
NExt ApplicationS of Quantum Computing

D3.5: The NEASQC benchmark suite
(TNBS)

Document Properties

Contract Number 951821

Contractual Deadline 31/10/2023

Dissemination Level Public

Nature Report

Editors Diego Andrade, CITIC-UDC
Andrés Gómez, CESGA

Authors Diego Andrade, CITIC-UDC
Gonzalo Ferro, CESGA
Andrés Gómez, CESGA

Reviewers Cyril Allouche, EVIDEN
Arnaud Gazda, EVIDEN

Date 27/10/2023

Keywords Benchmark, Quantum computers, kernels

Status Submitted

Release 1.0

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

History of Changes

Release Date Author, Organisation Description of Changes

0.1 01/02/2023 Gonzalo Ferro, CESGA;
Andrés Gómez, CESGA;
Diego Andrade, CITIC-
UDC

First version

0.2 08/10/2023 Andrés Gómez, CESGA;
Diego Andrade, CITIC-
UDC

Including web site and formatting

0.3 25/10/2023 Gonzalo Ferro, CESGA Fixing the naming according to the Glossary of
deliverable 3.5

1.0 26/10/2023 Gonzalo Ferro, CESGA;
Diego Andrade, CITIC-
UDC

Fixing comments of the reviewers

© 2023 NEASQC Consortium Partners. All rights reserved. Page 2 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

Table of Contents

1. Executive Summary 4

2. Introduction 5
2.1. Structure of the TNBS . 5
2.2. TNBS Glossary . 5

3. General execution rules 7

4. Benchmark results generation 8

5. Benchmark results submission 9

6. List of benchmarks 10

7. The NEASQC benchmark suite repository. 11
7.1. Design of the architecture and main components . 11
7.2. Web interface organization . 12

7.2.1. Report visualization and comparison . 12
7.3. Initial implementation and first steps . 13

8. Conclusions 17

List of Acronyms 18

List of Figures 19

List of Tables 20

List of Listings 21

Bibliography 22

Appendices 22

A. TNBS JSON schema 23

B. Templates for NEASQC benchmark 30
B.1. my benchmark execution.py . 30

B.1.1. KERNEL BENCHMARK class . 30
B.1.2. build iterator . 32
B.1.3. run code . 32
B.1.4. compute samples . 32
B.1.5. summarize results . 33

B.2. Generating the benchmark report . 33
B.2.1. my environment info.py . 33
B.2.2. my benchmark info.py . 34
B.2.3. my benchmark summary.py . 34
B.2.4. neasqc benchmark.py . 34

C. T01: Benchmark for Probability Loading Algorithms document 36

D. T02: Benchmark for Amplitude Estimation Algorithms 67

E. T03: Benchmark for Phase Estimation Algorithms 108

F. T04: Benchmark for Parent Hamiltonian 145

© 2023 NEASQC Consortium Partners. All rights reserved. Page 3 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

1.Executive Summary

This document describes The NEASQC Benchmark Suite (TNBS). The objective of the document is to define the
benchmarks that compose it, and the methodology for executing them and reporting their results. It includes also a
short description of the TNBS website and the associated repository of submitted benchmark results.

TNBS has been designed to take into account four main objectives:

• Objective 1: the test cases which compose the suite must help computer architects, programmers and researchers
to design future quantum computers, taking into account the variability in the performance introduced by the
different components of the stack.

• Objective 2: the test cases must help to understand the evolution of quantum computers (more qubits, better
topologies) or to improve the current one (reduction of noise, better compilers, etc.).

• Objective 3: the test cases must allow to compare the performance of different platforms. Currently, there are
many different proposals (as transmons, ions, neutral atoms, etc.) which use different one- and two-qubit gates.
The benchmarks must allow users and researchers to compare the performance of different platforms, and find
their bottlenecks. For users, they should allow them to find the best platforms for their application.

• Objective 4: the test cases should consider other metrics which may be important to understand the quantum
computing advantage (such as energy consumption, throughput or better scalability).

To achieve these objectives, TNBS has found representative kernels among the NEASQC uses cases to define a set of
well-defined tests. Currently, TNBS is composed of four cases, each of them with:

1. A full and detailed documentation of the suite and of each microbenchmark. This documentation will include
the definition of the microbenchmarks, the rules for executing them, the methods for reporting the results, and
the methods for evaluating the final results.

2. An Eviden myQLM 1 reference implementation, that allows the analysis of their complete results.

This document includes sections for describing the general rules for executing the benchmarks, the methods for gener-
ating the results, the process to submit them, the list of benchmarks that compose the Suite, and a brief summary of the
capabilities of the repository. As appendices, the JSON schema for reporting the results, the template for defining new
cases, and the four documents that describe the current benchmarks are included. All the cases included a reference
version based on Eviden myQLM framework.

In the future, the TNBS will increase the number of cases, from NEASQC use cases or from external proposals. So,
this document will be a live document, with continuous improvements.

1See myQLM quantum software stack

© 2023 NEASQC Consortium Partners. All rights reserved. Page 4 of 178

https://myqlm.github.io/

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

2.Introduction

The NEASQC Benchmark Suite (TNBS) is composed of several microbenchmarks extracted from the use cases of
the NEASQC project, covering several domains where Quantum Computing (QC) has been proven to be useful. The
general objectives of the suite are:

• Objective 1: the suite must help computer architects, programmers and researchers to design future quantum
computers, taking into account the variability in their performance introduced by the different components of
the stack.

• Objective 2: the suite must help to guide the evolution of quantum computers (more qubits, better topologies)
or to improve the current platforms (reduction of noise, better compilers, etc.).

• Objective 3: the suite must allow a comparison of the performance of different platforms. Currently, there
are many different proposals for a physical implementation (as transmons, ions, neutral atoms, etc.) that use
different one- and two-qubit gates. The suite must allow users and researchers to compare the performance of
different platforms, and find their bottlenecks. For users, it should allow them to find the best platforms for their
applications.

• Objective 4: The suite must consider metrics important to understand the quantum computing advantage (such
as energy consumption, throughput or scalability).

The NEASQC benchmark suite does not address the topic of “quantum supremacy”, i.e., to find an algorithm that can
be solved on a quantum computer but it is difficult or almost impossible to solve in a classical computer in a reasonable
time.

The microbenchmarks that compose the suite meet the following characteristics:

• They are based on a quantum routine or kernel that is common to several use cases and representative of the
needs of other algorithms of the same family.

• They scale with the number of qubits up to a reasonable number. Certainly, many of the benchmarks are limited
by the classical capacity for pre-processing and post-processing information.

• They are defined at high level, i.e., they must be agnostic of the quantum computer architecture, programming
language, etc.

2.1. Structure of the TNBS

As stated before, TNBS consists of a set of microbenchmarks (similar to the concept of synthetic benchmarks/kernels
in classical computer benchmarking). It is organized into two categories: general benchmarks (such as Quantum
Fourier Transform) which can be common to several fields and specific ones (such as the execution of one step of a
Variational algorithm).

Taking into account this high-level structure, TNBS is composed of:

• A full and detailed general documentation of the suite (this document) and a separate document for each mi-
crobenchmark. This documentation includes the definition of the microbenchmarks, the rules for executing
them, the methods for reporting the results and the methods for evaluating the final results.

• A compatible Eviden myQLM reference implementation.

• A web platform where every user of the suite can submit their own results to cross-compare the results on
different platforms.

2.2. TNBS Glossary

The next terminology has to be used for defining TNBS:

• Benchmark: it is each one of the use cases in which the TNBS is divided. Each benchmark is composed of a
description of the Kernel and its corresponding Benchmark Test Case.

© 2023 NEASQC Consortium Partners. All rights reserved. Page 5 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

• Kernel: it is a core quantum subroutine or step which may be implemented using different procedures or
algorithmic approaches. Because of this, a Kernel is described using a high-level mathematical or procedural
definition. Examples are the Quantum Fourier Transformation, the loading of an initial quantum state in a
quantum circuit, etc.

• Benchmark Test Case (BTC): it is a particular problem that involves the execution of the Kernel. The output
of this BTC must be verifiable analytically or through a classical simulation. The BTC is used for evaluating the
performance of a Quantum platform that executes the Kernel. For example, the loading of a specific statistical
distribution into a quantum circuit (BTC) is used to evaluate the performance of a platform for loading an initial
quantum state in a quantum circuit (Kernel).

© 2023 NEASQC Consortium Partners. All rights reserved. Page 6 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

3.General execution rules

The rules for executing the cases include a set of good practices, such as:

• It is forbidden to make any specific improvement in the compilers, schedulers or other modules of the stack
defined ad-hoc for the Benchmark Test Cases. Ad-hoc improvements that operate at the Kernel level are
perfectly fine if they do not affect the generality of the Kernel but, addressing the BTC using any kind of
shortcut or ad-hoc solution would be considered cheating.

• The precision of the Floating Point Numbers in the classical part is double-precision (64 bits)

In addition, the protocol to execute the benchmarks follows a set of rules and specifications:

• The minimum and maximum number of qubits supported by the benchmark.

• The number of shots to be used. These numbers can depend on the number of qubits.

• The number of repetitions of the case or a rule to calculate them. Because there is some uncertainty in the
metrics to use, the results must be reported with errors. This means that a certain number of repetitions could
be needed.

• If the test is executed in a loop (as could be the number of qubits or number of steps or number of layers in a
Quantum Machine Learning algorithm), the point where the benchmark must be early stopped. For example,
for failing the verification of results.

© 2023 NEASQC Consortium Partners. All rights reserved. Page 7 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

4.Benchmark results generation

Each Benchmark must have a well-documented execution procedure. This procedure must specify the set of number
of qubits values to be tested. For evaluating a platform using a determined Benchmark, for a fixed number of qubits,
two types of metrics will be used:

• A common metric across all the Benchmarks of the Suite: the elapsed time, which is the time that the platform
needs to execute the Benchmark.

• One or several Benchmark-dependent metrics to verify the output. These verification metrics must be defined
for each Benchmark inside its corresponding documentation.

To have a statistical significance, for each fixed number of qubits, the Benchmark should be executed a fixed number
of repetitions, M , that is computed as follows:

1. The Benchmark should be executed 10 times.

2. The mean elapsed time (µT) and its corresponding standard deviation (σT) must be computed. Then the number
of repetitions for having a relative error in the elapsed time of 5 %, rT = 0.05, with a confidence level of 95 %,
α = 0.95, (MT) must be computed following equation (4.1), where Z1−α

2
is the percentile for the desired α

MT =

(
σTZ1− 1

2

rµT

)2

(4.1)

3. For any verification metric, m, its standard deviation (σm) should be computed. Then the number of repetitions
for having a desired absolute error (ϵm), which will depend on the Benchmark, with a confidence level of 95%,
α = 0.95, (Mm) must be computed following equation (4.2), where Z1−α

2
is the percentile for the desired α.

Depending on the Benchmark the desired error can be a relative one, so in this case the mean of the metric
(µm) should be computed too. In any case, this should be explicitly described in the corresponding document.

Mm =

(
σTZ1− 1

2

ϵm

)2

(4.2)

4. The number of repetitions, then, will be equal to M = max (MT ,Mm)

With this procedure, it can be guaranteed that the returned elapsed time will have a relative error lower than 5% with
a confidence level of 95%. Additionally, any particular metric will have an absolute error ϵm with a confidence level
of 95%.

The elapsed time can be measured separately for the classical and quantum parts of the Benchmark.

The procedure to execute the Benchmark will be as follows:

1. The algorithm is executed M times, measuring the total elapsed time for each execution.

• The time measurement can be performed separately for the classical and the quantum parts.

2. The average and the standard deviation of the elapsed time should be calculated.

3. The average and the standard deviation of the different verification metrics should be calculated too.

© 2023 NEASQC Consortium Partners. All rights reserved. Page 8 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

5.Benchmark results submission

The results of each Benchmark must be reported in a separate JSON format file. The scheme of this JSON file is
included as Appendix to this document. This file has two parts: one devoted to the description of the target platform,
and another to the description of the specific results of the cases. The information to include in the file is:

• Name or id of the Benchmark.

• Start timestamp of the execution of this Benchmark following RFC 3339.

• End timestamp of the execution of this Benchmark following the same RFC.

• The programming language used for its implementation.

• Name of the provider of the programming language.

• List of APIs used by the Benchmark, including their name, version, and supplier.

• Ordered list of steps for the transpilation of QPU code.

• Ordered list of the steps for classical compilation.

• Time routine used for measuring execution time.

• Detailed report of the results. It must include, for each number of qubits tested:

– The used placement, list of QPUs used (the benchmark allows to use of more than one QPU for executing
it).

– Total elapsed time in seconds and its sigma.

– Total time for executing the quantum algorithm in seconds and its sigma.

– Total time for executing the classical part of the algorithm in seconds and its sigma.

– Information about additional metrics for the case.

During the execution of the case, other outputs can be included in external files or standard output. However, it is
recommended that this information is placed out of the measuring loop, so it will not interfere with the measurement
of the elapsed times. Any case that does not pass the verification should not be included in the output. The main idea
of this JSON file is to simplify the reporting of the results, both to upload the data to a common data repository and to
generate a printable report.

© 2023 NEASQC Consortium Partners. All rights reserved. Page 9 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

6.List of benchmarks

The current list of Benchmark that compose the Suite are

• T01: Benchmark for Probability Loading Algorithms (Annex C). This Benchmark addresses one of the current
main problems of Quantum Computing: how to load classical data into the amplitudes. Extracted from the
WP5, it is important for many different quantum algorithms.

• T02: Benchmark for Amplitude Estimation Algorithms (Annex D). Amplitude Estimation algorithms are used
as a technique to accelerate some results. It has been defined from the needs of WP5.

• T03: Benchmark for Phase Estimation Algorithms (Annex E). Phase Estimation is a key algorithm in Quantum
Computing that is used widely. Concretely, it is used in some possible solutions of the Use Case 5 from WP5.

• T04: Benchmark for Parent Hamiltonian (Annex F). Variational algorithms, especially Variation Quantum
Eigensolver, are proposed tools to get good results from the current noisy quantum computers. However, their
results depend on the selected ansatz and used optimizer. This Benchmark tests the quality of the quantum
computers and libraries to execute typical ansatzes used in WP4, without depending on the optimizer.

More actualized information about the benchmarks can be obtained from:

• Online documentation: https://neasqc.github.io/TNBS/tnbs.html

• Reference Software: https://github.com/NEASQC/WP3 Benchmark

© 2023 NEASQC Consortium Partners. All rights reserved. Page 10 of 178

https://neasqc.github.io/TNBS/tnbs.html
https://github.com/NEASQC/WP3_Benchmark

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

7.The NEASQC benchmark suite repository.

The Quantum Computing Benchmark Repository (QCBencRepo) gives support to the collection and centralized stor-
age of the results generated by the TNBS suite. It stores the results reported for different Quantum Computing (QC)
platforms (Quantum Processing Units, QPUs) by different organizations. We are commenting separately on the main
principles applied to its design, at the architectural level, the design of the web interface of the repository, the results
report visualization, and a discussion on the initial release.

7.1. Design of the architecture and main components

The repository will be composed of a backend exposed through a REST API that serves as an interface between web
and Python clients, and the databases where the information is stored. As the benchmark suite generates the reports
as JSON files, the database system will be a relational (SQL) database where the JSON files will be preserved as
they were reported, and linked to the appropriate records of the database. Figure 1 shows the general architecture of
the system. The web front end is implemented using a Javascript-responsive framework (NextJS, https://nextjs.org),
complemented with a visual library of components (NextUI, https://nextui.org). The D3.js (https://d3js.org) library
is used for the creation of data visualizations. All of them are well-established open-source projects with strong
supporting communities. The backend is implemented using the Headless CMS framework (Strapi, https://strapi.
io), which provides: the database system, the REST API, and an admin panel that can be used by the repository
administrators and the reporting organizations.

Figure 1: General architecture of the repository system

The reporting of the benchmark results will be done securely through the Strapi admin panel or directly through the
REST API. The REST API report uses an auth key which is associated with each reporting organization and that
ensures that the report is submitted by that organization. The REST API has also several public endpoints that can
be accessed by third-party websites or tools to access benchmarking reports that have been published by different
organizations. The user auth system is required to allow reporting organizations to securely access our repository and
report verified results. Figure 2 shows the SQL database diagram and the integration of the JSON files reported.

Figure 2: Database schema

© 2023 NEASQC Consortium Partners. All rights reserved. Page 11 of 178

https://nextjs.org
https://nextui.org
https://d3js.org
https://strapi.io
https://strapi.io

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

7.2. Web interface organization

The web interface is divided into two parts: the repository front end and the admin panel. The admin panel can be used
by organizations to create new Platforms and new Reports (reports) on these Platforms for the different Benchmark-
Cases. The reporting form allows to add manually the JSON file with the output of the benchmark execution.

The design of the web interface is discussed here. The homepage of the repository contains a link to a page with the
basic information of the benchmark suite: the philosophy behind it, the benchmarks that compose it, the procedure to
execute it in a platform, and the method to report the results. In this initial release, the results section contains only a
sample of the results. In the future, it will allow us to consult and compare the results provided by different reporting
organizations that have been made public. A user will be able to visualize the existing benchmark reports submitted
by the community. It will also enable the comparison of the reports from different platforms.

Figure 3: Home page of the web front-end

7.2.1. Report visualization and comparison

Now, we must discuss in detail the best way to inspect visually individual reports and comparisons between two ones.
For this, we must understand first which are the most important qualitative and quantitative results are contained in a
report.

• Execution time of the benchmark: it is the wall time to execute each benchmark, and is normally decomposed in
classical computing time and quantum computing time. As we will perform several executions per benchmark,
we must report the average time, the maximum, the minimum, and the standard deviation. Figure 4 represents a
possible illustration of this kind of result using a box plot.

• For the platform, the number of Qubits available, and the types of gates available. The gates are classified as
single, entanglement, and global entanglement gates.

• Each benchmark can define several additional ad-hoc metrics to cover benchmark-dependent metrics, such as
those related to measuring the accuracy of the output of the computation. The comparison of several of these
ad-hoc metrics, and maybe also of the execution times, can be done using a radial chart. Figure 4 shows an
example of this.

The boxplots for different metrics are already included in the sample results included in the initial release of the
repository.

© 2023 NEASQC Consortium Partners. All rights reserved. Page 12 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

Figure 4: Sample boxplot to visualize timing results for a benchmark.

Figure 5: Radial chart as a condensed form of comparison between two platforms across several metrics

7.3. Initial implementation and first steps

The backend is based on Strapi v4 Headless CMS which enables the definition and access through a REST API to
the backend database. Strapi is an open-source project with a great supporting community and it enables a secure
and high-quality implementation of many of the features required for the backend of the repository. It is also flexible,
adaptable, and extendable enough to not constrain future extensions and refinements of the backend.

The database of the backend is composed of several data entities that are defined formally by the previously discussed
SQL database schema:

• Benchmark-Cases

• Users

– Roles. The expected roles are:

* Repository-Administrator: It has full access to everything. ©item Organization-Administrator: It has
full access to the elements of an organization (Platforms, Reports, and Users).

• Organization (linked to a User with the role Organization-Administrator)

© 2023 NEASQC Consortium Partners. All rights reserved. Page 13 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

• Platforms (linked to Organizations)

• Reports (linked to both an Organization and a Platform)

The Strapi admin panel of the backend allows access to CRUD (Create Read Update Delete) operations to users
assigned to different roles. For the users with the Organization-Administrator role, this backend access is restricted just
to some data entities (Report, Platform, Organization), and only to the individual records created by that organization.
Figure 6 contains a screenshot of the backend login page. Figure 7 contains a screenshot of the report creation form.

Figure 6: TNBS Repository backend login page

Figure 7: Report creation form

In the next months, the access to the backend to report results by organizations will be done through a closed beta.
There will be a form on the front end for organizations to express interest in participating in the closed beta. The
reporting will be done initially by uploading the generated JSON to the report form. In the future, the reporting will
be able to be done directly through the Strapi API REST using authenticated requests.

The public front end of the repository is based on the Nextjs Javascript Framework and the NextUI visual components
library. The use of these tools seeks to ensure a good visual quality that does not undermine the confidence in the
quality of the suite. The initial release of the front end will contain information to disseminate the suite among the
Quantum Computing Community, specifically:

© 2023 NEASQC Consortium Partners. All rights reserved. Page 14 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

Figure 8: Sample with the information of one of the benchmarks of the suite

Figure 9: Sample result

• A description of the philosophy behind the benchmark suite.

• A description of the benchmarks defined up to this day. Check Figure 8 to see a sample of the way the infor-
mation of one of the benchmarks is presented in the current website, including a link to the pdf with the official
documentation.

• The official general documentation of the suite (in pdf), and the official individual documents for each bench-
mark case defined up to this day.

• A link to the GitHub repository containing the reference implementations of the benchmarks using Eviden
myQLM library.

• Several samples of the visualization of the output reports generated by our reference implementation in an
emulator. Check one sample of this in the screenshot of Figure 9.

The main reason to start the repository with a closed beta model is that, so far, all our results with the benchmarks
are based on emulation not in real hardware, and given that the benchmark definition is mathematical or procedural,
and the reference implementation is only provided in one QC framework (Eviden myQLM library), it is very unlikely
that we receive reports from many organizations in the first year of the benchmark suite. A completely open reporting
model could populate the repository with bogus or fake results and irremediably undermine the reputation of the suite.

Regarding, showing a sample of results but not a real results section. We do have a single report on real hardware yet,
so there is no point in presenting an empty results section in the initial release of the repository website, as this could
also undermine its reputation. The presentation of sample results based on emulation of QC hardware is a good way
to present to the community what to expect about the benchmark results presentation.

Our efforts in the next months must be focused on:

• Using the front end to disseminate the benchmark suite among the QC community.

• Getting our first reporters for the closed beta.

• Refine the way results are presented and compared.

© 2023 NEASQC Consortium Partners. All rights reserved. Page 15 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

• Refine to improve different aspects of the repository and the benchmark suite identified from our relationship
with the beta reporters.

© 2023 NEASQC Consortium Partners. All rights reserved. Page 16 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

8.Conclusions

The TNBS is a benchmark suite that targets quantum platforms. The Benchmarks included in this suite belong
to common processes performed in Quantum platforms by the NEASQC use cases. Currently, four Benchmarks
are included, but they will be expanded soon. The Benchmarks should scale with the number of Qubits which
makes them resilient to the upcoming evolution of this technology. Also, they are self-verifiable which allows us to
check the correctness of the output in a reasonable time. They contemplate the existence of hybrid algorithms that
combine classical and quantum computations and future modular and parallel architectures. Overall, this suite can
help programmers to choose the most appropriate platforms, and architects to create better systems.

© 2023 NEASQC Consortium Partners. All rights reserved. Page 17 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

List of Acronyms

Term Definition
API Application Interface
CMS Content Management System
JSON JavaScript Object Notation
NEASQC NExt ApplicationS of Quantum Computing project
QC Quantum Computer/ing
QCBencRepoQuantum Computing Benchmark Repository
QLM Quantum Learning Machine
QPU Quantum Processing Unit
REST Representational state transfer
SQL Structured Query Language
TNBS The NEASQC Benchmark Suite

Table 1: Acronyms and Abbreviations

© 2023 NEASQC Consortium Partners. All rights reserved. Page 18 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

List of Figures

Figure 1.: General architecture of the repository system . 11
Figure 2.: Database schema . 11
Figure 3.: Home page of the web front-end . 12
Figure 4.: Sample boxplot to visualize timing results for a benchmark. 13
Figure 5.: Radial chart as a condensed form of comparison between two platforms across several metrics 13
Figure 6.: TNBS Repository backend login page . 14
Figure 7.: Report creation form . 14
Figure 8.: Sample with the information of one of the benchmarks of the suite 15
Figure 9.: Sample result . 15

© 2023 NEASQC Consortium Partners. All rights reserved. Page 19 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

List of Tables

Table 1.: Acronyms and Abbreviations . 18

Table 2.: Correspondence between the fields of the NEASQC benchmark report and the functions for
implementing the information in the my environment info.py script. 33

Table 3.: Correspondence between the fields of the NEASQC benchmark report and the functions for
implementing the information in the my benchmark info.py script. 34

Table 4.: Sub-fields of the Results fields of the TNBS benchmark report. 34
Table 5.: Sub-fields of the Metrics field. For each validation metric of the Benchmark, all the information

presented in the Table should be provided. 35

© 2023 NEASQC Consortium Partners. All rights reserved. Page 20 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

List of Listings

A.1. JSON Schema for reporting results . 23

B.1. Final part of the neasqc benchmark.py . 35

© 2023 NEASQC Consortium Partners. All rights reserved. Page 21 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

Bibliography

Gómez, A., Mouriño Gallego, J. C., Andrade Canosa, D., Simon, M., & Musso, D. (2021). D3.2: Design document
benchmark methodology.

