.knowledge rep.BuilderBayes Bases: Builder

Implementation of Builder interface for the bayesian model.

CRY = ’CRY’

static build fact(fact) → qat.lang.AQASM.QRoutine Builds the quantum routine of a fact.

Parameters: fact (Fact) – The Fact whose quantum routine is being built.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build and() → qat.lang.AQASM.QRoutine Builds the quantum routine of an and operator.

Returns: The corresponding quantum routine.

© NEASQC Consortium Partners. All rights reserved. Page 28 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

Return type: QRoutine

static build or() → qat.lang.AQASM.QRoutine Builds the quantum routine of an or operator.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build not() → qat.lang.AQASM.QRoutine Builds the quantum routine of a not operator.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build rule(rule) → qat.lang.AQASM.QRoutine Builds the quantum routine of a rule.

Parameters: rule (Rule) – The Rule whose quantum routine is being built.

Returns: The corresponding quantum routine.

Return type: QRoutine

static build island(island) → Tuple[qat.lang.AQASM.QRoutine, Dict[, int]] Builds the quantum
routine of a knowledge island.

Parameters: island (KnowledgeIsland) – The KnowledgeIsland whose quantum routine is being
built.

Returns: A tuple containing the corresponding quantum routine and the index of which qubit corre-
sponds to each LeftHandSide element.

Return type: Tuple[QRoutine, Dict[LeftHandSide, int]]

B.2. Module qrbs

class neasqc qrbs.qrbs.WorkingMemory(facts=None) Bases: object

Class representing a Working Memory.

A Working Memory is an element of a Rule-Based System that manages its facts, keeping trace of their state.

facts List of facts asserted into the system.

Type: List[Fact], optional

assert fact(fact) → Fact Asserts a fact into the memory.

Parameters: fact (Fact) – The fact to be asserted.

Returns: The asserted fact.

Return type: Fact

retract fact(fact) → None Retracts a fact from the memory.

Parameters: fact (Fact) – The fact to be retracted.

class neasqc qrbs.qrbs.InferenceEngine(rules=None, islands=None) Bases: object

Class representing an Inference Engine.

An Inference Engine is an element of a Rule-Based System that manages its rules and knowledge islands,
providing the tools to evaluate them in order.

rules List of rules established for the system.

Type: List[Rule], optional

islands List of knowledge island established for the system.

Type: List[KnowledgeIsland], optional

assert rule(rule) → Rule Asserts a rule into the engine.

© NEASQC Consortium Partners. All rights reserved. Page 29 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

Parameters: rule (Rule) – The rule to be asserted.

Returns: The asserted rule.

Return type: Rule

retract rule(rule) → None Retracts a rule from the engine.

Parameters: rule (Rule) – The rule to be retracted.

Raises: AttributeError – In case the rule to be retracted is part of a knowledge island.

assert island(island) → KnowledgeIsland Asserts a knowledge island into the engine.

Parameters: island (KnowledgeIsland) – The knowledge island to be asserted.

Returns: The asserted knowledge island.

Return type: KnowledgeIsland

Raises: AttributeError – In case the rules that compose the knowledge island are not asserted in the
system’s inference engine or the rules that compose the knowledge island are not chained.

retract island(island) → None Retracts a knowledge island from the engine.

Parameters: island (KnowledgeIsland) – The knowledge island to be retracted.

class neasqc qrbs.qrbs.QRBS Bases: object

Class representing a Quantum Rule-Based System.

A Quantum Rule-Based System (QRBS) is a Rule-Based System implemented in a quantum computer, taking
advatange of some of its capabilities, like quantum superposition, to represent certain aspects such as precision
and certainty.

memory The Working Memory of the system.

Type: WorkingMemory

engine The Inference Engine of the system.

Type: InferenceEngine

assert fact(attribute, value, precision=0.0) → Fact Creates a fact and asserts it into the system.

Parameters:

• attribute (str) – The attribute of the fact.

• value (float) – The value of the fact.