© 2023 NEASQC Consortium Partners. All rights reserved. Page 22 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

A.TNBS JSON schema

This is the JSON schema which should be used to report results. This file can be downloaded from TNBS repository.

1 {
2 "$schema": "http://json-schema.org/draft-04/schema#",
3 "$id" : "https://neasqc.eu/benchmark.V1.schema.json",
4 "title" : "NEASQC JSON reporting schema",
5 "description":"JSON Schema to help in the generation of reporting JSON of NEASQC benchmark

suite",
6 "type": "object",
7 "properties": {
8 "ReportOrganization": {
9 "type": "string",

10 "description": "Name of the organisation which reports the results"
11 },
12 "MachineName": {
13 "type": "string"
14 },
15 "QPUModel": {
16 "type": "string",
17 "description": "Identification or model of the QPU"
18 },
19 "QPUDescription": {
20 "type": "array",
21 "description": "Description of capabilities of the Quantum Computer",
22 "items": {
23 "type": "object",
24 "properties": {
25 "NumberOfQPUs": {
26 "type": "integer",
27 "description": "Number of QPUs of this type",
28 "minimum": 0,
29 "exclusiveMinimum": true
30 },
31 "QPUs": {
32 "type": "array",
33 "description": "Description of each QPU",
34 "items": {
35 "type": "object",
36 "properties": {
37 "BasicGates": {
38 "type": "array",
39 "uniqueItems": true,
40 "minItems": 2,
41 "items": {
42 "type": "string"
43 }
44 },
45 "NumberOfQubits": {
46 "type": "integer",
47 "description": "Number of Qubits of the QPU"
48 },
49 "Qubits": {
50 "type": "array",
51 "description": "List with the properties of each qubit",
52 "items": {
53 "type": "object",
54 "properties": {
55 "QubitNumber": {
56 "type": "integer",
57 "description": "number Assigned to the qubit"
58 },
59 "T1": {
60 "type": "number",
61 "description": "T1 in ns",
62 "minimum": 0,
63 "exclusiveMinimum": true
64 },
65 "T2": {
66 "type": "number",

© 2023 NEASQC Consortium Partners. All rights reserved. Page 23 of 178

https://github.com/NEASQC/WP3_Benchmark/blob/main/tnbs/templates

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

67 "description": "T2 in ns",
68 "minimum": 0,
69 "exclusiveMinimum": true
70 }
71 },
72 "required": [
73 "QubitNumber",
74 "T1",
75 "T2"
76]
77 }
78 },
79 "Gates": {
80 "type": "array",
81 "description": "List of the basic gates for each qubit",
82 "items": {
83 "type": "object",
84 "properties": {
85 "Gate": {
86 "type": "string",
87 "description": "Name of the gate"
88 },
89 "Type": {
90 "enum": [
91

92 "Single",
93 "Entanglement",
94 "GlobalEntanglement"
95

96],
97 "description": "single qubit or entanglement

qubit (more than 1 qubit)"
98 },
99 "Qubits": {

100 "type": "array",
101 "description": "Ordered list of qubits where is

applied",
102 "uniqueItems": true,
103 "minItems": 1,
104 "items": {
105 "type": "integer"
106 }
107 },
108 "MaxTime": {
109 "type": "number",
110 "description": "Maximum time for executing this

gate (in ns)",
111 "minimum": 0,
112 "exclusiveMinimum": true
113 },
114 "Symmetric": {
115 "type": "boolean",
116 "description": "If the gate can be applied in any

order of qubits with the same timing"
117 }
118 },
119 "required": [
120 "Gate",
121 "Type",
122 "Qubits",
123 "MaxTime"
124]
125 }
126 },
127 "Technology": {
128 "enum": ["charge qubit","flux qubit","phase qubit","photon","

ion","neutral atom","diamond","quantum dot","other"]
129 },
130 "Other": {
131 "type": "string",
132 "description": "If other, name or description of the

technology"
133 }

© 2023 NEASQC Consortium Partners. All rights reserved. Page 24 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

134 },
135 "required": [
136 "BasicGates",
137 "Qubits",
138 "Gates",
139 "Technology"
140]
141 }
142 }
143 },
144 "required": [
145 "NumberOfQPUs",
146 "QPUs"
147]
148 }
149 },
150 "CPUModel": {
151 "type": "string",
152 "description": "model of the classical CPU"
153 },
154 "Frequency": {
155 "type": "number",
156 "description": "Frequency in GHz of the classical CPU"
157 },
158 "Network": {
159 "type": "object",
160 "properties": {
161 "Model": {
162 "type": "string",
163 "description": "Model of the interconnection between CPUs"
164 },
165 "Version": {
166 "type": "string",
167 "description": "Version"
168 },
169 "Topology": {
170 "type": "string",
171 "description": "Type of topology of the network"
172 }
173 },
174 "required": [
175 "Model",
176 "Version",
177 "Topology"
178]
179 },
180 "QPUCPUConnection": {
181 "type": "object",
182 "description": "Information about how the QPU is connected to the classical QPU",
183 "properties": {
184 "Type": {
185 "type": "string",
186 "description": "Type of connection as PCI"
187 },
188 "Version": {
189 "type": "string",
190 "description": "Version of the connection"
191 }
192 },
193 "required": [
194 "Type",
195 "Version"
196]
197 },
198 "Benchmarks": {
199 "type": "array",
200 "description": "Results of the different benchmarks",
201 "items": {
202 "type": "object",
203 "properties": {
204 "BenchmarkKernel": {
205 "type": "string",
206 "description": "Name or id of the benchmark"

© 2023 NEASQC Consortium Partners. All rights reserved. Page 25 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

207 },
208 "StartTime": {
209 "type": "string",
210 "description": "Start time for this benchmark following RFC 3339, section

5.6.",
211 "format": "date-time"
212 },
213 "EndTime": {
214 "type": "string",
215 "description": "End time for this benchmark following RFC 3339, section 5

.6.",
216 "format": "date-time"
217 },
218 "ProgramLanguage": {
219 "type": "string",
220 "description": "Programming language"
221 },
222 "ProgramLanguageVersion": {
223 "type": "string",
224 "description": "Programming language version"
225 },
226 "ProgramLanguageVendor": {
227 "type": "string",
228 "description": "Name of the provider of the programming language"
229 },
230 "API": {
231 "type": "array",
232 "description": "List of APIs used by the benchmark",
233 "items": {
234 "type": "object",
235 "properties": {
236 "Name": {
237 "type": "string",
238 "description": "Name of the API"
239 },
240 "Version": {
241 "type": "string",
242 "description": "Version of the API"
243 }
244 },
245 "required": [
246 "Name",
247 "Version"
248]
249 }
250 },
251 "QuantumCompililation": {
252 "type": "array",
253 "description": "List of steps for the transpilation of QPU code",
254 "items": {
255 "type": "object",
256 "properties": {
257 "Step": {
258 "type": "string",
259 "description": "Name of the step module"
260 },
261 "Version": {
262 "type": "string",
263 "description": "Version of this module"
264 },
265 "Flags": {
266 "type": "string",
267 "description": "Flag used for this step"
268 }
269 },
270 "required": [
271 "Step",
272 "Version",
273 "Flags"
274]
275 }
276 },
277 "ClassicalCompiler": {

© 2023 NEASQC Consortium Partners. All rights reserved. Page 26 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

278 "type": "array",
279 "description": "Ordered list of the steps for classical compilation",
280 "items": {
281 "type": "object",
282 "properties": {
283 "Step": {
284 "type": "string",
285 "description": "Step for classical compilation"
286 },
287 "Version": {
288 "type": "string",
289 "description": "version of this step"
290 },
291 "Flags": {
292 "type": "string",
293 "description": "Flags used for this step"
294 }
295 },
296 "required": [
297 "Step",
298 "Version",
299 "Flags"
300]
301 }
302 },
303 "TimeMethod": {
304 "type": "string",
305 "description": "Time routine for measuring execution time"
306 },
307 "Results": {
308 "type": "array",
309 "description": "Detailed report of the results",
310 "items": {
311 "type": "object",
312 "properties": {
313 "NumberOfQubits": {
314 "type": "integer",
315 "description": "Number of qubits used for this result",
316 "minimum": 0,
317 "exclusiveMinimum": true
318 },
319 "QubitPlacement": {
320 "type": "array",
321 "description": "Ordered list of qubits used for executing

this case",
322 "items": {
323 "type": "integer"
324 }
325 },
326 "QPUs": {
327 "type": "array",
328 "description": "List of QPUs used for the benchmark",
329 "items": {
330 "type": "integer"
331 }
332 },
333 "CPUs": {
334 "type": "array",
335 "description": "List of CPUs used in the benchmark",
336 "items": {
337 "type": "integer"
338 }
339 },
340 "TotalTime": {
341 "type": "number",
342 "description": "Total elapsed time in seconds",
343 "minimum": 0,
344 "exclusiveMinimum": true
345 },
346 "SigmaTotalTime": {
347 "type": "number",
348 "description": "Sigma of total execution time"
349 },

© 2023 NEASQC Consortium Partners. All rights reserved. Page 27 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

350 "QuantumTime": {
351 "type": "number",
352 "description": "Total time for executing the quantum

algorithm in seconds",
353 "minimum": 0,
354 "exclusiveMinimum": true
355 },
356 "SigmaQuantumTime": {
357 "type": "number",
358 "description": "Sigma of quantum time"
359 },
360 "ClassicalTime": {
361 "type": "number",
362 "description": "Total time for executing the classical part

of the algorithm in seconds",
363 "minimum": 0,
364 "exclusiveMinimum": true
365 },
366 "SigmaClassicalTime": {
367 "type": "number"
368 },
369 "Metrics": {
370 "type": "array",
371 "description": "Additional defined metrics for this benchmark

",
372 "items": {
373 "type": "object",
374 "properties": {
375 "Metric": {
376 "type": "string",
377 "description": "Name of the metric"
378 },
379 "Value": {
380 "type": "number",
381 "description": "Value of the metric"
382 },
383 "STD": {
384 "type": "number",
385 "description": "Standard deviation"
386 }
387 },
388 "required": [
389 "Metric",
390 "Value".
391 "STD"
392]
393 }
394 }
395 },
396 "required": [
397 "NumberOfQubits",
398 "QubitPlacement",
399 "QPUs",
400 "CPUs",
401 "TotalTime",
402 "SigmaTotalTime",
403 "QuantumTime",
404 "SigmaQuantumTime",
405 "ClassicalTime",
406 "SigmaClassicalTime"
407]
408 }
409 }
410 },
411 "required": [
412 "BenchmarkKernel",
413 "StartTime",
414 "EndTime",
415 "ProgramLanguage",
416 "ProgramLanguageVersion",
417 "ProgramLanguageVendor",
418 "API",
419 "TimeMethod",

© 2023 NEASQC Consortium Partners. All rights reserved. Page 28 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

420 "Results"
421]
422 }
423 }
424 },
425 "required": [
426 "ReportOrganization",
427 "MachineName",
428 "QPUModel",
429 "QPUDescription",
430 "CPUModel",
431 "Frequency",
432 "Network",
433 "QPUCPUConnection",
434 "Benchmarks"
435]
436 }

Listing A.1: JSON Schema for reporting results

© 2023 NEASQC Consortium Partners. All rights reserved. Page 29 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

B.Templates for NEASQC benchmark

As explained in the NEASQC deliverable (Gómez et al., 2021) and in the present document, each proposed Kernel
and its correspondent Benchmark Test Case, BTC, must have a reference software implementation using Eviden
myQLM environment1. In order to gather all these myQLM implementations for the NEASQC benchmark suite
(TNBS), a repository named WP3 Benchmark, was created in the NEASQC GitHub. The different Benchmark
implementations will be stored under the tnbs folder of this repository.

Additionally, NEASQC D3.2 deliverable sets up that each Benchmark execution should report their results in a sepa-
rate JSON file, that must follow NEASQC json schema NEASQC.Benchmark.V2.Schema.json (included in Appendix
A of present document). This json schema can be found, too, into the folder tnbs/templates of the WP3 Benchmark
repository. So, when a Benchmark is implemented, the code needed for creating the Benchmark report must be
included.

For simplifying this whole implementation process, a Benchmark developer, can use the script templates found in the
folder tnbs/templates of the WP3 Benchmark repository:

• my benchmark execution.py

• my environment info.py

• my benchmark info.py

• my benchmark summary.py

• neasqc benchmark.py

The my benchmark execution.py script was designed to execute a complete Benchmark workflow. Section B.1
explains this script in great detail and provides different tips for helping the Benchmark developer.

The other four scripts were designed for gathering the Benchmark results, and the software and hardware info used
for Benchmark execution, for creating the properly configured json report of the results. They are described in section
B.2.

B.1. my benchmark execution.py

The main idea of this script is to implement a complete Benchmark workflow easily. The main parts of the script are:

• KERNEL BENCHMARK python class

• build iterator function

• run code function.

• compute samples function.

• summarize results function

The KERNEL BENCHMARK Python class defines the complete Benchmark workflow and its exe method will
execute it. The other Python functions are called by the KERNEL BENCHMARK class and contain the specific
functionalities of a particular Benchmark. It is expected that the Benchmark developer modifies the Python functions
but leaves the Python class unmodified.

B.1.1. KERNEL BENCHMARK class

The KERNEL BENCHMARK class defines a generic workflow for an execution of a given Benchmark. The
workflow, in a high-level description, of the class is composed of the following steps:

1. Pre-benchmark or warm up step. The main idea is executing the Benchmark a fixed number of times for
computing the number of repetitions the main part of Benchmark procedure should be executed.

2. Compute sample step. The obtained results from the Pre-benchmark step should be used for computing number
of repetitions for assuring a desired statistical significance.

1See myQLM webpage

© 2023 NEASQC Consortium Partners. All rights reserved. Page 30 of 178

https://github.com/NEASQC/WP3_Benchmark
https://github.com/NEASQC/WP3_Benchmark/tree/main/tnbs
https://github.com/NEASQC/WP3_Benchmark/blob/main/tnbs/templates/NEASQC.Benchmark.V2.Schema_modified.json
https://github.com/NEASQC/WP3_Benchmark/tree/main/tnbs/templates
https://myqlm.github.io/

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

3. Benchmark execution step. The Benchmark should be executed a number of repetitions times and the Bench-
mark metrics should be collected for each repetition.

4. Summarize results step. The collected results from the Benchmark execution step are post-processed, following
the indications of the corresponding Benchmark documentation, and stored in an output file.

Once the KERNEL BENCHMARK class is properly configured and instantiated then its exe method will be called
and the before workflow executed.

For executing a Benchmark, the class will execute the run code function that must be modified by the Benchmark
developer. It is expected that the run code function returns a pandas DataFrame with the Benchmark metrics obtained
from the execution (see section B.1.3 for more information about this function).

The output of the Pre-benchmark step execution will be a pandas DataFrame where each column will be the benchmark
metrics and each row will have the results of one Benchmark execution.

The Compute sample step will execute the compute samples function. The benchmark developer must modify this
function for properly processing the results of the Pre-benchmark step and computing the number of repetitions (see
section B.1.4 for more information).

In the Benchmark execution step the run code function will be executed a determined number of repetitions (that
can be computed using Compute sample step but can be provided as input, see below). The output of this part will be
a pandas DataFrame where the columns are the desired metrics and each row stores the result of each repetition.

Finally in the Summarize results step the summarize results function will be executed. The Benchmark developer
must modify this function for processing the results from the different Benchmark executions according to its re-
quirements (see section B.1.5 for more information).

In general, it is expected that for a particular Benchmark the complete workflow has to be executed for differ-
ent configurations (for example different number of qubits). For dealing with the complete workflow, the KER-
NEL BENCHMARK class executes a loop over an iterator that can be built into the build iterator function, see
B.1.2. The initial and the final time (for executing the complete workflow of the iterator) will be recorded and stored
in a csv file.

The Benchmark workflow execution can be configured when the class is instantiated by giving it the typical Python
kwargs. Following keyword arguments can be provided:

1. pre benchmark: Boolean for executing or not the pre-benchmark step.

2. pre samples: list of ints: Number of repetitions of the pre-benchmark step.

3. pre save: Boolean for saving or not the metrics obtained during the pre-benchmark step.

4. saving folder: string with the path of the folder where the different generated files will be stored.

5. benchmark times: name for the file where the initial and final times of the benchmark will be stored (as a csv
file).

6. csv results: name for the file where the benchmark step results will be stored (as a csv file).

7. summary results: name for the file where the summary benchmark results will be stored (as a csv file).

8. alpha: desired confidence interval for the benchmark results.

9. min mean: number of minimum repetitions for benchmark step.

10. max mean: number of maximum repetitions for benchmark step.

11. list of qbits: list of ints. Each element will be the number of used qubits for the benchmark.

In general, the following CSV files will be created during the complete benchmark workflow execution:

• Pre-benchmark files: during the pre-benchmark execution step each time the run code function is called, the
resulting DataFrame can be (or not) stored in the function of the input argument pre save. The name of these
files will be: pre benchmark step i.csv where i will be the number of qubits.

• Benchmark csv file: during the benchmark step each time the run code function is called the resulting
DataFrame will be appended to a csv file, given by the input keyword argument csv results.

© 2023 NEASQC Consortium Partners. All rights reserved. Page 31 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

• Summary csv file: when all the benchmark steps were done the results will be post-processed and a summary
result DataFrame will be stored in a csv file given by the input keyword argument summary results.

• Times csv files, with the initial and the final time of the complete benchmark execution. The file name will be
given by the benchmark times input keyword argument.

B.1.2. build iterator

The Benchmark developer should modify this function with the correspondent software implementation of its BTC
of the Kernel.

The main idea of this function is that the Benchmark developer creates the list with all the steps, that a complete
benchmarking procedure should follow. It is expected that each element of the list be a Python tuple where all the
mandatory arguments for executing a Benchmark step are provided.

B.1.3. run code

The Benchmark developer should modify this function with the correspondent software implementation of its BTC
of the Kernel.

The arguments of this function will be:

• iterator step: tuple with all the mandatory inputs for executing a Benchmark step. The tuple will be an element
of the list returned by the build iterator function (B.1.2)

• repetitions: number of times the Benchmark will be executed.

• stage bench: stage of the benchmark: can be pre-benchmark or benchamrk.

• kwargs: Python keyword arguments.

So the function should properly configure a Benchmark step (for the pre benchmark or the benchmark stage), execute
it and post-process the results for getting the mandatory metrics. It is expected that the return of the function will be:

• pandas DataFrame with the Benchmark results. Each column of the DataFrame corresponds to a metric and
each row will correspond to a repetition.

• a file name for storing results.

If the Benchmark developer needs more arguments, to configure or execute its Benchmark, can use the kwargs for
passing to the function any desired argument.

B.1.4. compute samples

The Benchmark developer should modify this function with the corresponding software implementation for the pro-
posed particular Benchmark.

This function computes the number of repetitions for the Benchmark execution step. If the Benchmark developer
wants the results of a complete Benchmark to have a desired statistical significance, it can use this function to codify
the mandatory code for computing the number of repetitions.

The input of the compute samples function is typical Python keyword arguments (kwargs). So the Benchmark
developer can pass to the function the arguments needed for implementing the code. By default three following
arguments are implemented in the skeleton of the function:

• alpha: for setting the desired confidence interval.

• min meas: minimum number of repetitions.

• max meas: maximum number of repetitions.

In general, it is expected that the computed number of repetitions is between min meas and max meas. Users can set
these values to None to allow any value.

© 2023 NEASQC Consortium Partners. All rights reserved. Page 32 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

The Benchmark developer can use these arguments for their original purpose, change their functionality or even
not use them. Even the Benchmark developer can define its own arguments and process them properly in the com-
pute samples function.

The output will be an integer number that will be the number of repetitions for a benchmark stage of a Benchmark
step.

If the pre-benchmark step is enabled in the KERNEL BENCHMARK class then, the corresponding metric results of
this step are passed to the compute samples function using the keyword argument pre metrics

B.1.5. summarize results

The Benchmark developer should modify this function with the corresponding software implementation for the pro-
posed particular Benchmark.

In this function, the post-processing of the complete Benchmark results should be coded. The recommended way is
to load the file where these results are stored and execute the corresponding Benchmark procedure post-processing
for getting the final Benchmark results.

The name of the file with the results can be passed using the desired keyword arguments(kwargs)

B.2. Generating the benchmark report

When the complete Benchmark is executed and the results files are generated, a properly configured JSON report (fol-
lowing the NEASQC JSON schema NEASQC.Benchmark.V2.Schema.json) should be generated. This report contains
information about the hardware, the software used in the Benchmark and the obtained results.

The following scripts from the tnbs/templates folder of the WP3 Benchmark repository can be used, by the Bench-
mark developer, for obtaining and properly formatting the mandatory info needed by the Benchmark report:

• my environment info.py

• my benchmark info.py

• my benchmark summary.py

• neasqc benchmark.py

B.2.1. my environment info.py

This script can be used as a template for gathering the info related to the hardware system used in the Benchmark.
Table 2 shows the correspondence between the hardware information fields of the NEASQC Benchmark report and
the function of the my environment info.py script.

field function
ReportOrganization my organisation
MachineName my machine name
QPUModel my qpu model
QPUDescription my qpu
CPUModel my cpu model
Frequency my frecuency
Network my network
QPUCPUConnection my QPUCPUConnection
Benchmarks see Subsection B.2.2

Table 2: Correspondence between the fields of the NEASQC benchmark report and the functions for implementing
the information in the my environment info.py script.

Benchmark developers can modify the different functions of Table 2 to adapt to their needs. Using as a template the
Table 2 functions ensures that the collected info satisfies the NEASQC JSON schema.

© 2023 NEASQC Consortium Partners. All rights reserved. Page 33 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

B.2.2. my benchmark info.py

The functions implemented in the my benchmark info.py script can be used as templates for gathering the different
info needed by the Benchmarks field of Table 2. This field has several sub-fields that gather information about the
software and the compilers used in the Benchmark as well as the Benchmark results.

In Table 3 the correspondence between the different sub-fields of the Benchmarks field and the different functions
implemented in the my benchmark info.py script is presented.

field function
BenchmarkKernel my benchmark kernel
StartTime my starttime
EndTime my endtime
ProgramLanguage my programlanguage
ProgramLanguageVersion my programlanguage version
ProgramLanguageVendor my programlanguage vendor
API my api
QuantumCompililation my quantum compilation
ClassicalCompiler my classical compilation
TimeMethod my timemethod
MetaData my metadata info
Results see subsection B.2.3

Table 3: Correspondence between the fields of the NEASQC benchmark report and the functions for implementing
the information in the my benchmark info.py script.

Using as a template the Table 3 functions ensures that the collected info satisfies the NEASQC JSON schema.

The MetaData field is not a mandatory field in the NEASQC JSON schema. The main idea of this field is to gather
additional information that is particular to the Benchmark and helps to keep traceability of the generated results.

B.2.3. my benchmark summary.py

The sub-field Results in Table 3 summarizes the obtained results of a Benchmark execution. These can be the
different elapsed times and the verification metrics of a particular Benchmark. The function summarize results from
my benchmark summary.py script can be used by a Benchmark developer for gathering this information.

Table 4 shows the different sub-fields, and the information that they gather, from the Results sub-field.

sub-field information
NumberOfQubits number of qubits, n
TotalTime mean of elapsed time
SigmaTotalTime standard deviation of elapsed time
QuantumTime mean of the quantum time
SigmaQuantumTime standard deviation of quantum time
ClassicalTime mean of the classical time
SigmaClassicalTime standard deviation of classical time
Metrics Several Info about verification metrics

Table 4: Sub-fields of the Results fields of the TNBS benchmark report.

The sub-field Metrics, last line of Table 4, gathers information about the different validation metrics used by the partic-
ular Benchmark case. Table 5 shows the different sub-fields of the Metrics one and the information that summarizes.

B.2.4. neasqc benchmark.py

Finally, the neasqc benchmark.py script implements the Python class BENCHMARK. The exe method of this class
will create the final NEASQC benchmark report following the mandatory JSON scheme.

© 2023 NEASQC Consortium Partners. All rights reserved. Page 34 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

sub-field information
metric Name of different validation metrics
Value mean value of the metric
STD standard deviation of the metric
Count number of samples for computing the statistics of the metric

Table 5: Sub-fields of the Metrics field. For each validation metric of the Benchmark, all the information presented
in the Table should be provided.

The exe method needs as input a complete Python dictionary where each key corresponds to a main field of the
report and the value will be the corresponding information in a suitable format. The different functions from
my environment info and from my benchmark info can be used for creating this dictionary.

Listing B.1 shows the final part of the neasqc benchmark.py script. The complete Python dictionary needed by the exe
method is shown. As can be seen, each key of this dictionary invokes the function that provides the mandatory field
information.

1

2 if __name__ == "__main__":
3

4 import my_environment_info
5 import my_benchmark_info
6

7 ################## Configuration ##########################
8

9 kwargs = {"None": None}
10

11 benchmark_conf = {
12 "ReportOrganization": my_environment_info.my_organisation(
13 **kwargs),
14 "MachineName": my_environment_info.my_machine_name(**kwargs),
15 "QPUModel": my_environment_info.my_qpu_model(**kwargs),
16 "QPUDescription": my_environment_info.my_qpu(**kwargs),
17 "CPUModel": my_environment_info.my_cpu_model(**kwargs),
18 "Frequency": my_environment_info.my_frecuency(**kwargs),
19 "Network": my_environment_info.my_network(**kwargs),
20 "QPUCPUConnection":my_environment_info.my_QPUCPUConnection(
21 **kwargs),
22 "Benchmarks": my_benchmark_info.my_benchmark_info(**kwargs),
23 "json_file_name": "./benchmark_report.json"
24 }
25

26 benchmark = BENCHMARK()
27 benchmark.exe(benchmark_conf)

Listing B.1: Final part of the neasqc benchmark.py

© 2023 NEASQC Consortium Partners. All rights reserved. Page 35 of 178

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

C.T01: Benchmark for Probability Loading Algorithms document

© 2023 NEASQC Consortium Partners. All rights reserved. Page 36 of 178

NExt ApplicationS of Quantum Computing
Benchmark Suite

T01: Benchmark for Probability Loading
Algorithms

Document Properties

Contract Number 951821

Contractual Deadline 31/10/2023

Dissemination Level Public

Nature Test Case Definition

Editors Gonzalo Ferro, CESGA

Authors Gonzalo Ferro, CESGA
Andrés Gómez, CESGA
Diego Andrade, CITIC-UDC

Reviewers Cyril Allouche, EVIDEN
Arnaud Gazda, EVIDEN

Date 27/10/2023

Category Generic

Keywords

Status Submitted

Release 1.0

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

History of Changes

Release Date Author, Organisation Description of Changes

0.1 04/01/2023 Gonzalo Ferro, CESGA;
Andrés Gómez, CESGA

First version

0.2 26/01/2023 Gonzalo Ferro, CESGA
Andrés Gómez, CESGA
Diego Andrade, CITIC-
UDC

Reordering sections and rewording

0.3 07/02/2023 Gonzalo Ferro, CESGA Complete Test Case Documentation

0.4 18/08/2023 Gonzalo Ferro, CESGA Corrections for the Test Case Documentation

0.5 08/10/2023 Andrés Gómez, CESGA Formatting

1.0 24/10/2023 Gonzalo Ferro, CESGA Fixing the naming according to the Glossary of
deliverable 3.5

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.2 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

Table of Contents

1. Introduction T01.4

2. Description of the kernel: Probability Loading T01.5
2.1. Kernel selection justification . T01.5
2.2. Kernel Description . T01.5

3. Description of the benchmark test case T01.7
3.1. Description of the problem . T01.7
3.2. Benchmark test case description . T01.7
3.3. Complete benchmark procedure . T01.8
3.4. Benchmark report . T01.9

List of Acronyms T01.10

List of Figures T01.11

List of Tables T01.12

List of Listings T01.13

Bibliography T01.14

A. NEASQC test case reference T01.15
A.1. NEASQC implementation of benchmark test case. T01.15

A.1.1. The PL library . T01.15
A.1.2. my benchmark execution.py . T01.19

A.2. Generation of the benchmark report . T01.24
A.2.1. my benchmark info.py . T01.26
A.2.2. my benchmark summary.py . T01.28
A.2.3. neasqc benchmark.py . T01.30

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.3 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

1.Introduction

This document describes the T1: Probability Loading benchmark of The NEASQC Benchmarking Suite (TNBS). This
document must be read accompanied by the document that describes the TNBS: D3.5: The NEASQC Benchmark
Suite.

Section 2 describes the Probability Loading Kernel, referred to as PL Kernel along the document. With each TNBS
Kernel, a Benchmark Test Case (BTC) must be designed and documented. This is done in Section 3. Finally,
the benchmarking methodology provides a reference implementation of the Benchmark using the Eviden myQLM
library. A complete documentation of this implementation is provided in Annex A.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.4 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

2.Description of the kernel: Probability Loading

The PL Kernel encodes a probability distribution in a quantum circuit. Section 2.1 justifies the Kernel selection, and
Section 2.2 describes the Kernel following the form indicated by the suite.

2.1. Kernel selection justification

The PL Kernel is common to many different quantum algorithms like the HHL (Harrow et al., 2009), quantum PCA
(Lloyd et al., 2014), quantum amplitude estimation algorithms (Brassard et al., 2002) etc. This initialization step is,
usually, a very demanding part of any quantum algorithm because its number of operations typically scales as ∼ 2n,
being n the number of qubits to be initialized. In addition, this Kernel meets the three main requirements from the
NEASQC benchmark methodology:

1. The Kernel can be described mathematically or procedurally. Using this description, a standalone circuit can
be generated (see section 2.2).

2. The Kernel can be defined for different numbers of qubits.

3. The output can be verified with a classical computation (in the proposed BTC, see section 3.2, the result is
known a priori)

For all these reasons, the PL Kernel is a good candidate for the TNBS.

2.2. Kernel Description

The PL Kernel can be defined, mathematically as follows:

Let V be a normalised vector of complex values:

V = {v0, v1, ·, v2n−1}, vi ∈ C (T01.2.1)

such that

2n−1∑

i=0

|vi|2 = 1 (T01.2.2)

The main task of the PL Kernel is the creation of an operator U, from the normalised vector V, which satisfies
equation (T01.2.3):

U|0⟩n =
2n−1∑

i=0

vi|i⟩n (T01.2.3)

This procedure can be used for the loading of a probability density function (PDF). In this case, equation (T01.2.1)
can be reformulated as (T01.2.4)

P = {p0, p1, ·, p2n−1}, pi ∈ [0, 1] (T01.2.4)

Equation (T01.2.2) must be transformed into equation (T01.2.5)

2n−1∑

i=0

|pi|2 = 1 (T01.2.5)

And (T01.2.3) can be written as (T01.2.6):

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.5 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

U|0⟩n =
2n−1∑

i=0

√
pi|i⟩n (T01.2.6)

The BTC for the PL Kernel developed in this document is based on this particular case.

Note: The PL Kernel definition is agnostic about the implementation of the loading operator U. The Kernel only
provides conditions about the mandatory input vector P and about the behaviour of the operator U. Different al-
gorithms and procedure approaches can be used for constructing such an operator. This operator implementation
agnosticism will be kept in the design of the correspondent BTC so it can be used as a methodology for evaluating
different algorithms or procedures for data loading into quantum circuits.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.6 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

3.Description of the benchmark test case

This section presents the complete description of the BTC for the PL Kernel. Section 3.1 describes the problem
addressed by the test case. Section 3.2 provides a high-level description of the case. Section 3.3 provides the execution
workflow. Finally, section 3.4 documents how the results of such executions must be reported.

3.1. Description of the problem

The loading of a fixed normal probability distribution function, PDF, Nµ,σ(x), into a quantum circuit is the BTC
associated to the PL Kernel. An operator U for loading this normal PDF must be built using a probability loading
algorithm, and the probabilities of the different possible final states must be measured and compared with the original
normal PDF.

Finally, the verification of the output can be done by comparing the obtained measurements with the original PDF,
using several metrics.

3.2. Benchmark test case description

This section introduces a detailed step-by-step workflow of the BTC. Given a number of qubits, n, and using a specific
input probability loading algorithm, the test case must follow the following steps:

1. Take a random uniform distribution with a particular mean, µ̃ and standard deviation, σ̃, selected within the
following ranges:

• µ̃ ∈ [−2, 2]

• σ̃ ∈ [0.1, 2]

2. So the normal PDF is: Nµ̃,σ̃(x)

3. Create an array of 2n values: x = {x0, x1, x2, · · · , x2n−1} where:

• x0 such that ∫ x0

−∞
Nµ̃,σ̃(x)dx = 0.05

• x2n−1 such that ∫ x2n−1

−∞
Nµ̃,σ̃(x)dx = 0.95

• xi+1 = xi +∆x

• ∆x =
x2n−1−x0

2n

4. Create a 2n values array, P from x by:

P(x) = {P (x0), P (x1), · · · , P (x2n−1)} = {Nµ̃,σ̃(x0), Nµ̃,σ̃(x1), · · · , Nµ̃,σ̃(x2n−1)}

5. Normalize the P array:

Pnorm(x) = {Pnorm(x0), Pnorm(x1), · · · , Pnorm(x2n−1)}

where

Pnorm(xi) =
P (xi)∑2n−1

j=0 P (xj)

6. Compute the number of shots nshots as:

nshots = min(106,
100

min(Pnorm(x))
)

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.7 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

7. Use the Pnorm(x) array as input of the particular probability loading algorithm for creating the U operator
such that :

U|0⟩n =

2n−1∑

i=0

√
Pnorm(xi)|i⟩n (T01.2.1)

8. Execute the quantum program U|0⟩n and measure all the n qubits a number of times nshots. Store the number
of times each state |i⟩n is obtained, mi, and compute the probability of obtaining it as

Qi =
mi

nshots
∀i = {0, 1, · · · , 2n − 1}

9. With the measured array Q = {Qi}∀i = {0, 1, · · · , 2n − 1} and the initial normalised array Pnorm compute
following metrics:

• The Kolmogorov-Smirnov (KS) between Q and Pnorm. This is the maximum of the absolute difference
between the cumulative distribution functions of Pnorm and Q:

KS = max

∣∣∣∣∣∣

i∑

j=0

Pnorm(xj)−
i∑

j=0

Qj

∣∣∣∣∣∣
, ∀i = 0, 1, · · · , 2n − 1

• The Kullback-Leibler divergence (KS) is defined as:

KL(Q/Pnorm) = Pnorm(xj) ln
Pnorm(xj)

max(ϵ,Qk)

where ϵ = min(Pnorm(xj)) ∗ 10−5 which guarantees the logarithm exists when Qk = 0

10. Execute a χ2 test using nshotsQ and nshotsPnorm and get its p-value (using as null hypothesis that both sets
are equal). If the p-value is lower than 0.05 then the obtained result should be considered invalid.

Additionally, the time from steps 1 to 10 is measured as the elapsed time. If possible, the time of the quantum part,
step 8, should be measured separately as the quantum time.

3.3. Complete benchmark procedure

To execute a complete PL Benchmark the next procedure must be followed:

1. We must select in advance the set of the number of qubits to be tested (for example from n=4 to n=8).

2. For each number of qubits the following steps must be performed:

a) Execute a warm-up step consisting of:

i. Execute 10 iterations of the BTC, section 3.2, and compute the mean and the standard deviation for
the elapsed time, (µT , σT), and for the standard deviation for the KS and KL metrics, σm with
m = {KS,KL}

ii. Compute the number of repetitions mandatory, MT , for having a relative error for the elapsed time
of 5%, rT = 0.05, with a confidence level of 95%, α = 0.05, following (T01.3.2), where Z1−α

2
is the

percentile for α :

MT =
(σTZ1−α

2

rµT

)2
(T01.3.2)

iii. Compute the number of repetitions mandatory, Mm with m = {KS,KL}, for having an absolute
error of ϵm = 10−4, for KS and KL metrics with a confidence level of 95%, α = 0.05, following
(T01.3.3)

Mm =
(σmZ1−α

2

ϵm

)2
(T01.3.3)

b) Execute the complete BTC, section 3.2, M = max(MT ,MKS ,MKL) times. M must be greater than 5.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.8 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

c) Compute the mean and the standard deviation for the elapsed time, quantum time, if possible, and for
the mentioned metrics in steps 9 and 10 of section 3.2: χ2, KS and KL.

3. If the verification χ2 test fails (the p-value is lower than 0.05), the process must be stopped.

The method used to calculate the number of repetitions M in the previous procedure guarantees that the elapsed time
will have a relative error lower than 5% and the KS and the KL metrics will have an absolute error lower than 10−4

with a confidence level of 95%.

3.4. Benchmark report

Finally, the results of the complete benchmark execution must be reported for each of the tested numbers of qubits into
a valid JSON file following the JSON schema NEASQC.Benchmark.V2.Schema.json provided in the document D3.5:
The NEASQC Benchmark Suite of the NEASQC project. The mean elapsed time must be reported in the TotalTime
field of the JSON and its standard deviation in the SigmaTotalTime field.

The verification metrics of the PL Benchmark should be stored under the field Benchmarks into the sub-field Results
and inside the sub-field Metrics of the JSON Benchmark report. The Kolmogorov-Smirnov metric is stored under
the name KS, the Kullback-Leibler divergence is stored under the name KL, the χ2 under the name chi2 and the
p-value under the name p-value.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.9 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

List of Acronyms

Term Definition
BTC Benchmark Test Case
NEASQC NExt ApplicationS of Quantum Computing
PDF Probability Density Function
PL Probability Loading
QPU Quantum Process Unit
TNBS The NEASQC Benchmark Suite

Table T01.1: Acronyms and Abbreviations

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.10 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

List of Figures

Figure T01.1.: Circuit implementation for brute force method. T01.18
Figure T01.2.: Circuit implementation for multiplexor. The same probability density function that used

for Figure T01.1 . T01.18

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.11 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

List of Tables

Table T01.1.: Acronyms and Abbreviations . T01.10

Table T01.2.: Example of the pdf attribute from the LoadProbabilityDensity T01.18
Table T01.3.: Sub-fields of the Results fields of the TNBS benchmark report. T01.30
Table T01.4.: Sub-fields of the Metrics field. T01.30

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.12 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

List of Listings

Listing T01.1. LoadProbabilityDensity class from load probabilities.py script T01.15
Listing T01.2. Example of use the load probabilities.py script from command line. T01.18
Listing T01.3. Functions get theoric probability and get qlm probability from data loading.py package.

script . T01.18
Listing T01.4. run code function for BTC of the PL Kernel . T01.19
Listing T01.5. compute samples function for codifying the strategy for computing the number of repetitions

for the PL Benchmark. T01.20
Listing T01.6. summarize results function for summarizing the results from PL Benchmark T01.22
Listing T01.7. build iterator function for creating the iterator of the complete execution of the PL Bench-

mark . T01.22
Listing T01.8. Example of configuration of a complete Benchmark execution. This part of the code should

be located at the end of the my benchmark execution.py script T01.22
Listing T01.9. Example of configuration of the my environment info.py script T01.24
Listing T01.10. Example of configuration of the my benchmark info.py script T01.26
Listing T01.11. Example of configuration of the summarize results function for PL benchmark T01.28

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.13 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

Bibliography

Brassard, G., Høyer, P., Mosca, M., & Tapp, A. (2002). Quantum amplitude amplification and estimation. https :
//doi.org/10.1090/conm/305/05215

Grover, L., & Rudolph, T. (2002). Creating superpositions that correspond to efficiently integrable probability distri-
butions. arXiv e-prints. https://doi.org/10.48550/arXiv.quant-ph/0208112

Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum algorithm for linear systems of equations.
Physical Review Letters, 103(15). https://doi.org/10.1103/physrevlett.103.150502

Lloyd, S., Mohseni, M., & Rebentrost, P. (2014). Quantum principal component analysis. Nature Physics, 10(9), 631–
633. https://doi.org/10.1038/nphys3029

Shende, V., Bullock, S., & Markov, I. (2006). Synthesis of quantum-logic circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(6), 1000–1010.
https://doi.org/10.1109/tcad.2005.855930

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.14 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

A.NEASQC test case reference

As pointed out in deliverable D3.5: The NEASQC Benchmark Suite each proposed Benchmark for TNBS, must
have a complete Eviden myQLM-compatible software implementation. For the Benchmark of the PL Kernel, this
implementation can be found in the tnbs/BTC 01 PL folder of the WP3 Benchmark NEASQC GitHub repository.
Additionally, the execution of a Benchmark must generate a complete result report into a separate JSON file, that must
follow NEASQC JSON schema NEASQC.Benchmark.V2.Schema.json provided into the aforementioned deliverable.

Inside tnbs/BTC 01 PL following folders and files are presented:

• PL folder: contains the probability loading Python library, PL library from now, with all the mandatory code
for executing a complete workflow of the PL Kernel BTC as explained in section 3.2

• my benchmark execution.py

• my environment info.py

• my benchmark info.py

• my benchmark summary.py

• neasqc benchmark.py

The modules and libraries inside PL folder in addition to the my benchmark execution.py deal with the PL Bench-
mark execution. Section A.1 documents these files. The other script files are related to Benchmark report generation
and are properly explained in section A.2.

A.1. NEASQC implementation of benchmark test case.

This section presents a complete description of the PL Benchmark of the TNBS. Meanwhile the subsection A.1.1
documents Python implementation of a BTC step, see section 3.2, the subsection A.1.2 explains how to execute a
complete Benchmark procedure, as explained in section 3.3, using script my benchmark execution.py.

A.1.1. The PL library

The PL library inside the tnbs/BTC 01 PL/PL allows executing the BTC, as explained in section 3.2. The following
folder and files can be found inside it:

• load probabilities.py package.

• data loading.py package

• utils module

load probabilities.py package

In this script the BTC, as explained in the section 3.2, is implemented as a Python class called LoadProbabilityDensity.
Listing T01.1 shows the complete class implementation.

1 class LoadProbabilityDensity:
2 """
3 Probability Loading
4 """
5

6

7 def __init__(self, **kwargs):
8 """
9

10 Method for initializing the class
11

12 """
13

14 self.n_qbits = kwargs.get("number_of_qbits", None)
15 if self.n_qbits is None:
16 error_text = "The number_of_qbits argument CAN NOT BE NONE."

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.15 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

17 raise ValueError(error_text)
18 self.load_method = kwargs.get("load_method", None)
19 if self.load_method is None:
20 error_text = "The load_method argument CAN NOT BE NONE."\
21 "Select between: multiplexor, brute_force or KPTree"
22 raise ValueError(error_text)
23 # Set the QPU to use
24 self.qpu = kwargs.get("qpu", None)
25 if self.qpu is None:
26 error_text = "Please provide a QPU."
27 raise ValueError(error_text)
28

29 self.data = None
30 self.p_gate = None
31 self.result = None
32 self.circuit = None
33 self.quantum_time = None
34 self.elapsed_time = None
35 #Distribution related attributes
36 self.x_ = None
37 self.data = None
38 self.mean = None
39 self.sigma = None
40 self.step = None
41 self.shots = None
42 self.dist = None
43 #Metric stuff
44 self.ks = None
45 self.kl = None
46 self.chi2 = None
47 self.fidelity = None
48 self.pvalue = None
49 self.pdf = None
50 self.observed_frecuency = None
51 self.expected_frecuency = None
52

53 def get_quantum_pdf(self):
54 """
55 Computing quantum probability density function
56 """
57 self.result, self.circuit, self.quantum_time = get_qlm_probability(
58 self.data, self.load_method, self.shots, self.qpu)
59

60 def get_theoric_pdf(self):
61 """
62 Computing theoretical probability densitiy function
63 """
64 self.x_, self.data, self.mean, self.sigma, \
65 self.step, self.shots, self.dist = get_theoric_probability(self.n_qbits)
66

67 def get_metrics(self):
68 """
69 Computing Metrics
70 """
71 #Kolmogorov-Smirnov
72 self.ks = np.abs(
73 self.result["Probability"].cumsum() - self.data.cumsum()
74).max()
75 #Kullback-Leibler divergence
76 epsilon = self.data.min() * 1.0e-5
77 self.kl = entropy(
78 self.data,
79 np.maximum(epsilon, self.result["Probability"])
80)
81 #Fidelity
82 self.fidelity = self.result["Probability"] @ self.data / \
83 (np.linalg.norm(self.result["Probability"]) * \
84 np.linalg.norm(self.data))
85

86 #Chi square
87 self.observed_frecuency = np.round(
88 self.result["Probability"] * self.shots, decimals=0)
89 self.expected_frecuency = np.round(

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.16 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

90 self.data * self.shots, decimals=0)
91 try:
92 self.chi2, self.pvalue = chisquare(
93 f_obs=self.observed_frecuency,
94 f_exp=self.expected_frecuency
95)
96 except ValueError:
97 self.chi2 = np.sum(
98 (self.observed_frecuency - self.expected_frecuency) **2 / \
99 self.expected_frecuency

100)
101 count = len(self.observed_frecuency)
102 self.pvalue = chi2.sf(self.chi2, count -1)
103

104 def exe(self):
105 """
106 Execution of workflow
107 """
108 #Create the distribution for loading
109 tick = time.time()
110 self.get_theoric_pdf()
111 #Execute the quantum program
112 self.get_quantum_pdf()
113 self.get_metrics()
114 tack = time.time()
115 self.elapsed_time = tack - tick
116 self.summary()
117

118 def summary(self):
119 """
120 Pandas summary
121 """
122 self.pdf = pd.DataFrame()
123 self.pdf["n_qbits"] = [self.n_qbits]
124 self.pdf["load_method"] = [self.load_method]
125 self.pdf["qpu"] = [self.qpu]
126 self.pdf["mean"] = [self.mean]
127 self.pdf["sigma"] = [self.sigma]
128 self.pdf["step"] = [self.step]
129 self.pdf["shots"] = [self.shots]
130 self.pdf["KS"] = [self.ks]
131 self.pdf["KL"] = [self.kl]
132 self.pdf["fidelity"] = [self.fidelity]
133 self.pdf["chi2"] = [self.chi2]
134 self.pdf["p_value"] = [self.pvalue]
135 self.pdf["elapsed_time"] = [self.elapsed_time]
136 self.pdf["quantum_time"] = [self.quantum_time]

Listing T01.1: LoadProbabilityDensity class from load probabilities.py script

For instantiating this LoadProbabilityDensity a typical python kwargs argument should be provided. Two following
keyword arguments are mandatory:

• n qbits: integer with the number of qubits used for loading probability distribution.

• method: a string for selecting different Probability Loading algorithms. Valid inputs are:

– brute force: for using an Atos myqlm implementation of the original probability loading algorithm (Grover
& Rudolph, 2002). The controlled rotations needed by the algorithm were implemented straightforwardly.
Figure T01.1 shows circuit implementation of a 3-qubit probability distribution using this option.

– mutiplexor: The mandatory controlled rotations of the original loading algorithm were implemented using
quantum multiplexors (Shende et al., 2006). This implementation is more efficient and compact than
brute force as can be shown in Figure T01.2 where the circuit implementation using this method, for the
same probability distribution of the Figure T01.1, is presented.

– KPTree: QLM implementation of a probability loading 1

The exe method executes a complete BTC, as explained in the section 3.2, and fills different attributes of the class.
Most important is the pdf one which is a pandas DataFrame where all the configuration and the correspondent metrics

1See myQLM KPTree class

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.17 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

Q0

Q1

Q2

RY (π) RY (1.77) RY (1.68) RY (1.65)

RY (2.30) RY (1.75) X X X X

RY (2.18) X X X X X X

Figure T01.1: Circuit implementation for brute force method.

Q0

Q1

Q2

RY (2.06) RY (0.40) RY (0.33) RY (0.35)

RY (2.03) RY (0.27)

RY (2.18)

Figure T01.2: Circuit implementation for multiplexor. The same probability density function that used for Figure
T01.1

results are stored. In table T01.2 an example of this attribute is shown. The mean and the sigma columns are the mean
and the standard deviation of normal distribution used, step 1 of the section 3.2. The step column corresponds to the
∆x as presented in step 3 of section 3.2.

n qbits load method qpu mean sigma step shots KS KL chi2 p value elapsed time quantum time
0 4 KPTree CLinalg 0.751392 1.247861 0.428570 20020 0.006791 0.000692 28.046995 0.021277 0.215811 0.210783

Table T01.2: Example of the pdf attribute from the LoadProbabilityDensity

The load probabilities.py script can be executed from the command line. Different arguments can be provided to
properly configure the PL algorithm and the BTC. For a usage guide, -h parameter can be provided. Listing T01.2
shows an example of how to use load probabilities.py from the command line. In this case, the number of qubits for
loading the PDF will be 6 and the multiplexors method will be used for building the correspondent operator.