• precision (float, optional) – The precision of the fact.

Returns: The asserted fact.

Return type: Fact

retract fact(fact) → None Retracts a fact from the system.

Parameters: fact (Fact) – The fact to be retracted.

assert rule(lefthandside, righthandside, certainty=0.0) → Rule Creates a rule and asserts it into the
system.

Parameters:

• lefthandside (LeftHandSide) – The left hand side of the rule.

• righthandside (Fact) – The right hand side of the rule.

• certainty (float, optional) – The certainty of the rule.

Returns: The asserted rule.

Return type: Rule

© NEASQC Consortium Partners. All rights reserved. Page 30 of 31

D6.14 Final QRBS software and IDC application (1.0- Final)

retract rule(rule) → None Retracts a rule from the system.

Parameters: rule (Rule) – The rule to be retracted.

assert island(rules) → KnowledgeIsland Creates a knowledge island and asserts it into the system.

Parameters: rules (List[Rule]) – The rules of the knowledge island.

Returns: The asserted knowledge island.

Return type: KnowledgeIsland

retract island(island) → None Retracts a knowledge island from the system.

Parameters: island (KnowledgeIsland) – The knowledge island to be retracted.

class neasqc qrbs.qrbs.QPU Bases: ABC

Interface defining the structure to implement Quantum Processing Units (QPU).

abstract static evaluate(qrbs) → bool Evaluates whether a QRBS can be executed on this QPU.

Parameters: qrbs (QRBS) – The QRBS to be evaluated.

abstract static execute(qrbs) → None Executes the QRBS on this QPU.

Parameters: qrbs (QRBS) – The QRBS to be executed.

class neasqc qrbs.qrbs.MyQlmQPU Bases: QPU

myQLM implementation of a Quantum Processing Unit (QPU).

MAX ARITY = 20

BUILDERS = {
’cf’:<class’neasqc qrbs.knowledge rep.BuilderImpl’>,
’bayes’: <class’neasqc qrbs.knowledge rep.BuilderBayes’>,
’fuzzy’:<class’neasqc qrbs.knowledge rep.BuilderFuzzy’>

}

static evaluate(qrbs, eval islands=None, model=’cf’) → bool Evaluates whether a QRBS can be exe-
cuted on this QPU.

Parameters:

• qrbs (QRBS) – The QRBS to be evaluated.

• eval islands (List[KnowledgeIsland], optional) – A list of specific KnowledgeIsland to be
evaluated.

• model (str, optional) – The code of the model indicated.

Raises: ValueError – In case a specified knowledge island is not part of the QRBS or an evaluated
knowledge island requires more qubits than supported.

static execute(qrbs, islands=None, model=’cf’) → None Executes the QRBS on this QPU.

Parameters:

• qrbs (QRBS) – The QRBS to be executed.

• islands (List[KnowledgeIsland], optional) – A list of specific KnowledgeIsland to be exe-
cuted.

• model (str, optional) – The code of the model indicated.

© NEASQC Consortium Partners. All rights reserved. Page 31 of 31

	1 Executive Summary
	2 Context
	2.1 Project
	2.2 Work package

	3 Final QRBS Software
	3.1 Introduction
	3.1.1 Revised use cases

	3.2 Models
	3.2.1 Certainty factors
	3.2.2 Fuzzy logic
	3.2.3 Bayesian networks

	3.3 Code documentation

	4 IDC application
	4.1 Introduction
	4.2 Specification
	4.2.1 API implementation
	4.2.2 API documentation

	4.3 Experiments and results

	5 Testing
	5.1 Traceability with use cases
	5.2 Testing metrics

	6 Conclusions
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography
	A Achievements
	A.1 Scientific material
	A.1.1 Articles
	A.1.2 Poster presentations
	A.1.3 Dissemination activities

	A.2 Academical works
	A.2.1 BSc theses
	A.2.2 MSc theses
	A.2.3 PhD theses

	B QRBS software documentation
	B.1 Module knowledge_rep
	B.2 Module qrbs