1 python load_probabilities.py -n_qbits 6 -method multiplexor

Listing T01.2: Example of use the load probabilities.py script from command line.

data loading.py package

The data loading.py package contains all the auxiliary functions needed by the LoadProbabilityDensity of the
data loading.py package. All the functions of this module were obtained from QQuantLib library from NEASQC
Financial Applications software package.

Main functions of this package, shown in Listing T01.3, are get theoric probability, that builds the theoretical prob-
ability distribution Pnorm(x), and get qlm probability that deals with the building and execution of the mandatory
quantum circuit (using Atos myqlm) for getting the measured probability distribution Q.

1 def get_theoric_probability(n_qbits: int) -> (np.ndarray, np.ndarray, float, float, float, int):
2 """
3 Get the discretization of the PDF for N qubits
4 """
5 mean = random.uniform(-2., 2.)
6 sigma = random.uniform(0.1, 2.)
7

8 intervals = 2 ** n_qbits
9

10 ppf_min = 0.005
11 ppf_max = 0.995
12 norma = norm(loc=mean, scale=sigma)
13 x_ = np.linspace(norma.ppf(ppf_min), norma.ppf(ppf_max), num=intervals)
14 step = x_[1] - x_[0]

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.18 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

15

16 data = norma.pdf(x_)
17 data = data/np.sum(data)
18 mindata = np.min(data)
19 shots = min(1000000, max(10000, round(100/mindata)))
20 #data = np.sqrt(data)
21 return x_, data, mean, sigma, float(step), shots, norma
22

23 def get_qlm_probability(data, load_method, shots, qpu):
24 """
25 executing quantum stuff
26 """
27 if load_method == "multiplexor":
28 p_gate = load_probability(data, method="multiplexor")
29 elif load_method == "brute_force":
30 p_gate = load_probability(data, method="brute_force")
31 elif load_method == "KPTree":
32 p_gate = KPTree(np.sqrt(data)).get_routine()
33 else:
34 error_text = "Not valid load_method argument."\
35 "Select between: multiplexor, brute_force or KPTree"
36 raise ValueError(error_text)
37 tick = time.time()
38 result, circuit, _, _ = get_results(
39 p_gate,
40 linalg_qpu=qpu,
41 shots=shots
42)
43 tack = time.time()
44 quantum_time = tack - tick
45

46 if load_method == "KPTree":
47 #Use different order convention
48 result.sort_values(by="Int", inplace=True)
49 return result, circuit, quantum_time

Listing T01.3: Functions get theoric probability and get qlm probability from data loading.py package. script

utils module

The utils packages contain all mandatory auxiliary functions needed by the data loading.py package. All the functions
of this module were obtained from QQuantLib library from NEASQC Financial Applications software package.

A.1.2. my benchmark execution.py

This script is a modification of the correspondent template script located in tnbs/templates folder of the
WP3 Benchmark repository. Following the recommendations of Annex B of the deliverable D3.5: The NEASQC
Benchmark Suite the run code, compute samples, summarize results and the build iterator functions were mod-
ified. Meanwhile, the KERNEL BENCHMARK class was not modified. In the following sections, the software
adaptations for the PL Benchmark are presented.

run code

Listing T01.4 shows the modifications performed into the run code function for the PL Benchmark. The main
functionality is executing a BTC (section 3.2) for a fixed number of qubits (n qbits), that is provided as the first
element of the Python tuple iterator step, an input number of times (repetitions), and gathering all the mandatory
metrics obtained. The stage bench is a boolean variable that indicates if the step is executed in the pre-benchmark
(step 2.a in section 3.3) or in the benchmark stage (step 2.b in section 3.3). As can be seen, the LoadProbabilityDensity
class, listing T01.1, and its exe method is used for doing the different executions of the BTC.

1 def run_code(iterator_step, repetitions, stage_bench, **kwargs):
2 """
3 For configuration and execution of the benchmark kernel.
4

5 Parameters
6 ----------

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.19 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

7

8 iterator_step : tuple
9 tuple with elements from iterator built from build_iterator.

10 repetitions : list
11 number of repetitions for each execution
12 stage_bench : str
13 benchmark stage. Only: benchmark, pre-benchamrk
14 kwargs : keyword arguments
15 for configuration of the benchmark kernel
16

17 Returns
18 _______
19

20 metrics : pandas DataFrame
21 DataFrame with the desired metrics obtained for the
22 integral computation
23 save_name : string
24 Desired name for saving the results of the execution
25

26 """
27 from PL.load_probabilities import LoadProbabilityDensity, get_qpu
28 #if n_qbits is None:
29 # raise ValueError("n_qbits CAN NOT BE None")
30

31 if stage_bench not in [’benchmark’, ’pre-benchmark’]:
32 raise ValueError(
33 "Valid values for stage_bench: benchmark or pre-benchmark’")
34

35 if repetitions is None:
36 raise ValueError("repetitions CAN NOT BE None")
37

38 #Here the code for configuring and execute the benchmark kernel
39 kernel_configuration = deepcopy(kwargs.get("kernel_configuration", None))
40 if kernel_configuration is None:
41 raise ValueError("kernel_configuration can not be None")
42

43 # Here we built the dictionary for the LoadProbabilityDensity class
44 n_qbits = iterator_step[0]
45 list_of_metrics = []
46 kernel_configuration.update({"number_of_qbits": n_qbits})
47 kernel_configuration.update({"qpu": get_qpu(kernel_configuration[’qpu’])})
48 print(kernel_configuration)
49 for i in range(repetitions):
50 prob_dens = LoadProbabilityDensity(**kernel_configuration)
51 prob_dens.exe()
52 list_of_metrics.append(prob_dens.pdf)
53 metrics = pd.concat(list_of_metrics)
54 metrics.reset_index(drop=True, inplace=True)
55

56 if stage_bench == ’pre-benchmark’:
57 # Name for storing Pre-Benchmark results
58 save_name = "pre_benchmark_step_{}.csv".format(n_qbits)
59 if stage_bench == ’benchmark’:
60 # Name for storing Benchmark results
61 save_name = kwargs.get(’csv_results’)
62 #save_name = "pre_benchmark_step_{}.csv".format(n_qbits)
63 return metrics, save_name

Listing T01.4: run code function for BTC of the PL Kernel

compute samples

Listing T01.5 shows the implementation of the compute samples function for the PL Benchmark. The main ob-
jective is to codify a strategy for computing the number of times, the BTC should be executed, to get some desired
statistical significance for the different metrics (see 2.a.i and 2.a.ii of section 3.3). This function would implement
equations (T01.3.2) and (T01.3.3) and compute the corresponding maximum as explained in 2.b of section 3.3.

1 def compute_samples(**kwargs):
2 """
3 This functions computes the number of executions of the benchmark
4 for assure an error r with a confidence of alpha

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.20 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

5

6 Parameters
7 ----------
8

9 kwargs : keyword arguments
10 For configuring the sampling computation
11

12 Returns
13 _______
14

15 samples : pandas DataFrame
16 DataFrame with the number of executions for each integration interval
17

18 """
19 from scipy.stats import norm
20

21 #Configuration for sampling computations
22

23 #Desired Confidence level
24 alpha = kwargs.get("alpha", None)
25 if alpha is None:
26 alpha = 0.05
27 zalpha = norm.ppf(1-(alpha/2)) # 95% of confidence level
28

29 #geting the metrics from pre-benchmark step
30 metrics = kwargs.get("pre_metrics", None)
31 bench_conf = kwargs.get(’kernel_configuration’)
32

33 #Code for computing the number of samples for getting the desired
34 #statististical significance. Depends on benchmark kernel
35

36 #Desired Relative Error for the elapsed Time
37 relative_error = bench_conf.get("relative_error", None)
38 if relative_error is None:
39 relative_error = 0.05
40 # Compute samples for Elapsed Time
41 samples_t = (zalpha * metrics[[’elapsed_time’]].std() / \
42 (relative_error * metrics[[’elapsed_time’]].mean()))**2
43

44 #Desired Absolute Error for KS and KL metrics
45 absolute_error = bench_conf.get("absolute_error", None)
46 if absolute_error is None:
47 absolute_error = 1e-4
48 std_metrics = metrics[[’KS’, ’KL’]].std()
49 samples_m = (zalpha * std_metrics / absolute_error) ** 2
50

51 #Maximum number of sampls will be used
52 samples_ = pd.Series(pd.concat([samples_t, samples_m]).max())
53

54 #Apply lower and higher limits to samples
55 #Minimum and Maximum number of samples
56 min_meas = kwargs.get("min_meas", None)
57 if min_meas is None:
58 min_meas = 5
59 max_meas = kwargs.get("max_meas", None)
60 samples_.clip(upper=max_meas, lower=min_meas, inplace=True)
61 samples_ = samples_.max().astype(int)
62

63 #If user wants limit the number of samples
64 return samples_

Listing T01.5: compute samples function for codifying the strategy for computing the number of repetitions for the
PL Benchmark.

summarize results

Listing T01.6 shows the implementation of the summarize results function for the PL Benchmark. The main objec-
tive is post-processing the results of the complete Benchmark execution, as described in step 2.c of section 3.3.

This function expects that the results of the complete benchmark execution have been stored in a csv file. The function

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.21 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

loads this file into a pandas DataFrame that is post-processed properly.

1

2 def summarize_results(**kwargs):
3 """
4 Create summary with statistics
5 """
6

7 folder = kwargs.get("saving_folder")
8 csv_results = folder + kwargs.get("csv_results")
9 #Code for summarize the benchamark results. Depending of the

10 #kernel of the benchmark
11

12 pdf = pd.read_csv(csv_results, index_col=0, sep=";")
13 pdf["classic_time"] = pdf["elapsed_time"] - pdf["quantum_time"]
14 pdf = pdf[
15 ["n_qbits", "load_method", "KS", "KL", "chi2",
16 "p_value", "elapsed_time", "quantum_time"]
17]
18 results = pdf.groupby(["load_method", "n_qbits"]).agg(
19 ["mean", "std", "count"])
20

21 return results

Listing T01.6: summarize results function for summarizing the results from PL Benchmark

build iterator

Listing T01.7 shows the implementation of the build iterator function for the PL Benchmark. The main objective is
to create a Python iterator for executing the desired complete BTC. In this case, the iterator creates a list with all the
desired number of qubits, n, that want to be benchmarked.

1

2 def build_iterator(**kwargs):
3 """
4 For building the iterator of the benchmark
5 """
6

7 iterator = [tuple([i]) for i in kwargs[’list_of_qbits’]]
8 return iterator

Listing T01.7: build iterator function for creating the iterator of the complete execution of the PL Benchmark

KERNEL BENCHMARK class

No modifications were made to the KERNEL BENCHMARK class. This Python class defines the complete bench-
mark workflow, section 3.3, and its exe method executes it properly by calling the correspondent functions (run code,
compute samples, summarize results and build iterator). Each time the Benchmark is executed, as defined in section
3.3, the result is stored in a given CSV file.

The only mandatory modification is configuring properly the input keyword arguments, at the end of the
my benchmark execution.py script. These parameters will configure the PL algorithm, the complete benchmark
workflow and additional options (as the name of the CSV files).

Listing T01.8 shows an example for configuring an execution of a Benchmark. In this case, the multiplexor method
will be used for creating the loading operator. Additionally, the number of qubits to benchmark will be 4, 6, 8 and 10.

1 if __name__ == "__main__":
2

3 kernel_configuration = {
4 "load_method" : "multiplexor",
5 "qpu" : "c", #python, qlmass, default
6 "relative_error": None,
7 "absolute_error": None
8 }
9 name = "PL_{}".format(kernel_configuration["load_method"])

10

11 benchmark_arguments = {

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.22 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

12 #Pre benchmark configuration
13 "pre_benchmark": True,
14 "pre_samples": None,
15 "pre_save": True,
16 #Saving configuration
17 "save_append" : True,
18 "saving_folder": "./Results/",
19 "benchmark_times": "{}_times_benchmark.csv".format(name),
20 "csv_results": "{}_benchmark.csv".format(name),
21 "summary_results": "{}_SummaryResults.csv".format(name),
22 #Computing Repetitions configuration
23 "alpha": None,
24 "min_meas": None,
25 "max_meas": None,
26 #List number of qubits tested
27 "list_of_qbits": [4, 6, 8, 10],
28 }
29

30 #Configuration for the benchmark kernel
31 benchmark_arguments.update({"kernel_configuration": kernel_configuration})
32 ae_bench = KERNEL_BENCHMARK(**benchmark_arguments)
33 ae_bench.exe()

Listing T01.8: Example of configuration of a complete Benchmark execution. This part of the code should be located
at the end of the my benchmark execution.py script

As can be seen in Listing T01.8, the input dictionary that KERNEL BENCHMARK class needs, bench-
mark arguments, have several keys that allow to modify the benchmark workflow, like:

• pre benchmark: For executing or not the pre-benchmark step.

• pre samples: number of repetitions of the benchmark step.

• pre save: For saving or not the results from the pre-benchmark step.

• saving folder: Path for storing all the files generated by the execution of the KERNEL BENCHMARK class.

• benchmark times: name for the csv file where the initial and the final times for the complete benchmark execu-
tion will be stored.

• csv results: name for the csv file where the obtained metrics for the different repetitions of the benchmark step
will be stored (so the different metrics obtained during step 2 from section 3.3 will be stored in this file)

• summary results: name for the csv file where the post-processed results (using the summarize results) will be
stored (so the statistics over the metrics obtained during step 3 of section 3.3 will be stored in this file)

• list of qbits: list with the different number of qubits for executing the complete Benchmark.

• alpha: for configuring the desired confidence level α

• min meas: For low limiting the number of executions a benchmark step should be executed during the bench-
mark stage.

• max meas: For high limiting the number of executions a benchmark step should be executed during the bench-
mark stage.

Additionally, the kernel configuration key is used for configuring the probability loading algorithm and execution.
The following keys can be provided for configuring it:

• load method: a string for selecting the probability loading algorithm.

• qpu: a string for selecting the quantum process unit (QPU).

• relative error: for changing the desired relative error of the elapsed time metric.

• absolute error: for changing the desired absolute error for the KS and KL metrics.

In general, most of the keys should be fixed to None for executing the Benchmark according to the guidelines of the
PL Benchmark.

For executing the Benchmark following command should be used:
python my benchmark execution.py

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.23 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

A.2. Generation of the benchmark report

Following deliverable D3.5: The NEASQC Benchmark Suite the results of a complete Benchmark must be reported
in a separate JSON file that must satisfy the NEASQC JSON schema NEASQC.Benchmark.V2.Schema.json provided
into the aforementioned deliverable. For automating this process the following files should be modified, as explained
in Annex B of the deliverable D3.5: The NEASQC Benchmark Suite:

• my environment info.py

• my benchmark info.py

• my benchmark summary.py

• neasqc benchmark.py

my environment info.py

This script has the functions for gathering information about the hardware where the Benchmark is executed.

Listing T01.9 shows an example of the my environment info.py script. Here the compiled information corresponds
to a classic computer because the case was simulated instead of executed in a quantum computer.

1 import platform
2 import psutil
3 from collections import OrderedDict
4

5 def my_organisation(**kwargs):
6 """
7 Given information about the organisation how uploads the benchmark
8 """
9 #name = "None"

10 name = "CESGA"
11 return name
12

13 def my_machine_name(**kwargs):
14 """
15 Name of the machine where the benchmark was performed
16 """
17 #machine_name = "None"
18 machine_name = platform.node()
19 return machine_name
20

21 def my_qpu_model(**kwargs):
22 """
23 Name of the model of the QPU
24 """
25 #qpu_model = "None"
26 qpu_model = "QLM"
27 return qpu_model
28

29 def my_qpu(**kwargs):
30 """
31 Complete info about the used QPU
32 """
33 #Basic schema
34 #QPUDescription = {
35 # "NumberOfQPUs": 1,
36 # "QPUs": [
37 # {
38 # "BasicGates": ["none", "none1"],
39 # "Qubits": [
40 # {
41 # "QubitNumber": 0,
42 # "T1": 1.0,
43 # "T2": 1.00
44 # }
45 #],
46 # "Gates": [
47 # {
48 # "Gate": "none",
49 # "Type": "Single",

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.24 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

50 # "Symmetric": False,
51 # "Qubits": [0],
52 # "MaxTime": 1.0
53 # }
54 #],
55 # "Technology": "other"
56 # },
57 #]
58 #}
59

60 #Defining the Qubits of the QPU
61 qubits = OrderedDict()
62 qubits["QubitNumber"] = 0
63 qubits["T1"] = 1.0
64 qubits["T2"] = 1.0
65

66 #Defining the Gates of the QPU
67 gates = OrderedDict()
68 gates["Gate"] = "none"
69 gates["Type"] = "Single"
70 gates["Symmetric"] = False
71 gates["Qubits"] = [0]
72 gates["MaxTime"] = 1.0
73

74

75 #Defining the Basic Gates of the QPU
76 qpus = OrderedDict()
77 qpus["BasicGates"] = ["none", "none1"]
78 qpus["Qubits"] = [qubits]
79 qpus["Gates"] = [gates]
80 qpus["Technology"] = "other"
81

82 qpu_description = OrderedDict()
83 qpu_description[’NumberOfQPUs’] = 1
84 qpu_description[’QPUs’] = [qpus]
85

86 return qpu_description
87

88 def my_cpu_model(**kwargs):
89 """
90 model of the cpu used in the benchmark
91 """
92 #cpu_model = "None"
93 cpu_model = platform.processor()
94 return cpu_model
95

96 def my_frecuency(**kwargs):
97 """
98 Frcuency of the used CPU
99 """

100 #Use the nominal frequency. Here, it collects the maximum frequency
101 #print(psutil.cpu_freq())
102 #cpu_frec = 0
103 cpu_frec = psutil.cpu_freq().max/1000
104 return cpu_frec
105

106 def my_network(**kwargs):
107 """
108 Network connections if several QPUs are used
109 """
110 network = OrderedDict()
111 network["Model"] = "None"
112 network["Version"] = "None"
113 network["Topology"] = "None"
114 return network
115

116 def my_QPUCPUConnection(**kwargs):
117 """
118 Connection between the QPU and the CPU used in the benchmark
119 """
120 #
121 # Provide the information about how the QPU is connected to the CPU
122 #

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.25 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

123 qpuccpu_conn = OrderedDict()
124 qpuccpu_conn["Type"] = "memory"
125 qpuccpu_conn["Version"] = "None"
126 return qpuccpu_conn

Listing T01.9: Example of configuration of the my environment info.py script

In general, it is expected that for each computer used (quantum or classic), the Benchmark developer should change
this script to properly get the hardware info.

A.2.1. my benchmark info.py

This script gathers the information under the field Benchmarks of the benchmark report. Information about the soft-
ware, the compilers and the results obtained from an execution of the Benchmark is stored in this field.

Listing T01.10 shows an example of the configuration of the my benchmark info.py script for gathering the afore-
mentioned information.

1 import sys
2 import platform
3 import psutil
4 import pandas as pd
5 from collections import OrderedDict
6 from my_benchmark_summary import summarize_results
7

8

9 def my_benchmark_kernel(**kwargs):
10 """
11 Name for the benchmark Kernel
12 """
13 return "ProbabilityLoading"
14

15 def my_starttime(**kwargs):
16 """
17 Providing the start time of the benchmark
18 """
19 #start_time = "2022-12-12T16:46:57.268509+01:00"
20 times_filename = kwargs.get("times_filename", None)
21 pdf = pd.read_csv(times_filename, index_col=0)
22 start_time = pdf["StartTime"][0]
23 return start_time
24

25 def my_endtime(**kwargs):
26 """
27 Providing the end time of the benchmark
28 """
29 #end_time = "2022-12-12T16:46:57.268509+01:00"
30 times_filename = kwargs.get("times_filename", None)
31 pdf = pd.read_csv(times_filename, index_col=0)
32 end_time = pdf["EndTime"][0]
33 return end_time
34

35 def my_timemethod(**kwargs):
36 """
37 Providing the method for getting the times
38 """
39 time_method = "time.time"
40 return time_method
41

42 def my_programlanguage(**kwargs):
43 """
44 Getting the programing language used for benchmark
45 """
46 program_language = platform.python_implementation()
47 return program_language
48

49 def my_programlanguage_version(**kwargs):
50 """
51 Getting the version of the programing language used for benchmark
52 """
53 language_version = platform.python_version()

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.26 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

54 return language_version
55

56 def my_programlanguage_vendor(**kwargs):
57 """
58 Getting the version of the programing language used for benchmark
59 """
60 language_vendor = "Unknow"
61 return language_vendor
62

63 def my_api(**kwargs):
64 """
65 Collect the information about the used APIs
66 """
67 #api = OrderedDict()
68 #api["Name"] = "None"
69 #api["Version"] = "None"
70 #list_of_apis = [api]
71 modules = []
72 list_of_apis = []
73 for module in list(sys.modules):
74 api = OrderedDict()
75 module = module.split(’.’)[0]
76 if module not in modules:
77 modules.append(module)
78 api["Name"] = module
79 try:
80 version = sys.modules[module].__version__
81 except AttributeError:
82 #print("NO VERSION: "+str(sys.modules[module]))
83 try:
84 if isinstance(sys.modules[module].version, str):
85 version = sys.modules[module].version
86 #print("\t Attribute Version"+version)
87 else:
88 version = sys.modules[module].version()
89 #print("\t Methdod Version"+version)
90 except (AttributeError, TypeError) as error:
91 #print(’\t NO VERSION: ’+str(sys.modules[module]))
92 try:
93 version = sys.modules[module].VERSION
94 except AttributeError:
95 #print(’\t\t NO VERSION: ’+str(sys.modules[module]))
96 version = "Unknown"
97 api["Version"] = str(version)
98 list_of_apis.append(api)
99 return list_of_apis

100

101 def my_quantum_compilation(**kwargs):
102 """
103 Information about the quantum compilation part of the benchmark
104 """
105 q_compilation = OrderedDict()
106 q_compilation["Step"] = "None"
107 q_compilation["Version"] = "None"
108 q_compilation["Flags"] = "None"
109 return [q_compilation]
110

111 def my_classical_compilation(**kwargs):
112 """
113 Information about the classical compilation part of the benchmark
114 """
115 c_compilation = OrderedDict()
116 c_compilation["Step"] = "None"
117 c_compilation["Version"] = "None"
118 c_compilation["Flags"] = "None"
119 return [c_compilation]
120

121 def my_metadata_info(**kwargs):
122 """
123 Other important info user want to store in the final json.
124 """
125

126 metadata = OrderedDict()

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.27 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

127 #metadata["None"] = None
128 import pandas as pd
129 benchmark_file = kwargs.get("benchmark_file", None)
130 pdf = pd.read_csv(benchmark_file, header=[0, 1], index_col=[0, 1])
131 pdf.reset_index(inplace=True)
132 load_methods = list(set(pdf["load_method"]))
133 metadata["load_method"] = load_methods[0]
134

135 return metadata
136

137

138 def my_benchmark_info(**kwargs):
139 """
140 Complete WorkFlow for getting all the benchmar informated related info
141 """
142 benchmark = OrderedDict()
143 benchmark["BenchmarkKernel"] = my_benchmark_kernel(**kwargs)
144 benchmark["StartTime"] = my_starttime(**kwargs)
145 benchmark["EndTime"] = my_endtime(**kwargs)
146 benchmark["ProgramLanguage"] = my_programlanguage(**kwargs)
147 benchmark["ProgramLanguageVersion"] = my_programlanguage_version(**kwargs)
148 benchmark["ProgramLanguageVendor"] = my_programlanguage_vendor(**kwargs)
149 benchmark["API"] = my_api(**kwargs)
150 benchmark["QuantumCompililation"] = my_quantum_compilation(**kwargs)
151 benchmark["ClassicalCompiler"] = my_classical_compilation(**kwargs)
152 benchmark["TimeMethod"] = my_timemethod(**kwargs)
153 benchmark["Results"] = summarize_results(**kwargs)
154 benchmark["MetaData"] = my_metadata_info(**kwargs)
155 return benchmark

Listing T01.10: Example of configuration of the my benchmark info.py script

The my benchmark info function gathers all the mandatory information needed by the Benchmarks main field of the
report (by calling the different functions listed in listing T01.10). To properly fill this field some mandatory information
must be provided as the typical python kwargs:

• times filename: This is the complete path to the file where the starting and ending time of the benchmark was
stored. This file must be a csv one and it is generated when the KERNEL BENCHMARK class is executed.
This information is used by the my starttime and my endtime functions.

• benchmark file: complete path where the file with the summary results of the benchmark are stored. This in-
formation is used by the summarize results function from my benchmark summary.py script (see section A.2.2)
and for the my metadata info function for filling the MetaData sub-field of Benchmarks main field of the report.
This MetaData sub-field reports the method used for creating the PL operator. This field is not mandatory,
following the JSON schema NEASQC, but it is important to get good traceability of the Benchmark results.

A.2.2. my benchmark summary.py

In this script, the summarize results function is implemented. This function formats the results of a complete execution
of a PL Benchmark with a suitable NEASQC benchmark report format. It can be used for generating the information
under the sub-field Results of the main field Benchmarks in the report.

Listing T01.11 shows an example of implementation of summarize results function for the PL Benchmark.

1

2 from collections import OrderedDict
3 import psutil
4

5 def summarize_results(**kwargs):
6 """
7 Mandatory code for properly present the benchmark results following
8 the NEASQC jsonschema
9 """

10

11 #n_qbits = [4]
12 #Info with the benchmark results like a csv or a DataFrame
13 #pdf = None
14 #Metrics needed for reporting. Depend on the benchmark kernel
15 #list_of_metrics = ["MRSE"]

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.28 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

16

17 import pandas as pd
18 benchmark_file = kwargs.get("benchmark_file", None)
19 pdf = pd.read_csv(benchmark_file, header=[0, 1], index_col=[0, 1])
20 pdf.reset_index(inplace=True)
21 n_qbits = list(set(pdf["n_qbits"]))
22 load_methods = list(set(pdf["load_method"]))
23 list_of_metrics = [
24 "KS", "KL",
25 "chi2", "p_value"
26]
27

28 results = []
29 #In the Probability Loading benchmark several qubits can be tested
30 for n_ in n_qbits:
31 #For selecting the different loading method using in the benchmark
32 for method in load_methods:
33 #Fields for benchmark test of a fixed number of qubits
34 result = OrderedDict()
35 result["NumberOfQubits"] = n_
36 result["QubitPlacement"] = list(range(n_))
37 result["QPUs"] = [1]
38 result["CPUs"] = psutil.Process().cpu_affinity()
39

40 #Select the proper data
41 step_pdf = pdf[(pdf["load_method"] == method) & (pdf["n_qbits"] == n_)]
42

43 #result["TotalTime"] = 10.0
44 #result["SigmaTotalTime"] = 1.0
45 #result["QuantumTime"] = 9.0
46 #result["SigmaQuantumTime"] = 0.5
47 #result["ClassicalTime"] = 1.0
48 #result["SigmaClassicalTime"] = 0.1
49

50 result["TotalTime"] = step_pdf["elapsed_time"]["mean"].iloc[0]
51 result["SigmaTotalTime"] = step_pdf["elapsed_time"]["std"].iloc[0]
52 result["QuantumTime"] = step_pdf["quantum_time"]["mean"].iloc[0]
53 result["SigmaQuantumTime"] = step_pdf["quantum_time"]["std"].iloc[0]
54 result["ClassicalTime"] = step_pdf["classic_time"]["mean"].iloc[0]
55 result["SigmaClassicalTime"] = step_pdf["classic_time"]["std"].iloc[0]
56 #For identify the loading method used. Not mandaatory but
57 #useful for identify results
58 result["load_method"] = method
59

60 metrics = []
61 #For each fixed number of qbits several metrics can be reported
62 for metric_name in list_of_metrics:
63 metric = OrderedDict()
64 #MANDATORY
65 metric["Metric"] = metric_name
66 #metric["Value"] = 0.1
67 #metric["STD"] = 0.001
68 metric["Value"] = step_pdf[metric_name]["mean"].iloc[0]
69 metric["STD"] = step_pdf[metric_name]["std"].iloc[0]
70 #Depending on the benchmark kernel
71 metric["COUNT"] = int(step_pdf[metric_name]["count"].iloc[0])
72 metrics.append(metric)
73 result["Metrics"] = metrics
74 results.append(result)
75 return results

Listing T01.11: Example of configuration of the summarize results function for PL benchmark

As usual, the kwargs strategy is used for passing the arguments that the function can use. In this case, the only
mandatory argument is benchmark file with the path to the file where the summary results of the Benchmark execution
were stored.

Table T01.3 shows the sub-fields and the information stored, under the Results field. To have proper traceability of the
executions the sub-field load method was created explicitly for the PL Benchmark.

The sub-field Metrics gathers information about the obtained metrics of the benchmark. Table T01.4 shows its different
sub-fields and the information stored.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.29 of T01.30

T01 Benchmark for Probability Loading Algorithms (1.0- Submitted)

sub-field information
NumberOfQubits number of qubits, n
TotalTime mean of elapsed time
SigmaTotalTime standard deviation of elapsed time
QuantumTime mean of the quantum time
SigmaQuantumTime standard deviation of quantum time
ClassicalTime mean of the classical time
SigmaClassicalTime standard deviation of classical time
load method method used for loading probability (brute force, multiplexor or KPTree)
Metrics summarize verification metrics. See Table T01.4

Table T01.3: Sub-fields of the Results fields of the TNBS benchmark report.

sub-field information
metric KS, KL, chi2 (χ2) or p value
Value mean value of the metric
STD standard deviation of the metric
Count number of samples for computing the statistics of the metric

Table T01.4: Sub-fields of the Metrics field.

A.2.3. neasqc benchmark.py

The neasqc benchmark.py script can be used straightforwardly for gathering all the Benchmark execution information
and results, for creating the final mandatory NEASQC benchmark report.

It does not necessarily change anything about the class implementation. It is enough to update the information of the
kwargs arguments for providing the mandatory files for gathering all the information.

In this case, the following information should be provided as arguments for the exe method of the BENCHMARK
class:

• times filename: complete path where the file with the times of the Benchmark execution was stored.

• benchmark file: complete path where the file with the summary results of the Benchmark execution was stored.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T01.30 of T01.30

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

D.T02: Benchmark for Amplitude Estimation Algorithms

© 2023 NEASQC Consortium Partners. All rights reserved. Page 67 of 178

NExt ApplicationS of Quantum Computing
Benchmark Suite

T02: Benchmark for Amplitude Estimation
Algorithms

Document Properties

Contract Number 951821

Contractual Deadline 31/10/2023

Dissemination Level Public

Nature Test Case Definition

Editors Gonzalo Ferro (neasqc@cesga.es), CESGA

Authors Gonzalo Ferro, CESGA
Andrés Gómez, CESGA
Diego Andrade, CITIC-UDC

Reviewers Cyril Allouche, EVIDEN
Arnaud Gazda, EVIDEN

Date 27/10/2023

Category Generic

Keywords

Status Submitted

Release 1.0

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

History of Changes

Release Date Author, Organisation Description of Changes

0.1 04/01/2023 Gonzalo Ferro, CESGA;
Andrés Gómez, CESGA

First version

0.2 26/01/2023 Gonzalo Ferro, CESGA
Andrés Gómez, CESGA
Diego Andrade, CITIC-
UDC

Reordering sections and rewording

0.3 07/02/2023 Gonzalo Ferro, CESGA Minor corrections and some documentation im-
provements

0.4 25/08/2023 Gonzalo Ferro, CESGA Minor corrections and some documentation im-
provements

0.5 08/10/2023 Andrés Gómez, CESGA Formatting

1.0 24/10/2023 Gonzalo Ferro, CESGA Fixing the naming according to the Glossary of
deliverable 3.5

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.2 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

Table of Contents

1. Introduction T02.4

2. Description of the kernel: Amplitude Estimation T02.5
2.1. Kernel selection justification . T02.5
2.2. Kernel Description . T02.5

2.2.1. Monte Carlo Solution . T02.6
2.2.2. Canonical AE solution with Quantum Phase Estimation T02.6
2.2.3. Amplitude Estimation without Phase Estimation . T02.7

3. Description of the benchmark test case T02.9
3.1. Description of the problem . T02.9
3.2. Benchmark test case description . T02.9

3.2.1. Domain Discretization . T02.10
3.2.2. Function discretization . T02.10
3.2.3. Array Normalisation . T02.10
3.2.4. Encoding function into a quantum circuit . T02.10
3.2.5. Amplitude Estimation Algorithm . T02.13
3.2.6. Getting the metrics . T02.13
3.2.7. Summary of the BTC for AE Kernel . T02.13

3.3. Complete benchmark procedure . T02.14
3.4. Benchmark report . T02.15

List of Acronyms T02.16

List of Figures T02.17

List of Tables T02.18

List of Listings T02.19

Bibliography T02.20

A. NEASQC test case reference T02.21
A.1. NEASQC implementation of BTC. T02.21

A.1.1. Computing integrals using the QQuantLib from NEASQC Financial Applications T02.21
A.1.2. ae sine integral.py . T02.26
A.1.3. my benchmark execution.py . T02.29

A.2. Generation of the benchmark report . T02.33
A.2.1. my benchmark info.py . T02.36
A.2.2. my benchmark summary.py . T02.38
A.2.3. neasqc benchmark.py . T02.39

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.3 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

1.Introduction

This document describes the T2:Amplitude Estimation benchmark of The NEASQC Benchmarking Suite (TNBS).
This document must be read in companion with the document that describes the TNBS: D3.5: The NEASQC Bench-
mark Suite.

Section 2 describes properly the selected Amplitude Estimation Kernel, AE Kernel from now. With each TNBS
Kernel, a Benchmark Test Case (BTC) must be designed and documented. This is done in Section 3. Finally, the
benchmarking methodology aims to develop a complete software implementation of the Benchmark using the Eviden
myQLM library. A complete documentation of this implementation is provided in Annex A.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.4 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

2.Description of the kernel: Amplitude Estimation

The present section describes the AE Kernel for the TNBS. Section 2.1 justifies kernel selection according to the
TNBS benchmarking methodology meanwhile section 2.2 presents a complete description of this AE Kernel.

2.1. Kernel selection justification

The AE Kernel is a core step in quantum computation for various applications like finance (Gómez et al., 2022;
Rebentrost et al., 2018; Woerner & Egger, 2019), chemistry (Aspuru-Guzik et al., 2005; Knill et al., 2007), machine
learning (Wiebe et al., 2015, 2016) and, even, can be used for generic tasks such as numeric integration (Montanaro,
2015). For executing AE Kernel, different algorithm approaches, AE algorithms from now, were proposed recently
(Brassard et al., 2000; Grinko et al., 2021; Lu & Lin, 2023; Manzano et al., 2023; Suzuki et al., 2020; Uno et al., 2021;
Zhao et al., 2022). So the AE Kernel can be considered as an interesting candidate for TNBS Kernel. Additionally,
it satisfies the three main requirements from the NEASQC benchmark methodology:

1. A mathematical definition of the Kernel can be given with enough accuracy to allow the construction of a
standalone circuit (see sections 2.2 and 3.2).

2. The Kernel can be defined using a smaller or larger number of qubits.

3. The output can be verified with a classical computation (in the proposed BTC, see section 3, the result is known
a priori)

2.2. Kernel Description

The AE Kernel, also know as the Amplitude Estimation problem, can be defined in the following way:

Let an unitary operator A that acts upon an initial n-qubits state |0⟩n = |0⟩⊗n as shown in equation (T02.2.1):

|Ψ⟩ = A|0⟩n =

2n−1∑

i=0

ai|i⟩n (T02.2.1)

Now we are interested in the sub-state composed by some basis states J = {j0, j1, · · · , jl}, so we can write down
(T02.2.2):

|Ψ⟩ = A|0⟩n =
∑

j∈J

aj |j⟩n +
∑

i/∈J

ai|i⟩n (T02.2.2)

If we define the sub-states |Ψ0⟩ and |Ψ1⟩ using (T02.2.3):

|Ψ0⟩ =
1√
a

∑

j∈J

aj |j⟩n and |Ψ1⟩ =
1√
1− a

2n−1∑

i/∈J

ai|i⟩n (T02.2.3)

The final |Ψ⟩ can be expressed as (T02.2.4):

|Ψ⟩ = A|0⟩n =
√
a|Ψ0⟩+

√
1− a|Ψ1⟩ (T02.2.4)

The AE Kernel consists in getting an estimation of the amplitude of |Ψ0⟩: a.

The following subsections present different approaches for solving the AE Kernel.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.5 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

2.2.1. Monte Carlo Solution

One naive procedure for solving AE Kernel, Monte Carlo solution from now, is measuring all the qubits N times and
getting the probability of obtaining the desired state |Ψ0⟩. In this case the estimator of a, ã, will be given by equation
(T02.2.5):

ã = P|Ψ0⟩ =
Number of times |Ψ0⟩ was measured

N
(T02.2.5)

The error ϵa of this ã estimator can be obtained using the Chernoff-Hoeffding (Hoeffding’s inequality, 2004) bound
(T02.2.6):

P [ã ∈ |aj − ϵa, aj + ϵa|] ≥ 2e−2Nϵ2a (T02.2.6)

So if we want P [ã ∈ |aj − ϵa, aj + ϵa|] ≥ α (α ∈ [0, 1]) then the error is given by (T02.2.7):

ϵ2a ≤ 1

2N
Ln[

2

α
] (T02.2.7)

So the error for the estimator ã has the following behaviour with the number of measurements N :

ϵa ∼ 1√
N

(T02.2.8)

Usually, for the AE Kernel, instead of the number of measurements, the number of calls to the oracle (this is the
operator A), Noracle, is used. In the Monte Carlo solution: N = Noracle, so equation (T02.2.8) can be rewritten as
equation (T02.2.9)

ϵa ∼ 1√
Noracle

(T02.2.9)

2.2.2. Canonical AE solution with Quantum Phase Estimation

In equation (T02.2.4) the following substitution:
√
a = sin (θ) can be performed and equation (T02.2.10) can be

obtained:

|Ψ⟩ = A|0⟩n =
√
a|Ψ0⟩+

√
1− a|Ψ1⟩ = sin (θ) |Ψ0⟩+ cos (θ) |Ψ1⟩ (T02.2.10)

Now a Grover-like operator (Brassard et al., 2000) based on A, can be built following equation (T02.2.11):

G(A) = A
(
Î − 2|0⟩⟨0|

)
A†
(
Î − 2|Ψ0⟩⟨Ψ0|

)
(T02.2.11)

This Grover-like operator acts as shown in equation (T02.2.12):

Gk(A)|Ψ⟩ = Gk(A)A|0⟩n = sin
(
(2k + 1)θ

)
|Ψ0⟩+ cos

(
(2k + 1)θ

)
|Ψ1⟩ (T02.2.12)

being k the number of times that operator G is applied.

The canonical Quantum Amplitude Estimation solution for AE problem, uses the Quantum Phase Estimation algo-
rithm, QPE, (Brassard et al., 2000) over the operator G(A) for computing ã. This algorithm allocates m auxiliary
qubits and applies, over |Ψ⟩, geometrically increasing controlled, by the different auxiliary qubits, powers of G as
shown in the Figure T02.1

Finally, the complex conjugate of the Quantum Fourier Transformation (QFT † in Figure T02.1) is applied over the
auxiliary qubits, that will be measured generating an integer y ∈ {0, 1, ...M − 1}, where M = 2m. This integer can
be mapped to an angle using:

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.6 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

. . .

. . .

. . .

. . .

|0⟩⊗m

H

QFT † y
H

H

|0⟩⊗n
A G2m−1

G2m−2

G20

Figure T02.1: Canonical Amplitude Estimation using Quantum Phase Estimation.

θ̃ =
yπ

2m
(T02.2.13)

In this case the estimation will be ã = sin2(θ̃). With a probability of at least 8
π2 ∼ 81% the error of the estimator will

be given by (T02.2.14) (Brassard et al., 2000):

ϵ = |ã− a| ≤ 2π
√
a(1− a)

M
+

π2

M2
(T02.2.14)

So in this case the error for the estimator ã scales with:

ϵa ∼ 1

M
(T02.2.15)

The number of auxiliary qbits, m, is related to the number of oracle calls by equation (T02.2.16):

M = 2m =
Noracle + 1

2
(T02.2.16)

By plugging (T02.2.16) into (T02.2.15), the error for the canonical Quantum Amplitude Estimation algorithm can be
obtained as a function of the number of oracle calls (T02.2.17):

ϵa ∼ 2

Noracle + 1
∼ 1

Noracle
(T02.2.17)

This approach yields a quadratic speed up over the Monte Carlo method (T02.2.9).

2.2.3. Amplitude Estimation without Phase Estimation

Canonical Quantum Amplitude Estimation is computationally expensive and presents some caveats to be implemented
in current quantum computers. However, there are several algorithms that can solve the AE problem, without the use
of QPE, where the error of the ã estimation, ϵa, scales between Monte Carlo and Canonical Quantum Amplitude
Estimation one, this is:

1

Noracle
< ϵa <

1√
Noracle

(T02.2.18)

The main idea of these algorithms is to take advantage of the fact:

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.7 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

Gk|Ψ⟩ = GkA|0⟩n = sin
(
(2k + 1)θ

)
|Ψ0⟩+ cos

(
(2k + 1)θ

)
|Ψ1⟩ (T02.2.19)

And in the use of very smart strategies for selecting k to maximize the probability of measuring the |Ψ0⟩:

P [|Ψ0⟩] = sin2
(
(2k + 1)θ

)
(T02.2.20)

The TNBS AE Kernel is agnostic to the algorithm used for solving it, so it can be used for testing not only quantum
computers devices, it can be used for testing different AE algorithms.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.8 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

3.Description of the benchmark test case

This section presents the complete description of the BTC for the AE Kernel. The main idea is the computation of
the integral of a particular function, in a well-defined interval, using some particular implementation, usually an AE
algorithm, of the AE Kernel.

Section 3.1 presents the base problem, integral computation, of the BTC in a formal way. Section 3.2 describes,
exhaustively, how the BTC should be implemented from a formal perspective. Section 3.3 provides the workflow
for complete execution of AE Benchmark. Finally, section 3.4 documents how the results of an execution of the
Benchmark must be reported.

3.1. Description of the problem

The computation of the integral of a function, f(x), in a closed interval [a, b] ⊂ R, is the proposed BTC for AE
Kernel.

An operator A must be constructed in such a way that the desired integral: F,

F =

∫ b

a

f(x)dx (T02.1.1)

must be encoded into the amplitude of a very well-defined state. This is, the operator A must act as showed in equation
(T02.1.2)

|Ψ⟩ = A|0⟩n =
√
a|Ψ0⟩+

√
1− a|Ψ1⟩ (T02.1.2)

where
√
a = F

This A operator must be given as input to an AE algorithm, that must return the estimation of the F̃. To evaluate the
performance of the operator the estimator should be compared to the actual integral value F

The proposed function for the BTC is f(x) = sinx, whose integral can be calculated easily as (T02.1.3):

F =

∫ b

a

sin(x)dx = − cosx|ba = cos(a)− cos(b) (T02.1.3)

and the two following integration intervals will be used:

• [0, 3π8]: F0 =
∫ 3π

8

0
sin(x)dx = 0.6173165676349102. This computation will be mandatory .

• [π, 5π4]: F1 =
∫ 5π

4

π
sin(x)dx = −0.2928932188134523. This computation will be optional.

In summary, for the BTC, an operator A0 must be built and a particular AE algorithm must compute and report the
integral F0. Additionally, a second A1 operator can be built and the corresponding integral F1 can be reported.

3.2. Benchmark test case description

This section presents a complete mathematical description of the BTC for the AE Kernel.

The BTC proposed requires a set of steps that are explained in detail in Sections 3.2.1-3.2.4, namely: the discretization
of the domain and the function, the normalization of the array, and the encoding of the function as a quantum circuit.
Section 3.2.6 describes the metrics used to verify the output of the circuit, and Section 3.2.7 describes the general
workflow of the BTC including the steps described before.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.9 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

3.2.1. Domain Discretization

The first step is the discretization of each domain in 2n intervals, with n ∈ N as shown in (T02.2.4):

{[x0, x1], [x1, x2], ..., [x2n−1, x2n]} (T02.2.4)

Where

• xi+1 > xi

• a = x0

• b = x2n

3.2.2. Function discretization

For each domain, the following array with the discretization of the desired function, f(x) = sin(x), must be computed:

fxi
=
f(xi+1) + f(xi)

2

The desired integral, for each interval, can be approximated as Riemann sum (T02.2.5):

S[a,b] =
2n−1∑

i=0

fxi
· (xi+1 − xi) (T02.2.5)

Using xi+1 − xi =
b−a
2n then we can write down (T02.2.5) as:

S[a,b] =

2n−1∑

i=0

fxi

b− a

2n
=
b− a

2n

2n−1∑

i=0

fxi (T02.2.6)

When (xi+1 − xi) → 0 (i.e., n→ ∞), S[a,b] → F =
∫ b

a
sin(x)dx

3.2.3. Array Normalisation

A normalization step, over the fxi array, must be performed before creating the operator A that will encode the function
into a quantum circuit. This should be done using (T02.2.7):

fnormxi
=

fxi

max(|fxi |)
(T02.2.7)

Now the computed integral will be

S[a,b] =
b− a

2n

2n−1∑

i=0

fxi =
b− a

2n

2n−1∑

i=0

max(|fxi |)fnormxi
=

max(|fxi
|)(b− a)

2n

2n−1∑

i=0

fnormxi
(T02.2.8)

3.2.4. Encoding function into a quantum circuit

The next step is to codify fnormxi
array in a quantum circuit. The following procedure must be used:

1. Initialize a quantum register with at least n + 1 qubits1, where n must be equal to the n used to define the 2n

discretization intervals (see section 3.2.1):

|0⟩ ⊗ |0⟩n (T02.2.9)
1Additional auxiliary qubits may be used

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.10 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

2. Apply the uniform distribution over the first n qubits as shown in (T02.2.10):

(
I ⊗H⊗n

)(
|0⟩ ⊗ |0⟩n

)
= |0⟩ ⊗H⊗n|0⟩n =

1√
2n

2n−1∑

i=0

|0⟩ ⊗ |i⟩n (T02.2.10)

3. Create an operator Uf for encoding the fnormxi
. This operator must act as shown in (T02.2.11):

Uf (|0⟩ ⊗ |i⟩n) =
(
fnormxi

|0⟩+ βi|1⟩
)
⊗ |i⟩n (T02.2.11)

4. Apply the Uf operator over the n+ 1 qubits:

Uf

(
I ⊗H⊗n

)
|0⟩ ⊗ |0⟩n (T02.2.12)

5. Applying equation (T02.2.10) and (T02.2.11) into (T02.2.12) equation (T02.2.13) is obtained:

Uf

(
I ⊗H⊗n

)
|0⟩ ⊗ |0⟩n = Uf

(
1√
2n

2n−1∑

i=0

|0⟩ ⊗ |i⟩n
)

=

=
1√
2n

2n−1∑

i=0

Uf (|0⟩ ⊗ |i⟩n) =
1√
2n

2n−1∑

i=0

(
fnormxi

|0⟩+ βi|1⟩
)
⊗|i⟩n

(T02.2.13)

6. In equation (T02.2.13) the amplitude βi is not important.

7. Finally the uniform distribution is applied over the first n qubits again as shown in (T02.2.14):

|Ψ⟩ =
(
I ⊗H⊗n

)
Uf

(
I ⊗H⊗n

)
|0⟩ ⊗ |0⟩n (T02.2.14)

8. So applying (T02.2.13) into (T02.2.14) the equation (T02.2.15) can be obtained:

|Ψ⟩ =
(
I ⊗H⊗n

)
Uf

(
I ⊗H⊗n

)
|0⟩ ⊗ |0⟩n =

1√
2n

2n−1∑

i=0

(
fnormxi

|0⟩+ βi|1⟩
)
⊗H⊗n|i⟩n (T02.2.15)

9. Taking into account only the |0⟩ ⊗ |i⟩n terms, equation (T02.2.15) can be expressed as (T02.2.16):

|Ψ⟩ =
(
I ⊗H⊗n

)
Uf

(
I ⊗H⊗n

)
|0⟩ ⊗ |0⟩n =

1√
2n

2n−1∑

i=0

fnormxi
|0⟩ ⊗H⊗n|i⟩n + · · · (T02.2.16)

10. It is known that:

H⊗n =
1√
2n

2n∑

j=0

2n∑

k=0

(−1)jk|j⟩nn⟨k| (T02.2.17)

11. So H⊗n|i⟩n can be expressed using equation (T02.2.18):

H⊗n|i⟩n =
1√
2n

2n∑

j=0

2n∑

k=0

(−1)jk|j⟩nn⟨k|i⟩n =
1√
2n

2n∑

j=0

(−1)ji|j⟩n =
1√
2n

|0⟩n +
1√
2n

2n∑

j=1

(−1)ji|j⟩n

(T02.2.18)

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.11 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

12. Finally applying (T02.2.18) into (T02.2.16) and taking only into account the |0⟩⊗|0⟩n term, equation (T02.2.19)
can be obtained:

|Ψ⟩ =
(
I ⊗H⊗n

)
Uf

(
I ⊗H⊗n

)
|0⟩ ⊗ |0⟩n =

1

2n

2n−1∑

i=0

fnormxi
|0⟩ ⊗ |0⟩n + · · · (T02.2.19)

Using the previous steps, two different operators AI(fxi) must be created following equation (T02.2.20):

AI(fxi) =
(
I ⊗H⊗n

)
UI

f

(
I ⊗H⊗n

)
(T02.2.20)

where the superscript I can take 0 or 1 depending on the domain integration interval

Using (T02.2.19) the behaviour of such operators will be:

|Ψ⟩ = AI(fxi)|0⟩ ⊗ |0⟩n =
1

2n

2n−1∑

i=0

fnormxi
|0⟩ ⊗ |0⟩n + · · · (T02.2.21)

Equation (T02.2.21) can be compared with the equation (T02.2.10):

|Ψ⟩ = A|0⟩n =
√
a|Ψ0⟩+

√
1− a|Ψ1⟩

where

|Ψ0⟩ = |0⟩ ⊗ |0⟩n

and

√
a =

1

2n

2n−1∑

i=0

fnormxi

Now the Riemann sum approximation of the desired integral can be computed by measuring the probability of obtain-
ing the state |Ψ0⟩ = |0⟩ ⊗ |0⟩n as shown in (T02.2.22)

P[|Ψ0⟩] = | ⟨Ψ0 |Ψ⟩ |2 =

∣∣∣∣∣ ⟨Ψ0 |
1

2n

2n−1∑

i=0

fnormxi
|Ψ0⟩

∣∣∣∣∣

2

=

∣∣∣∣∣
1

2n

2n−1∑

i=0

fnormxi

∣∣∣∣∣

2

= ã (T02.2.22)

The ∼ in ã indicates that the amplitude was obtained using a quantum measurement.

Now, plugging (T02.2.22) into the Riemann sum (T02.2.8) the desired integral can be computed as (T02.2.23)

S̃[a,b] =
max(fxi

) (b− a)

2n

(
2n
√

P[|Ψ0⟩]
)

(T02.2.23)

In (T02.2.23) the ∼ in S̃[a,b] indicates that the integral was obtained using a measurement meanwhile the S[a,b] is for
pure Riemann sum calculation as shown in (T02.2.6).

The 2n terms can be removed from the equation but they will be kept for the moment.

3.2.4.1. Operator Uf

This subsection describes the steps for building the Uf operator, equation (T02.2.11):

• The following array must be computed: ϕxi
= arccos(fnormxi

), using the values of array fnormxi
.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.12 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

• For a given state |i⟩n⊗|0⟩, it must be implemented a rotation around the y-axis over the last qubit, |0⟩, controlled
by the state |i⟩n of 2 ∗ ϕxi

. So the following operation must be built:

|0⟩ ⊗ |i⟩n → Ry(2 ∗ ϕxi
)|0⟩ ⊗ |i⟩n = (cos(ϕxi

)|0⟩+ sin(ϕxi
)|1⟩)⊗ |i⟩n (T02.2.24)

• Now undoing the ϕxi and doing βi = sin(ϕxi) the desired operator Uf can be obtained by:
(
fnormxi

|0⟩+ βi|1⟩
)
⊗ |i⟩n = Uf (|0⟩ ⊗ |i⟩n) (T02.2.25)

So the operator Uf can be constructed following equations (T02.2.24) and (T02.2.25) that can be summarized into
(T02.2.26):

Uf (|0⟩ ⊗ |i⟩n) =
(
Ry(2 ∗ ϕxi)|0⟩

)
⊗ |i⟩n (T02.2.26)

The Uf is a controlled rotation by state. The recommended way for implementing it, is using quantum multiplexors
(Shende et al., 2006). A direct implementation of this operator can be used but, in general, deeper circuits with
redundant operations are obtained concerning the quantum multiplexors implementation.

3.2.5. Amplitude Estimation Algorithm

As shown in section 3.2.4 the two AI operators allow to encode each correspondent integral in the amplitude of the
state |0⟩ ⊗ |0⟩n.

For a given AE algorithm:

• Operator A0 must be provided as input of the AE algorithm and the obtained S̃0
[a,b] integral must be reported as

output.

• Additionally, operator A1 can be provided as input of the AE algorithm and the obtained S̃1
[a,b] integral can be

reported as output.

Note: in general most AE algorithms use the Grover-like operator of A, equation (T02.2.11), for solving the AE
problem. The AE Kernel and the correspondent BTC presented in this document are agnostic to Grover operators.
The only mandatory input is the operator A.

3.2.6. Getting the metrics

The quality of the AE estimation of the integrals obtained in the previous steps, S̃I
[a,b] (where I = {0, 1} stands for

each of the intervals where the integral can be computed) must be evaluated using the following metrics:

• Integral Absolute Error metric: absolute difference between the AE estimator and the Riemann sum (see
equation (T02.2.6)): IAE = |S̃I

[a,b] − S[aI ,bI]|

• Oracle calls: total number of calls of the operator AI . BE AWARE: The number of shots should be taken into
account in this calculation.

3.2.7. Summary of the BTC for AE Kernel

A step-by-step workflow of the BTC for the AE Kernel, with references to the before-explained components, is
presented here.

For a desired number of qubits and one of the integration intervals, described in Section 3.1, the following steps must
be executed:

1. Create the domain discretization as explained in Section 3.2.1

2. Create the array with the correspondent sine function discretization as explained in Section 3.2.2

3. Compute normalization of the array as explained in Section 3.2.3

4. Create the AI oracle operator for encoding the array as explained in Section 3.2.4

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.13 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

5. Using the AI oracle operator as input of the AE algorithm for computing the estimation of ã, see equation
(T02.2.22).

6. Post-process the result of the AE algorithm for getting the estimation of the integral as explained in Section 3.2.6
and in equation (T02.2.23)

7. Compute the desired metrics as explained in Section 3.2.6

Additionally, the following times should be computed:

• elapsed time: the complete BTC step time, from step 1 to step 7.

• run time: the execution time of the Amplitude Estimation algorithm, time of step 5.

• quantum time: If possible, the time of the pure quantum part of the algorithm should be registered.

BE AWARE. A few words should be mentioned about the number of shots that should be used in the AE Kernel
BTC. The number of shots in general will depend on the AE algorithm used so it won’t be requested as a fixed input
of the BTC but for the computation of the Oracle Calls must be done taking it into account.

3.3. Complete benchmark procedure

To execute a complete AE Benchmark following steps should be done:

1. A range of a number of qubits should be selected (for example from n=4 to n=8).

2. Depending on the AE algorithm it should be selected if only the first integral interval, or both, will be tested.

3. For each selected number of qubits and the desired integration interval, the following steps should be executed:

a) Execute a warm-up step consisting of:

i. Executing 10 iterations of the BTC, as explained in subsection 3.2.7, compute the mean, µ, and
the standard deviation, σ, for the number of Oracle calls, (µcalls, σcalls) and for the elapsed time,
(µt, σt). Additionally, compute the standard deviation for Integral Absolute Error, σIAE .

ii. Compute the number of mandatory repetitions, Mm with m = {calls, t}, for having a relative error
of 5 %, r = 0.05, for the Oracle calls and for the elapsed time, with a confidence level of 95 %,
α = 0.05, following (T02.3.27), where Z1−α

2
is the percentile for α.

Mm =
(σmZ1−α

2

rµm

)2
(T02.3.27)

iii. Compute the number of mandatory repetitions, MIAE for having an absolute error of ϵ = 10−4, for
the Integral Absolute Error metric, with a confidence level of 95 %, α = 0.05, following (T02.3.28),
where Z1−α

2
is the percentile for α.

MIAE =
(σIAEZ1−α

2

ϵ

)2
(T02.3.28)

b) Execute the complete BTC step, section 3.2.7, M = max (Mcalls,Mt,MIAE) times. M must be greater
than 5.

c) Compute the mean and the standard deviation for each of the metrics presented in section 3.2.6 (Integral
Absolute Error, Oracle calls) and for all the measured times explained in section 3.2.7 (elapsed time, run
time and quantum time)

If the before workflow is followed it can be said that, for each number of qubits and integration interval executed, the
reported Oracle calls and elapsed time will have a relative error lower than 5% and the reported Integral Absolute
Error will have an absolute error lower than 10−4 with a confidence level of 95%.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.14 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

3.4. Benchmark report

Finally, the results of the BTC execution, step 3 of section 3.3, should be reported, for each of the
tested number of qubits and each integral interval, into a valid JSON file following the JSON schema
NEASQC.Benchmark.V2.Schema.json provided into the deliverable 3.2 of the NEASQC project. The mean of the
elapsed time must be reported into the TotalTime field and its standard deviation into the SigmaTotalTime.

The verification metrics of the AE Benchmark should be stored under the field Benchmarks into the sub-field Results
and inside the sub-field Metrics of the JSON Benchmark report. The Integral Absolute Error is stored under the
name IntegralAbsoluteError and the number of oracle calls under the name oracle calls.

If the AE algorithm tested under this benchmark procedure has some important internal parameter configuration, the
settings of such parameters must be included in the JSON final report. These parameters can be included under an
additional field called MetaData into the Benchmarks main field of the report. This field is not mandatory following
the NEASQC JSON schema document but it is important to get a good traceability of the benchmark results.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.15 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

List of Acronyms

Term Definition
AE Amplitude Estimation
BTC Benchmark Test Case
CQPEAE Classical Quantum Phase Estimation Amplitude Estimation
IQAE Iterative Quantum Amplitude Estimation
IQPEAE Iterative Quantum Phase Estimation Amplitude Estimation
MLAE Maximum Likelihood Amplitude Estimation
NEASQC NExt ApplicationS of Quantum Computing
QPE Quantum Phase Estimation
QFT Quantum Fourier Transformation
QPU Quantum Process Unit
RQAE Real Quantum Amplitude Estimation
TNBS The NEASQC Benchmark Suite
WP Work Package

Table T02.1: Acronyms and Abbreviations

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.16 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

List of Figures

Figure T02.1.: Canonical Amplitude Estimation using Quantum Phase Estimation. T02.7

Figure T02.2.: Circuit implementation for the class encoding.oracle from listing T02.1. T02.23

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.17 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

List of Tables

Table T02.1.: Acronyms and Abbreviations . T02.16

Table T02.2.: Sub-fields of the Results fields of the TNBS benchmark report. T02.40
Table T02.3.: Sub-fields of the Metrics field. T02.40

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.18 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

List of Listings

Listing T02.1. Creation of the AI(fxi
) operator using the Encoding class from QQuantLib given an input

Numpy array fnormxi
. T02.22

Listing T02.2. Creation of the correspondent Grover-like operator from an created operator A(fxi). . . T02.23
Listing T02.3. Example of how to use the general AE class from QQuantLib.AE package. The Encoding class

can be used for providing the mandatory A(fxi
) operator in a transparent way. T02.24

Listing T02.4. Using q solve integral for solving the integral of an input array using the encoding procedure
2 and two different AE algorithms. T02.25

Listing T02.5. sine integral function from ae sine integral.py script T02.27
Listing T02.6. Example of use the ae sine integral.py script from command line. T02.29
Listing T02.7. run code function for AE Benchmark . T02.29
Listing T02.8. compute samples function for codifying the strategy for computing the number of repetitions

for AE Benchmark. T02.30
Listing T02.9. summarize results function for summarizing the results from a BTC execution of the AE Ker-

nel . T02.31
Listing T02.10. build iterator function for creating the iterator of the complete BTC execution of the AE

Kernel . T02.31
Listing T02.11. Example of configuration of a complete Benchmark execution. This part of the code should

be located at the end of the my benchmark execution.py script T02.32
Listing T02.12. Example of configuration of the my environment info.py script T02.34
Listing T02.13. Example of configuration of the my benchmark info.py script T02.36
Listing T02.14. Example of configuration of the summarize results function for AE benchmark T02.38

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.19 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

Bibliography

Aspuru-Guzik, A., Dutoi, A. D., Love, P. J., & Head-Gordon, M. (2005). Simulated quantum computation of molecular
energies. Science, 309(5741), 1704–1707. https://doi.org/10.1126/science.1113479

Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000). Quantum amplitude amplification and estimation.
AMS Contemporary Mathematics Series, 305. https://doi.org/10.1090/conm/305/05215

Dobsicek, M., Johansson, G., Shumeiko, V., & Wendin, G. (2007). Arbitrary accuracy iterative quantum phase esti-
mation algorithm using a single ancillary qubit: A two-qubit benchmark. Physical Review A, 76(3). https:
//doi.org/10.1103/physreva.76.030306

Ferro, G., Manzano, A., Gómez, A., Leitao, A., R. Nogueiras, M., & Vázque, C. (2022). D5.4: Evaluation of quantum
algorithms for pricing and computation of var.

Gómez, A., Leitao Rodriguez, A., Manzano, A., Nogueiras, M., Ordóñez, G., & Vázquez, C.
(2022). A survey on quantum computational finance for derivatives pricing and var.
Archives of Computational Methods in Engineering. https://doi.org/10.1007/s11831-022-09732-9

Grinko, D., Gacon, J., Zoufal, C., & Woerner, S. (2021). Iterative quantum amplitude estimation.
npj Quantum Information, 7(1). https://doi.org/10.1038/s41534-021-00379-1

Hoeffding’s inequality. (2004). Hoeffding’s inequality Wikipedia, the free encyclopedia. https:/ /en.wikipedia.org/
wiki/Hoeffding%5C%27s inequality

Kitaev, A. Y. (1995). Quantum measurements and the abelian stabilizer problem.
Electron. Colloquium Comput. Complex., TR96.

Knill, E., Ortiz, G., & Somma, R. D. (2007). Optimal quantum measurements of expectation values of observables.
Physical Review A, 75, 012328. https://doi.org/10.1103/PhysRevA.75.012328

Lu, X., & Lin, H. (2023). Random-depth quantum amplitude estimation. https://doi.org/10.48550/ARXIV.2301.00528
Manzano, A., Musso, D., & Leitao, Á. (2023). Real quantum amplitude estimation. EPJ Quantum Technology, 10.

https://doi.org/10.1140/epjqt/s40507-023-00159-0
Montanaro, A. (2015). Quantum speedup of monte carlo methods. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,

471(2181). https://doi.org/10.1098/rspa.2015.0301
Nogueiras, M., Ordónez Sanz, G., Vázquez Cendón, C., Leitao Rodrı́guez, A., Manzano Herrero, A., Musso, D., &

Gómez, A. (2021). D5.1: Review of state-of-the-art forpricing and computation of var.
Rebentrost, P., Gupt, B., & Bromley, T. R. (2018). Quantum computational finance: Monte Carlo pricing of financial

derivatives. Physical Review A, 98(2).
Shende, V., Bullock, S., & Markov, I. (2006). Synthesis of quantum-logic circuits.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(6), 1000–1010.
https://doi.org/10.1109/tcad.2005.855930

Suzuki, Y., Uno, S., Raymond, R., Tanaka, T., Onodera, T., & Yamamoto, N. (2020). Amplitude estimation without
phase estimation. Quantum Information Processing, 19(2). https://doi.org/10.1007/s11128-019-2565-2

Uno, S., Suzuki, Y., Hisanaga, K., Raymond, R., Tanaka, T., Onodera, T., & Yamamoto, N. (2021). Modified grover
operator for quantum amplitude estimation. New Journal of Physics, 23(8), 083031. https://doi.org/10.1088/
1367-2630/ac19da

Wiebe, N., Kapoor, A., & Svore, K. M. (2015). Quantum algorithms for nearest-neighbor methods for supervised and
unsupervised learning. Quantum Info. Comput., 15(3–4), 316–356.

Wiebe, N., Kapoor, A., & Svore, K. M. (2016). Quantum deep learning. Quantum Info. Comput., 16(7–8), 541–587.
Woerner, S., & Egger, D. J. (2019). Quantum risk analysis. npj Quantum Information, 5(1). https://doi.org/10.1038/

s41534-019-0130-6
Zhao, Y., Wang, H., Xu, K., Wang, Y., Zhu, J., & Wang, F. (2022). Adaptive algorithm for quantum amplitude estima-

tion. https://doi.org/10.48550/ARXIV.2206.08449

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.20 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

A.NEASQC test case reference

As pointed out in deliverable D3.5: The NEASQC Benchmark Suite each proposed Benchmark for TNBS, must
have a complete Eviden myQLM-compatible software implementation. For the AE Benchmark, this implementation
can be found in the tnbs/BTC 02 AE folder of the WP3 Benchmark NEASQC GitHub repository. Additionally,
the execution of a Benchmark must generate a complete result report into a separate JSON file, that must follow
NEASQC JSON schema NEASQC.Benchmark.V2.Schema.json provided into the aforementioned deliverable.

The tnbs/BTC 02 AE locations contains the following folders and files:

• QQuantLib folder: with a complete copy of the QQuantLib library from the NEASQC Financial Applica-
tions GitHub’s repository.

• jsons folder: contains several JSON files for configuring the different AE algorithms implemented in this library:

– integral mcae configuration.json: for a pure MonteCarlo solution.

– integral mlae configuration.json: for a MLAE algorithm.

– integral iqae configuration.json: for a IQAE algorithm.

– integral rqae configuration.json: for a RQAE algorithm

– integral cqpeae configuration.json: for a CQPEAE algorithm.

– integral iqpeae configuration.json: for the IQPAE algorithm.

• ae sine integral.py

• my benchmark execution.py

• my environment info.py

• my benchmark info.py

• my benchmark summary.py

• neasqc benchmark.py

The ae sine integral.py, my benchmark execution.py scripts in addition to the two folders (QQuantLib and jsons)
deal with the execution of the AE Benchmark. Section A.1 documents, exhaustively, these files. The other script files
are related to benchmark report generation and are properly explained in section A.2.

A.1. NEASQC implementation of BTC.

This section presents a complete description of the implementation of the BTC for AE Kernel. Subsection A.1.1
explains how to use the QQuantLib library, for computing the different mandatory operators and integrals shown
in section 3.2. Subsection A.1.2 explains how the ae sine integral.py script is used for implementing the BTC as
explained in section 3.2.7. Finally, subsection A.1.3 explains how to execute a complete Benchmark, as explained in
section 3.3, using script my benchmark execution.py.

A.1.1. Computing integrals using the QQuantLib from NEASQC Financial Applications

As explained in section 3, the mathematical problem for the BTC of the AE Kernel is the computation of an integral,
in a very well-defined interval (subsection 3.1), by using AE algorithms whose input is an operator A, given by
equation (T02.2.20), which acts in the following form:

A|0⟩n =
√
a|Ψ0⟩+

√
1− a|Ψ1⟩ (T02.1.1)

where the desired integral is encoded, as a Riemann sum, into the amplitude of the state |Ψ0⟩, a.

The QQuantLib library, from NEASQC Financial Applications software package, implements several Eviden
myQLM-compatible AE algorithms that are used in quantum finances (Ferro et al., 2022; Gómez et al., 2022;

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.21 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

Nogueiras et al., 2021). Additionally, several functions of this library allow computing integrals, and the ex-
pected value of functions, using these AE algorithms. The implementation of the BTC for AE Kernel in the tnb-
s/BTC 02 AE folder of the WP3 Benchmark NEASQC GitHub repository is based on this QQuantLib library.

The following subsections explain the software implementation of the different parts of the BTC, using the
QQuantLib library.

Operator A software implementation

As explained in section 3.2.4, given a properly normalised input array fnormxi
, the first step is the construction of the

operator A using Eq.(T02.2.20) (the superscript I will be removed here for simplicity):

A(fxi
) =

(
I ⊗H⊗n

)
Uf

(
I ⊗H⊗n

)

where the operator Uf can be constructed following equation (T02.2.26):

Uf (|0⟩ ⊗ |i⟩n) =
(
Ry(2 ∗ ϕxi)|0⟩

)
⊗ |i⟩n

where ϕxi
= arccos(fnormxi

).

The A(fxi
) operator can be implemented using the Python class Encoding from QQuantLib.DL.encoding protocols

belonging to the QQuantLib library. This class implements up to 3 different encoding procedures (labelled as 0, 1,
and 2) for loading a probability distribution and function as Numpy arrays into a quantum circuit. More information
about this class can be found in the notebook 09 DataEncodingClass.ipynb of the NEASQC Financial Applications
software package.

To reproduce the data encoding presented in section 3.2.4, the following arguments must be passed when the Encoding
class is instantiated:

• array function: NumPy array with the desired function to encode (this is fnormxi
).

• array probability: NumPy array with the desired probability function to encode. In the benchmark case, this is
the uniform distribution probability. This is the class’s default distribution, so a None must be provided.

• encoding: For the benchmark case a 2 must be provided.

Once the class is instantiated correctly, the execution of its run method creates the myQLM implementation (a QLM
QRoutine) of the operator A(fxi

), that is stored in the oracle property of the class. Listing T02.1 shows the use of the
Encoding class. Figure T02.2 shows the circuit implementation of the class encoding.oracle (the figure is the output
of line 10 of the listing T02.1).

1 from QQuantLib.DL.encoding_protocols import Encoding
2 norm_f_x = np.array([0.17106865, 0.49847362, 0.78295039, 0.99999999])
3 class_encoding = Encoding(
4 array_function=norm_f_x,
5 array_probability = None,
6 encoding=2)
7 class_encoding.run()
8 #QLM circuit oracle implementation
9 oracle_circuit = class_encoding.oracle

10 %qatdisplay oracle_circuit --depth 1

Listing T02.1: Creation of the AI(fxi
) operator using the Encoding class from QQuantLib given an input Numpy

array fnormxi

Following the guidelines introduced in section 3.2.5, the created A(fxi) operator should be provided as an input of
the AE algorithm for computing an estimation of the amplitude of the state |Ψ0⟩, ã, as shown in equation (T02.2.22).

Amplitude Estimation Algorithms in QQuantLib

In general, most AE algorithms are based on a Grover-like operator created from the operator A(fxi
) using equation

(T02.1.2)

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.22 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

Q0

Q1

Q2

H H

H H

RY (1.56) RY (0.89) RY (−0.16) RY (0.51)

Figure T02.2: Circuit implementation for the class encoding.oracle from listing T02.1.

G(A(fxi
)) = A(fxi

) (I − 2|0⟩⟨0|)A(fxi
)
†
(I − 2|Ψ0⟩⟨Ψ0|) (T02.1.2)

This operator acts as shown in equation (T02.1.3)

Gk(A)A|0⟩n = sin
(
(2k + 1)θ

)
|Ψ0⟩+ cos

(
(2k + 1)θ

)
|Ψ1⟩ (T02.1.3)

The Grover function from the QQuantLib.AA.amplitude amplification module belonging to the QQuantLib library
allows to compute, given an input operator A(fxi

), the corresponding Grover-like one in a straightforward way as
shown in listing T02.2, where a Grover-like operator is created from the Encoding object created in the listing T02.1

1 from QQuantLib.AA.amplitude_amplification import grover
2 grover_oracle = grover(
3 oracle=class_encoding2.oracle,
4 target=class_encoding2.target,
5 index=class_encoding2.index
6)

Listing T02.2: Creation of the correspondent Grover-like operator from an created operator A(fxi
).

Notebook 02 Amplitude Amplification Operators.ipynb of the NEASQC Financial Applications software package
provides more information about this Grover function.

Note: Most AE algorithms rely on the Grover-like operator, but there are some algorithms where other operators are
used. The AE Benchmark described in this document is agnostic about these operators. The only mandatory input is
the A operator.

The QQuantLib.AE package provides five different myQLM implementations of AE algorithms which are provided
in their corresponding modules:

• CQPEAE (ae classical qpe module) uses a classical phase estimation algorithm with QFT, see Figure T02.1,
(Brassard et al., 2000). See notebook 04 Classical Phase Estimation Class.ipynb for more information.

• IQPEAE (ae iterative quantum pe module) uses an iterative implementation of QFT, using only one ad-
ditional qubit, for classical phase estimation (Dobsicek et al., 2007; Kitaev, 1995). See notebook
05 Iterative Quantum Phase Estimation Class.ipynb for more information.

• MLAE (maximum likelihood ae module) uses a Maximum Likelihood algorithm (Suzuki et al., 2020). See
notebook 03 Maximum Likelihood Amplitude Estimation Class.ipynb for more information.

• IQAE (iterative quantum ae module) uses an algorithm based on iterative applications of the Grover-like oper-
ator G(A(fxi

)) (Grinko et al., 2021). See notebook 06 Iterative Quantum Amplitude Estimation class.ipynb
for more information.

• RQAE (real quantum ae module) uses an algorithm based on iterative applications of the Grover-like opera-
tor, G(A(fxi

)) (Manzano et al., 2023). See notebook 07 Real Quantum Amplitude Estimation class.ipynb for
more information.

• MCAE (montecarlo ae module) uses the Monte Carlo algorithm as presented in section 2.2.1. See notebook
08 AmplitudeEstimation Class.ipynb for more information.

All these algorithms use the Grover function explained above to create the Grover-like operator. QQuantLib imple-
ments all the AE algorithms as Python classes that can be used similarly: each class should be instantiated passing the
following parameters:

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.23 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

• oracle: A QLM AbstractGate or QRoutine with the implementation of the Oracle (the oracle property from a
Encoding class can be used).

• target: This is the marked state in a binary representation as a Python list (the target property from a Encoding
class can be used).

• index: a list of the qubits affected by the Oracle operator (the index property from a Encoding class can be used).

• kwargs: a typical Python keyword arguments where the different keywords can be used to configure different
parameters of the AE algorithm. Configuration examples for the different AE algorithms can be found in the
JSON files inside the jsons folder of the repository.

The run method of the class is then executed and the estimator ã is computed and returned using the properly config-
ured AE algorithm (additionally it is stored in the ae property of the method).

Additionally, a class called AE, implemented in the module ae class into the QQuantLib.AE package, can be used for
selecting one of the available AE algorithms. In this case, another argument ae type can be provided for selecting the
algorithm, This argument is a Python string that can take the following values: [MLAE, CQPEAE, IQPEAE, IQAE,
RQAE, MCAE] to select the appropriate AE algorithm. In this class, the desired estimator is stored as a Pandas
DataFrame into the ae pdf property of the class. Listing T02.3 shows how to use this class. The Encoding object from
listing T02.1, is used for providing the mandatory A(fxi

) operator to the class.

1

2 ae_dict = {
3 #QPU
4 ’qpu’: linalg_qpu,
5 #Multi controlled decomposition
6 ’mcz_qlm’: False,
7

8 #shots
9 ’shots’: 100,

10

11 #MLAE
12 ’schedule’: [None],
13 ’delta’ : None,
14 ’ns’ : None,
15

16 #CQPEAE
17 ’auxiliar_qbits_number’: 10,
18 #IQPEAE
19 ’cbits_number’: None,
20 #IQAE & RQAQE
21 ’epsilon’: None,
22 #IQAE
23 ’alpha’: None,
24 #RQAE
25 ’gamma’: None,
26 ’q’: None
27 }
28 ae_object = AE(
29 oracle=class_encoding.oracle,
30 target=class_encoding.target,
31 index=class_encoding.index,
32 ae_type=’CQPEAE’,
33 **ae_dict)
34 ae_object.run()
35 print(ae_object.ae_pdf)
36

37 #Result
38 ae ae_l ae_u
39 0 0.375536 NaN NaN

Listing T02.3: Example of how to use the general AE class from QQuantLib.AE package. The Encoding class can be
used for providing the mandatory A(fxi

) operator in a transparent way.

The notebook 08 AmplitudeEstimation Class.ipynb provides more information about this class.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.24 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

Amplitude vs Probability estimation

In general, the AE algorithms compute the probability of the state |Ψ0⟩, instead of its amplitude. This is true for all the
AE algorithms implemented in the QQuantLib library except for the RQAE one where the amplitude of such state is
returned (thus it can be negative). Taking this into account, equation (T02.1.1) can be rewritten in the following form:

|Ψ⟩ = A|0⟩ ⊗ |0⟩n =

{ √
a|Ψ0⟩+

√
1− a|Ψ1⟩ NO RQAE

a|Ψ0⟩+ β|Ψ1⟩ RQAE
(T02.1.4)

As explained in section 3.2.4, only the |Ψ0⟩ = |0⟩ ⊗ |0⟩n term must be taken into account, so using (T02.1.4) the
equation (T02.2.22) now is transformed into (T02.1.5):

ã =

P|Ψ0⟩ =
∣∣∣ 1
2n

∑2n−1
i=0 fnormxi

∣∣∣
2

NO RQAE

Amplitude|Ψ0⟩ =
1
2n

∑2n−1
i=0 fnormxi

RQAE
(T02.1.5)

So the desired sum in the AE estimation is:

2n−1∑

i=0

fnormxi
=

{
2n

√
a NO RQAE

2na RQAE
(T02.1.6)

To use the QQuantLib implemented algorithms for the BTC of the AE Kernel (section 3.2.7), equation (T02.1.6)
must be used for recovering the desired integral instead of (T02.2.22).

Fortunately the function q solve integral from QQuantLib.finance.quantum integration module allows the computa-
tion of the integrals of input arrays by using AE techniques in a transparent way (so using this function the steps given
in Sections 3.2.4 and 3.2.5 can be done easily). The q solve integral function computes the integral using (T02.1.6),
taking into account the AE algorithm used, returning directly the integral of the input array function: 2n

√
a (or the

2na for the RQAE algorithm).

The input of this function will be a Python kwargs where the different keys allow the complete configuration of the
data encoding, the AE algorithm configuration etc... The most important keywords are:

• array function: NumPy array with the desired array function for Riemann sum

• array probability: Numpy array with a probability distribution for the computation of the expected values. In
the benchmark case, this will be None (so a uniform distribution probability will be used),

• encoding: int for selecting the encoding. In the BTC, its value will be 2.

• ae type: string for providing the AE algorithm for solving the desired integral.

The outputs of the q solve integral function are:

• ae estimation: pandas DataFrame with the desired integral computation and the upper and lower limits if applied
(depending on the AE algorithm).

• solver ae: object based on the AE class

Listing T02.4 shows how to use q solve integral for computing the integral of an input numpy array by using 2
different AE algorithms straightforwardly.

1

2 from QQuantLib.finance.quantum_integration import q_solve_integral
3 norm_f_x = np.array([0.17106865, 0.49847362, 0.78295039, 0.99999999])
4

5 #Configuration of AE algorithm
6 ae_dict = {
7 #QPU
8 ’qpu’: linalg_qpu,
9 #Multi controlled decomposition

10 ’mcz_qlm’: False,
11

12 #shots

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.25 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

13 ’shots’: 100,
14

15 #MLAE
16 ’schedule’: [None],
17 ’delta’ : None,
18 ’ns’ : None,
19

20 #CQPEAE
21 ’auxiliar_qbits_number’: 10,
22 #IQPEAE
23 ’cbits_number’: None,
24 #IQAE & RQAQE
25 ’epsilon’: 0.001,
26 #IQAE
27 ’alpha’: 0.05,
28 #RQAE
29 ’gamma’: 0.05,
30 ’q’: None,
31 }
32

33 #Important keywords configuration
34 ae_dict.update(
35 {"encoding" : 2,
36 "ae_type" : "RQAE",
37 "array_function":norm_f_x,
38 "array_probability": None,
39 })
40

41 iqae_solution, iqae_object = q_solve_integral(**ae_dict)
42 #second configure an RQAE algorithm
43

44 ae_dict.update({"ae_type" : "RQAE",})
45

46 rqae_solution, rqae_object = q_solve_integral(**ae_dict)
47

48 print("Desired Riemann integral: {}".format(np.sum(norm_f_x)))
49 print("IQAE integral computation: {}".format(iqae_solution["ae"].iloc[0]))
50 print("RQAE integral computation: {}".format(rqae_solution["ae"].iloc[0]))
51

52 #Results
53 Desired Riemann integral: 2.45249265
54 IQAE integral computation: 2.4531461375134835
55 RQAE integral computation: 2.4534891011970776

Listing T02.4: Using q solve integral for solving the integral of an input array using the encoding procedure 2 and
two different AE algorithms.

Finally, equation (T02.1.6) must be plugging into the Riemann sum (T02.2.8) for obtaining the desired integral as
showed in equation (T02.1.7):

S̃[a,b] =

{
max(fxi

)(b−a)

2n (2n
√
a) NO RQAE

max(fxi
)(b−a)

2n (2na) RQAE
(T02.1.7)

A.1.2. ae sine integral.py

In this script the BTC for AE Kernel, as explained in the section 3.2.7, is implemented in the function sine integral.
This function needs as inputs:

• n qbits: number of quits used for integral domain discretization.

• interval: for selecting with integration interval will be computed:

– 0: [0, 3π8]

– 1: [π, 5π4]

• ae dictionary: python dictionary with the complete AE algorithm configuration.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.26 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

The return of the function will be a pandas DataFrame with the complete information of the executed BTC (this
includes the configuration of the AE algorithm, the used interval, the used QPU and the obtained results). The
complete code is shown in listing T02.5.

1

2 def sine_integral(n_qbits, interval, ae_dictionary):
3 """
4 Function for solving the sine integral between two input values:
5

6 n_qbits : int
7 for discretization of the input domain in 2ˆn intervals
8 interval: int
9 Interval for integration: Only can be:

10 0 : [0,3pi/8]
11 1 : [pi, 5pi/4]
12 ae_dictionary : dict
13 dictionary with the complete amplitude estimation
14 algorithm configuration
15

16 Return
17 ----------
18

19 pdf : pandas DataFrame
20 DataFrame with the complete information of the benchmark
21 """
22

23 #Local copy for AE configuration dictionary
24 ae_dictionary_ = deepcopy(ae_dictionary)
25

26 start_time = time.time()
27

28 #Section 2.1: Function for integration
29 function = np.sin
30

31 #Section 2.1: Integration Intervals
32 start = [0.0, np.pi]
33 end = [3.0*np.pi/8.0, 5.0*np.pi/4.0]
34 if interval not in [0, 1]:
35 raise ValueError("interval MUST BE 0 or 1")
36 a_ = start[interval]
37 b_ = end[interval]
38 #Section 2.1: Computing exact integral
39 exact_integral = np.cos(a_) - np.cos(b_)
40

41 #Section 2.2: Domain discretization
42 domain_x = np.linspace(a_, b_, 2 ** n_qbits + 1)
43

44 #Section 2.3: Function discretization
45 f_x = []
46 for i in range(1, len(domain_x)):
47 step_f = (function(domain_x[i]) + function(domain_x[i-1]))/2.0
48 f_x.append(step_f)
49 #x_.append((domain_x[i] + domain_x[i-1])/2.0)
50 f_x = np.array(f_x)
51

52 #Section 2.4: Array Normalisation
53 normalization = np.max(np.abs(f_x)) + 1e-8
54 f_norm_x = f_x/normalization
55

56 #Sections 2.5 and 2.6: Integral computation using AE techniques
57

58 #Section 3.2.3: configuring input dictionary for q_solve_integral
59 q_solve_configuration = {
60 "array_function" : f_norm_x,
61 "array_probability" : None,
62 "encoding" : 2
63 }
64 #Now added the AE configuration.
65 #The ae_dictionary_ has a local copy of the AE configuration.
66 q_solve_configuration.update(ae_dictionary_)
67 #The q_solve_integral needs a QPU object.
68 q_solve_configuration["qpu"] = get_qpu(q_solve_configuration["qpu"])
69 #Compute the integral using AE algorithms!!

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.27 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

70 solution, solver_object = q_solve_integral(**q_solve_configuration)
71

72 #Section 3.2.3: eq (3.7). It is an adapatation of eq (2.22)
73 estimator_s = normalization * (b_ - a_) * solution / (2 ** n_qbits)
74

75 #Section 2.7: Getting the metrics
76 absolute_error = np.abs(estimator_s["ae"] - exact_integral)
77 relative_error = absolute_error / exact_integral
78 oracle_calls = solver_object.oracle_calls
79

80 end_time = time.time()
81 elapsed_time = end_time - start_time
82

83 #ae_dictionary_.pop(’array_function’)
84 #ae_dictionary_.pop(’array_probability’)
85

86 #Section 4.2: Creating the output pandas DataFrame for using
87 #properly the KERNEL_BENCHMARK class
88

89 #Adding the complete AE configuration
90 pdf = pd.DataFrame([ae_dictionary_])
91

92 #Adding information about the computed integral
93 pdf["interval"] = interval
94 pdf["n_qbits"] = n_qbits
95 pdf["a_"] = a_
96 pdf["b_"] = b_
97

98 #Adding the output from q_solve_integral
99 pdf = pd.concat([pdf, solution], axis=1)

100

101 #Adding the AE computation of the integral
102 integral_columns = ["integral_" + col for col in solution.columns]
103 pdf[integral_columns] = estimator_s
104

105 #Adding information about the integral that must be computed
106 pdf["exact_integral"] = exact_integral
107 pdf["riemann_sum"] = (b_ - a_) * np.sum(f_x) / (2 ** n_qbits)
108

109 #Adding the normalization constant
110 pdf["normalization"] = normalization
111

112 #Error vs exact integral
113 pdf["absolute_error_exact"] = absolute_error
114 pdf["relative_error_exact"] = relative_error
115

116 #Error vs Riemann Sum
117 pdf["IntegralAbsoluteError"] = np.abs(pdf["integral_ae"] - pdf["riemann_sum"])
118

119 #Error by Riemann approximation to Integral
120 pdf["absolute_riemann_error"] = np.abs(
121 pdf["riemann_sum"] - pdf["exact_integral"])
122 pdf["oracle_calls"] = oracle_calls
123 pdf["elapsed_time"] = elapsed_time
124 pdf["run_time"] = solver_object.run_time
125 pdf["quantum_time"] = solver_object.quantum_time
126

127 #pdf will have a complete output for trazability.
128 #Columns for the metric according to 2.7 and 2.8 will be:
129 #[absolute_error_sum, oracle_calls,
130 #elapsed_time, run_time, quantum_time]
131 return pdf

Listing T02.5: sine integral function from ae sine integral.py script

To configure properly the AE algorithm, the JSON files in the tnbs/BTC 02 AE/jsons can be edited and loaded as a
dictionary that can be provided to the sine integral function.

The ae sine integral.py script can be executed from the command line. Different arguments can be provided to
properly configure the integral computation.

The usage guide of the ae sine integral.py script is obtained using the −h parameter.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.28 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

Listing T02.6 shows an example of how to use ae sine integral.py from the command line. In this case, the domain
interval will be the 0, 4 qubits will be used for domain discretization, and the Maximum Likelihood Amplitude Esti-
mation (MLAE) algorithm will be used for computing the integral. In this case, the algorithm is configured using the
json/integral mlae configuration.json file.

1 python ae_sine_integral.py -n_qbits 4 -interval 0 -ae_type MLAE -qpu python --save --folder
Results --exe

Listing T02.6: Example of use the ae sine integral.py script from command line.

A.1.3. my benchmark execution.py

This script is a modification of the correspondent template script located in tnbs/templates folder of the
WP3 Benchmark repository. Following the recommendations of Annex 2 of the deliverable D3.5: The NEASQC
Benchmark Suite the run code, compute samples, summarize results and the build iterator functions were mod-
ified. Meanwhile, the KERNEL BENCHMARK class was not modified. In the following sections, the software
adaptations for the AE benchmark case are presented.

run code

Listing T02.7 shows the modifications performed into the run code function for the BTC of the AE Kernel. The main
functionality is executing a BTC, as explained in subsection 3.2.7, for a fixed number of qubits (n qbits), provided by
the first element of the input Python tuple iterator step, and a fixed integration interval, given by the second element
of iterator step, a repetitions number of times, and gathering all the mandatory metrics obtained. As can be seen, this
function calls to the sine integral, listing T02.5, one.

1

2 def run_code(iterator_step, repetitions, stage_bench, **kwargs):
3 """
4 For configuration and execution of the benchmark kernel.
5

6 Parameters
7 ----------
8

9 iterator_step : tuple
10 tuple with elements from iterator built from build_iterator.
11 repetitions : list
12 number of repetitions for each execution
13 stage_bench : str
14 benchmark stage. Only: benchmark, pre-benchamrk
15 kwargs : keyword arguments
16 for configuration of the benchmark kernel
17

18 Returns
19 _______
20

21 metrics : pandas DataFrame
22 DataFrame with the desired metrics obtained for the integral computation
23 save_name : string
24 Desired name for saving the results of the execution
25

26 """
27 #if n_qbits is None:
28 # raise ValueError("n_qbits CAN NOT BE None")
29 if stage_bench not in [’benchmark’, ’pre-benchmark’]:
30 raise ValueError(
31 "Valid values for stage_bench: benchmark or pre-benchmark’")
32 if repetitions is None:
33 raise ValueError("samples CAN NOT BE None")
34

35 n_qbits = iterator_step[0]
36 interval = iterator_step[1]
37

38 from ae_sine_integral import sine_integral
39 #Here the code for configuring and execute the benchmark kernel
40 ae_configuration = kwargs.get("ae_configuration")
41 print(ae_configuration)
42 ae_configuration.update({"qpu": kwargs[’qpu’]})

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.29 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

43

44 columns = [
45 "interval", "n_qbits", "IntegralAbsoluteError", "oracle_calls",
46 "elapsed_time", "run_time", "quantum_time"
47]
48

49 list_of_metrics = []
50 for i in range(repetitions):
51 metrics = sine_integral(n_qbits, interval, ae_configuration)
52 list_of_metrics.append(metrics)
53 metrics = pd.concat(list_of_metrics)
54 metrics.reset_index(drop=True, inplace=True)
55

56 if stage_bench == ’pre-benchmark’:
57 # Name for storing Pre-Benchmark results
58 save_name = "pre_benchmark_nqubits_{}_integral_{}.csv".format(
59 n_qbits, interval)
60 if stage_bench == ’benchmark’:
61 # Name for storing Benchmark results
62 save_name = kwargs.get(’csv_results’)
63 #save_name = "pre_benchmark_step_{}.csv".format(n_qbits)
64 return metrics[columns], save_name

Listing T02.7: run code function for AE Benchmark

compute samples

Listing T02.8 shows the implementation of the compute samples function for the AE Benchmark. The main objec-
tive is to codify a strategy for computing the number of times the BTC, subsection 3.2.7, should be executed, to get
some desired statistical significance for the different metrics (see 3.a.i and 3.a.ii of section 3.3). This function would
implement the equations (T02.3.27) and (T02.3.28) and computes the corresponding maximum as explained in 3.b of
section 3.3.

1 def compute_samples(**kwargs):
2 """
3 This functions computes the number of executions of the benchmark
4 for assure an error r with a confidence of alpha
5

6 Parameters
7 ----------
8

9 kwargs : keyword arguments
10 For configuring the sampling computation
11

12 Returns
13 _______
14

15 samples : int
16 Computed number of executions for desired significance
17

18 """
19

20 from scipy.stats import norm
21

22 #Configuration for sampling computations
23

24 #Desired Confidence level
25 alpha = kwargs.get("alpha", None)
26 if alpha is None:
27 alpha = 0.05
28 zalpha = norm.ppf(1-(alpha/2)) # 95% of confidence level
29

30 #geting the metrics from pre-benchmark step
31 metrics = kwargs.get("pre_metrics", None)
32 #getting the configuration of the algorithm and kernel
33 bench_conf = kwargs.get(’kernel_configuration’)
34

35 #Code for computing the number of samples for getting the desired
36 #statististical significance. Depends on benchmark kernel
37

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.30 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

38 #Desired Relative Error for the elapsed Time
39 relative_error = bench_conf.get("relative_error", None)
40 if relative_error is None:
41 relative_error = 0.05
42 # Compute samples for realtive error metrics:
43 # Elapsed Time and Oracle Calls
44 samples_re = (zalpha * metrics[[’elapsed_time’, ’oracle_calls’]].std() / \
45 (relative_error * metrics[[’elapsed_time’, ’oracle_calls’]].mean()))**2
46

47 #Desired Absolute Error.
48 absolute_error = bench_conf.get("absolute_error", None)
49 if absolute_error is None:
50 absolute_error = 1e-4
51 samples_ae = (zalpha * metrics[[’IntegralAbsoluteError’]].std() \
52 / absolute_error) ** 2
53

54 #Maximum number of sampls will be used
55 samples_ = pd.Series(pd.concat([samples_re, samples_ae]).max())
56

57 #Apply lower and higher limits to samples
58 #Minimum and Maximum number of samples
59 min_meas = kwargs.get("min_meas", None)
60 if min_meas is None:
61 min_meas = 5
62 max_meas = kwargs.get("max_meas", None)
63

64 samples_.clip(upper=max_meas, lower=min_meas, inplace=True)
65 samples_ = samples_.max().astype(int)
66

67 return samples_

Listing T02.8: compute samples function for codifying the strategy for computing the number of repetitions for AE
Benchmark.

summarize results

Listing T02.9 shows the implementation of the summarize results function for the AE Benchmark. The main
objective is post-processing the results of the complete Benchmark execution, as described in step 3 of section 3.3.

This function expects that the results of the complete benchmark execution have been stored in a csv file. The function
loads this file into a pandas DataFrame that is post-processed properly.

1 def summarize_results(**kwargs):
2 """
3 Create a summary with statistics
4 """
5

6 #Code to summarize the benchamark results. Depending of the
7 #kernel of the benchmark
8 folder = kwargs.get("saving_folder")
9 csv_results = folder + kwargs.get("csv_results")

10

11 #results = pd.DataFrame()
12 pdf = pd.read_csv(csv_results, index_col=0, sep=";")
13 pdf["classic_time"] = pdf["elapsed_time"] - pdf["quantum_time"]
14 results = pdf.groupby(["interval", "n_qbits"]).describe()
15 return results

Listing T02.9: summarize results function for summarizing the results from a BTC execution of the AE Kernel

build iterator

Listing T02.10 shows the implementation of the build iterator function for AE Benchmark. The main objective is
to create a Python iterator for executing the desired complete BTC. In this case, the iterator creates a list with all the
possible combinations of the desired number of qubits, n and the two integration intervals.

1

2 def build_iterator(**kwargs):
3 """

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.31 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

4 For building the iterator of the benchmark
5 """
6 import itertools as it
7

8 list4int = [
9 kwargs[’list_of_qbits’],

10 [0, 1],
11]
12

13 iterator = it.product(*list4int)
14 return iterator

Listing T02.10: build iterator function for creating the iterator of the complete BTC execution of the AE Kernel

KERNEL BENCHMARK class

No modifications were made to the KERNEL BENCHMARK class. This Python class defines the complete Bench-
mark workflow, section 3.3, and its exe method executes it properly by calling the correspondent functions (run code,
compute samples, summarize results). Each time the Benchmark is executed, as defined in section 3.3, the result is
stored in a given CSV file.

The only mandatory modification is configuring properly the input keyword arguments. These parameters will config-
ure the AE algorithm, the complete benchmark workflow, and additional options (as the name of the CSV files).

Listing T02.11 shows an example for configuring the benchmark arguments for an IQAE algorithm. The json/inte-
gral iqae configuration.json file is used for AE algorithm configuration.

1 if __name__ == "__main__":
2 from ae_sine_integral import select_ae
3

4 AE = "IQAE"
5 #Setting the AE algorithm configuration
6 ae_problem = select_ae(AE)
7

8 ae_problem.update({
9 "qpu": "c",

10 "relative_error": None,
11 "absolute_error": None
12 })
13

14 benchmark_arguments = {
15 #Pre benchmark sttuff
16 "pre_benchmark": True,
17 "pre_samples": None,
18 "pre_save": True,
19 #Saving stuff
20 "save_append" : True,
21 "saving_folder": "./{}_Results/".format(AE),
22 "benchmark_times": "{}_times_benchmark.csv".format(AE),
23 "csv_results": "{}_benchmark.csv".format(AE),
24 "summary_results": "{}_SummaryResults.csv".format(AE),
25 #Computing Repetitions stuff
26 "alpha": None,
27 "min_meas": None,
28 "max_meas": None,
29 #List number of qubits tested
30 "list_of_qbits": [4, 5],
31 }
32

33

34 json_object = json.dumps(ae_problem)
35 #Writing the AE algorithm configuration
36 conf_file = benchmark_arguments["saving_folder"] + \
37 "benchmark_ae_conf.json"
38 with open(conf_file, "w") as outfile:
39 outfile.write(json_object)
40 #Added ae configuration
41 benchmark_arguments.update({
42 "kernel_configuration": ae_problem,
43 })

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.32 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

44 ae_bench = KERNEL_BENCHMARK(**benchmark_arguments)
45 ae_bench.exe()

Listing T02.11: Example of configuration of a complete Benchmark execution. This part of the code should be
located at the end of the my benchmark execution.py script

As can be seen in Listing T02.11, the input dictionary that KERNEL BENCHMARK class needs, bench-
mark arguments, have several keys that allow to modify the benchmark workflow, like:

• pre benchmark: For executing or not the pre-benchmark step.

• pre samples: number of repetitions of the benchmark step.

• pre save: For saving or not the results from the pre-benchmark step.

• saving folder: Path for storing all the files generated by the execution of the KERNEL BENCHMARK class.

• benchmark times: name for the csv file where the initial and the final times for the complete benchmark execu-
tion will be stored.

• csv results: name for the csv file where the obtained metrics for the different repetitions of the benchmark step
will be stored (so the different metrics obtained during step 3 from section 3.3 will be stored in this file)

• summary results: name for the csv file where the post-processed results (using the summarize results) will be
stored (so the statistics over the metrics obtained during step 3 of section 3.3 will be stored in this file)

• alpha: for configuring the desired confidence level α

• min meas: For low limiting the number of executions a BTC should be executed during the benchmark stage.

• max meas: For high limiting the number of executions a BTC should be executed during the benchmark stage.

• list of qbits: list with the different number of qubits for executing the complete Benchmark.

Additionally, the kernel configuration key is used for configuring the AE algorithm and its execution. The function
select ae from ae sine integral script is used for loading the JSON files with the complete AE algorithm configu-
ration. These JSON files can be found inside the jsons folder of the repository. Additionally following keys can be
modified for configuring the AE algorithm execution:

• qpu: a string for selecting the quantum process unit (QPU).

• relative error: for changing the desired relative error of the Oracle calls and time elapsed metrics.

• absolute error: for changing the desired absolute error for the Integral Absolute Error metric.

In general, most of the keys should be fixed to None for executing the Benchmark according to the guidelines of the
AE Benchmark.

As can be seen in the listing T02.11 the AE configuration is passed in the benchmark arguments arguments under
the key ae configuration. The methods of the class send it as kwargs to the different functions of the scripts in a
transparent way.

Listing T02.11 is located at the end of the my benchmark execution.py script. The different parts of the Benchmark
complete execution and the AE algorithm used can be easily changed (the AE algorithm configuration can be changed
by editing the correspondent JSON).

For executing the Benchmark following command should be used:
python my benchmark execution.py

Finally, it is worth commenting on lines 34-39 of the listing T02.11: here the configuration of the AE algorithm will
be saved to a JSON format file for traceability purposes.

A.2. Generation of the benchmark report

Following deliverable D3.5: The NEASQC Benchmark Suite the results of a complete Benchmark must be reported
in a separate JSON file that must satisfy the NEASQC JSON schema NEASQC.Benchmark.V2.Schema.json provided
into the aforementioned deliverable. For automating this process the following files should be modified, as explained
in Annex 2 of the deliverable D3.5: The NEASQC Benchmark Suite:

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.33 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

• my environment info.py

• my benchmark info.py

• my benchmark summary.py

• neasqc benchmark.py

my environment info.py

This script has the functions for gathering information about the hardware where the Benchmark is executed.

Listing T02.12 shows an example of the my environment info.py script. Here the compiled information corresponds
to a classic computer because the case was simulated instead of executed in a quantum computer.

1 import platform
2 import psutil
3 from collections import OrderedDict
4

5 def my_organisation(**kwargs):
6 """
7 Given information about the organisation how uploads the benchmark
8 """
9 name = "CESGA"

10 return name
11

12 def my_machine_name(**kwargs):
13 """
14 Name of the machine where the benchmark was performed
15 """
16 machine_name = platform.node()
17 return machine_name
18

19 def my_qpu_model(**kwargs):
20 """
21 Name of the model of the QPU
22 """
23 qpu_model = "QLM"
24 return qpu_model
25

26 def my_qpu(**kwargs):
27 """
28 Complete info about the used QPU
29 """
30 #Basic schema
31 #QPUDescription = {
32 # "NumberOfQPUs": 1,
33 # "QPUs": [
34 # {
35 # "BasicGates": ["none", "none1"],
36 # "Qubits": [
37 # {
38 # "QubitNumber": 0,
39 # "T1": 1.0,
40 # "T2": 1.00
41 # }
42 #],
43 # "Gates": [
44 # {
45 # "Gate": "none",
46 # "Type": "Single",
47 # "Symmetric": False,
48 # "Qubits": [0],
49 # "MaxTime": 1.0
50 # }
51 #],
52 # "Technology": "other"
53 # },
54 #]
55 #}
56

57 #Defining the Qubits of the QPU

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.34 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

58 qubits = OrderedDict()
59 qubits["QubitNumber"] = 0
60 qubits["T1"] = 1.0
61 qubits["T2"] = 1.0
62

63 #Defining the Gates of the QPU
64 gates = OrderedDict()
65 gates["Gate"] = "none"
66 gates["Type"] = "Single"
67 gates["Symmetric"] = False
68 gates["Qubits"] = [0]
69 gates["MaxTime"] = 1.0
70

71

72 #Defining the Basic Gates of the QPU
73 qpus = OrderedDict()
74 qpus["BasicGates"] = ["none", "none1"]
75 qpus["Qubits"] = [qubits]
76 qpus["Gates"] = [gates]
77 qpus["Technology"] = "other"
78

79 qpu_description = OrderedDict()
80 qpu_description[’NumberOfQPUs’] = 1
81 qpu_description[’QPUs’] = [qpus]
82

83 return qpu_description
84

85 def my_cpu_model(**kwargs):
86 """
87 model of the cpu used in the benchmark
88 """
89 cpu_model = platform.processor()
90 return cpu_model
91

92 def my_frecuency(**kwargs):
93 """
94 Frcuency of the used CPU
95 """
96 #Use the nominal frequency. Here, it collects the maximum frequency
97 #print(psutil.cpu_freq())
98 cpu_frec = psutil.cpu_freq().max/1000
99 return cpu_frec

100

101 def my_network(**kwargs):
102 """
103 Network connections if several QPUs are used
104 """
105 network = OrderedDict()
106 network["Model"] = "None"
107 network["Version"] = "None"
108 network["Topology"] = "None"
109 return network
110

111 def my_QPUCPUConnection(**kwargs):
112 """
113 Connection between the QPU and the CPU used in the benchmark
114 """
115 #
116 # Provide the information about how the QPU is connected to the CPU
117 #
118 qpuccpu_conn = OrderedDict()
119 qpuccpu_conn["Type"] = "memory"
120 qpuccpu_conn["Version"] = "None"
121 return qpuccpu_conn

Listing T02.12: Example of configuration of the my environment info.py script

In general, it is expected that for each computer used (quantum or classic), the Benchmark developer should change
this script to properly get the hardware info.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.35 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

A.2.1. my benchmark info.py

This script gathers the information under the field Benchmarks of the Benchmark report. Information about the
software, the compilers and the results obtained from an execution of the Benchmark is stored in this field.

Listing T02.13 shows an example of the configuration of the my benchmark info.py script for gathering the afore-
mentioned information.

1 import platform
2 import psutil
3 import sys
4 import json
5 import jsonschema
6 import pandas as pd
7 from collections import OrderedDict
8 from my_benchmark_summary import summarize_results
9

10 def my_benchmark_kernel(**kwargs):
11 """
12 Name for the benchmark Kernel
13 """
14 return "AmplitudeEstimation"
15

16 def my_starttime(**kwargs):
17 """
18 Providing the start time of the benchmark
19 """
20 #start_time = "2022-12-12T16:46:57.268509+01:00"
21 times_filename = kwargs.get("times_filename", None)
22 pdf = pd.read_csv(times_filename, index_col=0)
23 start_time = pdf["StartTime"][0]
24 return start_time
25

26 def my_endtime(**kwargs):
27 """
28 Providing the end time of the benchmark
29 """
30 #end_time = "2022-12-12T16:46:57.268509+01:00"
31 times_filename = kwargs.get("times_filename", None)
32 pdf = pd.read_csv(times_filename, index_col=0)
33 end_time = pdf["EndTime"][0]
34 return end_time
35

36 def my_timemethod(**kwargs):
37 """
38 Providing the method for getting the times
39 """
40 #time_method = "None"
41 time_method = "time.time"
42 return time_method
43

44 def my_programlanguage(**kwargs):
45 """
46 Getting the programing language used for benchmark
47 """
48 #program_language = "None"
49 program_language = platform.python_implementation()
50 return program_language
51

52 def my_programlanguage_version(**kwargs):
53 """
54 Getting the version of the programing language used for benchmark
55 """
56 #language_version = "None"
57 language_version = platform.python_version()
58 return language_version
59

60 def my_programlanguage_vendor(**kwargs):
61 """
62 Getting the version of the programing language used for benchmark
63 """
64 #language_vendor = "None"
65 language_vendor = "Unknow"

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.36 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

66 return language_vendor
67

68 def my_api(**kwargs):
69 """
70 Collect the information about the used APIs
71 """
72 #api = OrderedDict()
73 #api["Name"] = "None"
74 #api["Version"] = "None"
75 #list_of_apis = [api]
76 modules = []
77 list_of_apis = []
78 for module in list(sys.modules):
79 api = OrderedDict()
80 module = module.split(’.’)[0]
81 if module not in modules:
82 modules.append(module)
83 api["Name"] = module
84 try:
85 version = sys.modules[module].__version__
86 except AttributeError:
87 #print("NO VERSION: "+str(sys.modules[module]))
88 try:
89 if isinstance(sys.modules[module].version, str):
90 version = sys.modules[module].version
91 #print("\t Attribute Version"+version)
92 else:
93 version = sys.modules[module].version()
94 #print("\t Methdod Version"+version)
95 except (AttributeError, TypeError) as error:
96 #print(’\t NO VERSION: ’+str(sys.modules[module]))
97 try:
98 version = sys.modules[module].VERSION
99 except AttributeError:

100 #print(’\t\t NO VERSION: ’+str(sys.modules[module]))
101 version = "Unknown"
102 api["Version"] = str(version)
103 list_of_apis.append(api)
104 return list_of_apis
105

106 def my_quantum_compilation(**kwargs):
107 """
108 Information about the quantum compilation part of the benchmark
109 """
110 q_compilation = OrderedDict()
111 q_compilation["Step"] = "None"
112 q_compilation["Version"] = "None"
113 q_compilation["Flags"] = "None"
114 return [q_compilation]
115

116 def my_classical_compilation(**kwargs):
117 """
118 Information about the classical compilation part of the benchmark
119 """
120 c_compilation = OrderedDict()
121 c_compilation["Step"] = "None"
122 c_compilation["Version"] = "None"
123 c_compilation["Flags"] = "None"
124 return [c_compilation]
125

126 def my_metadata_info(**kwargs):
127 """
128 Other important info user want to store in the final json.
129 """
130

131 metadata = OrderedDict()
132 #metadata["None"] = None
133

134 json_file = kwargs.get("ae_config")
135 with open(json_file, ’r’) as openfile:
136 #Reading from json file
137 json_object = json.load(openfile)
138

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.37 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

139 for key, value in json_object.items():
140 metadata[key] = value
141 return metadata
142

143 def my_benchmark_info(**kwargs):
144 """
145 Complete WorkFlow for getting all the benchmar informated related info
146 """
147 benchmark = OrderedDict()
148 benchmark["BenchmarkKernel"] = my_benchmark_kernel(**kwargs)
149 benchmark["StartTime"] = my_starttime(**kwargs)
150 benchmark["EndTime"] = my_endtime(**kwargs)
151 benchmark["ProgramLanguage"] = my_programlanguage(**kwargs)
152 benchmark["ProgramLanguageVersion"] = my_programlanguage_version(**kwargs)
153 benchmark["ProgramLanguageVendor"] = my_programlanguage_vendor(**kwargs)
154 benchmark["API"] = my_api(**kwargs)
155 benchmark["QuantumCompililation"] = my_quantum_compilation(**kwargs)
156 benchmark["ClassicalCompiler"] = my_classical_compilation(**kwargs)
157 benchmark["TimeMethod"] = my_timemethod(**kwargs)
158 benchmark["Results"] = summarize_results(**kwargs)
159 benchmark["MetaData"] = my_metadata_info(**kwargs)
160 return benchmark

Listing T02.13: Example of configuration of the my benchmark info.py script

The my benchmark info function gathers all the mandatory information needed by the Benchmarks main field of the
report (by calling the different functions listed in listing T02.13). To properly fill this field some mandatory information
must be provided as the typical python kwargs:

• times filename: This is the complete path to the file where the starting and ending time of the Benchmark was
stored. This file must be a csv one and it is generated when the KERNEL BENCHMARK class is executed.
This information is used by the my starttime and my endtime functions.

• ae config: complete path where the configuration of the AE algorithm used in the Benchmark (in JSON format)
is stored (see last paragraph of section A.1.3). This information is used by the my metadata info function for
filling the MetaData sub-field of Benchmarks main field of the report. This field is not mandatory, following the
JSON schema NEASQC, but it is important to get good traceability of the Benchmark results.

• benchmark file: complete path where the file with the summary results of the Benchmark are stored. This in-
formation is used by the summarize results function from my benchmark summary.py script (see section A.2.2).

A.2.2. my benchmark summary.py

In this script, the summarize results function is implemented. This function formats the results of a complete execution
of a AE Benchmark with a suitable NEASQC benchmark report format. It can be used for generating the information
under the sub-field Results of the main field Benchmarks in the report.

Listing T02.14 shows an example of implementation of summarize results function for the AE Benchmark procedure.

1

2 def summarize_results(**kwargs):
3 """
4 Mandatory code for properly present the benchmark results following
5 the NEASQC jsonschema
6 """
7

8 #Info with the benchmark results like a csv or a DataFrame
9 import pandas as pd

10 #pdf = None
11 benchmark_file = kwargs.get("benchmark_file")
12 pdf = pd.read_csv(benchmark_file, header=[0, 1], index_col=[0, 1])
13 pdf.reset_index(inplace=True)
14 #n_qbits = [4]
15 n_qbits = list(set(pdf["n_qbits"]))
16 intervals = list(set(pdf["interval"]))
17

18 #Metrics needed for reporting. Depend on the benchmark kernel
19 #list_of_metrics = ["MRSE"]
20 list_of_metrics = [

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.38 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

21 # "absolute_error_exact", "relative_error_exact",
22 "IntegralAbsoluteError", "oracle_calls"
23]
24

25 results = []
26 #If several qbits are tested
27 for n_ in n_qbits:
28 #Fields for benchmark test of a fixed number of qubits
29 #For each qubit 2 different integration interval is tested
30 for interval in intervals:
31 result = OrderedDict()
32 result["NumberOfQubits"] = n_
33 result["QubitPlacement"] = list(range(n_))
34 result["QPUs"] = [1]
35 result["CPUs"] = psutil.Process().cpu_affinity()
36 #Getting the data for n_qbiotd and interval
37 step_pdf = \
38 pdf[(pdf["interval"] == interval) & (pdf["n_qbits"] == n_)]
39 #result["TotalTime"] = 10.0
40 #result["SigmaTotalTime"] = 1.0
41 #result["QuantumTime"] = 9.0
42 #result["SigmaQuantumTime"] = 0.5
43 #result["ClassicalTime"] = 1.0
44 #result["SigmaClassicalTime"] = 0.1
45 result["TotalTime"] = step_pdf["elapsed_time"]["mean"].iloc[0]
46 result["SigmaTotalTime"] = step_pdf["elapsed_time"]["std"].iloc[0]
47 result["QuantumTime"] = step_pdf["quantum_time"]["mean"].iloc[0]
48 result["SigmaQuantumTime"] = step_pdf["quantum_time"]["std"].iloc[0]
49 result["ClassicalTime"] = step_pdf["classic_time"]["mean"].iloc[0]
50 result["SigmaClassicalTime"] = step_pdf["classic_time"]["std"].iloc[0]
51 #For identify integration interval info. Not mandaatory but
52 #useful for indentify results
53 result["Interval"] = interval
54 metrics = []
55 #For each fixed number of qbits several metrics can be reported
56 for metric_name in list_of_metrics:
57 metric = OrderedDict()
58 #MANDATORY
59 metric["Metric"] = metric_name
60 #metric["Value"] = 0.1
61 #metric["STD"] = 0.001
62 metric["Value"] = step_pdf[metric_name]["mean"].iloc[0]
63 metric["STD"] = step_pdf[metric_name]["std"].iloc[0]
64 #Depending on the benchmark kernel
65 metric["MIN"] = step_pdf[metric_name]["min"].iloc[0]
66 metric["MAX"] = step_pdf[metric_name]["max"].iloc[0]
67 metric["COUNT"] = step_pdf[metric_name]["count"].iloc[0]
68 metrics.append(metric)
69 result["Metrics"] = metrics
70 results.append(result)
71 return results

Listing T02.14: Example of configuration of the summarize results function for AE benchmark

As usual, the kwargs strategy is used for passing the arguments that the function can use. In this case, the only
mandatory argument is benchmark file with the path to the file where the summary results of the Benchmark execution
were stored.

Table T02.2 shows the sub-fields and the information stored, under the Results field. To have proper traceability of the
executions the sub-field interval was created explicitly for the AE Benchmark.

The sub-field Metrics gathers information about the obtained metrics of the benchmark. Table T02.3 shows its different
sub-fields and the information stored. The Integral Absolute Error is stored under the name IntegralAbsoluteError,
and the number of oracle calls is under the name oracle calls.

A.2.3. neasqc benchmark.py

The neasqc benchmark.py script can be used straightforwardly for gathering all the Benchmark execution information
and results, for creating the final mandatory NEASQC benchmark report.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.39 of T02.40

T02 Benchmark for Amplitude Estimation Algorithms (1.0- Submitted)

sub-field information
NumberOfQubits number of qubits, n
TotalTime mean of elapsed time
SigmaTotalTime standard deviation of elapsed time
QuantumTime mean of the quantum time
SigmaQuantumTime standard deviation of quantum time
ClassicalTime mean of the classical time
SigmaClassicalTime standard deviation of classical time
interval integration interval (can be 0 or 1)
Metrics summarize verification metrics. See Table T02.3

Table T02.2: Sub-fields of the Results fields of the TNBS benchmark report.

sub-field information
metric IntegralAbsoluteError, oracle calls
Value mean value of the metric
STD standard deviation of the metric
Count number of samples for computing the statistics of the metric

Table T02.3: Sub-fields of the Metrics field.

It does not necessarily change anything about the class implementation. It is enough to update the information of the
kwargs arguments for providing the mandatory files for gathering all the information.

In this case, the following information should be provided as arguments for the exe method of the BENCHMARK
class:

• times filename: complete path where the file with the times of the Benchmark execution was stored.

• benchmark file: complete path where the file with the summary results of the Benchmark execution was stored.

• ae config: complete path where the configuration of the AE algorithm used in the benchmark (in JSON format)
was stored.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T02.40 of T02.40

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

E.T03: Benchmark for Phase Estimation Algorithms

© 2023 NEASQC Consortium Partners. All rights reserved. Page 108 of 178

NExt ApplicationS of Quantum Computing
Benchmark Suite

T03: Benchmark for Phase Estimation
Algorithms

Document Properties

Contract Number 951821

Contractual Deadline 31/10/2023

Dissemination Level Public

Nature Test Case Definition

Editors Gonzalo Ferro, CESGA

Authors Gonzalo Ferro, CESGA
Oluwatosin Esther, CITIC-UDC
Andrés Gómez, CESGA

Reviewers Cyril Allouche, EVIDEN
Arnaud Gazda, EVIDEN

Date 27/10/2023

Category [Generic]

Keywords

Status Submitted

Release 1.0

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

History of Changes

Release Date Author, Organisation Description of Changes

0.1 24/07/2023 Gonzalo Ferro, CESGA
Oluwatosin Esther, CITIC-
UDC

Quantum Phase Estimation Benchmark

0.2 25/08/2023 Gonzalo Ferro, CESGA Quantum Phase Estimation Benchmark

0.3 08/10/2023 Andrés Gómez, CESGA Formatting

0.4 25/10/2023 Gonzalo Ferro, CESGA Fixing the naming according to the Glossary of
deliverable 3.5

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.2 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

Table of Contents

1. Introduction T03.4

2. Description of the Kernel: Quantum Phase Estimation T03.5
2.1. Kernel selection justification . T03.5
2.2. Kernel Description . T03.5

3. Description of the benchmark test case T03.7
3.1. Description of the problem . T03.7
3.2. Benchmark test case description . T03.7
3.3. Complete benchmark procedure . T03.9
3.4. Benchmark report . T03.10

List of Acronyms T03.11

List of Figures T03.12

List of Tables T03.13

List of Listings T03.14

Bibliography T03.15

A. NEASQC test case reference T03.16
A.1. NEASQC implementation of benchmark test case. T03.16

A.1.1. Implementation of QPE for Rn
z operator . T03.16

A.1.2. my benchmark execution.py . T03.24
A.2. Generation of the benchmark report . T03.29

A.2.1. my benchmark info.py . T03.32
A.2.2. my benchmark summary.py . T03.34
A.2.3. neasqc benchmark.py . T03.36

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.3 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

1.Introduction

This section describes the T3: Phase Estimation benchmark of The NEASQC Benchmarking Suite (TNBS). This
document must be read accompanied by the document that describes the TNBS: D3.5: The NEASQC Benchmark
Suite.

Section 2 describes the Quantum Phase Estimation kernel, referred as QPE Kernel along the document. With each
TNBS a Benchmark Test Case (BTC) must be designed and documented. This is done in Section 3. Finally, the
benchmarking methodology provides a reference implementation of the BTC using the Eviden myQLM library. This
implementation is described in Annex A.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.4 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

2.Description of the Kernel: Quantum Phase Estimation

The present section describes the QPE Kernel for the TNBS. Section 2.1 justifies Kernel selection according to the
TNBS benchmarking methodology meanwhile section 2.2 presents a complete description of this QPE Kernel.

2.1. Kernel selection justification

The QPE Kernel (Jiang et al., 2021) is utilized to estimate the eigenvalues (or phases) of a unitary operator. The
QPE Kernel implements a measurement for any Hermitian operator and serves as a key component in numerous
quantum algorithms, such as Shor’s algorithm, the quantum algorithm for solving linear systems of equations, or the
measurement of the energy of a Hamiltonian in Variational Quantum Eigensolver (VQE) algorithms (Cao et al., 2019).
So the QPE Kernel can be considered as an interesting candidate for TNBS. Additionally, it satisfies the three main
requirements from the NEASQC benchmark methodology:

1. A mathematical definition of the Kernel can be provided with sufficient accuracy to enable the construction of
a standalone circuit (refer to sections 2.2 and 3).

2. The Kernel can be defined for a configurable number of qubits.

3. The output can be verified through a classical computation (see section 3.2).

2.2. Kernel Description

The QPE Kernel can be defined in the following way:

Let U be an n-qubit unitary operator. The eigenvalues of this operator are phases that can be represented as e2iπλj for
j = 0, 1, 2, · · · 2n − 1. For a particular eigenstate |ψj⟩:

U |ψj⟩ = e2iπλj |ψj⟩ (T03.2.1)

where 0 ≤ λj < 1. The objective of the QPE Kernel is to obtain an estimation, up to a finite level, of the different
eigenvalues λj .

The canonical solution, from a quantum computing perspective, is to use the Quantum Phase Estimation algorithm
(Kitaev, 1995) whose circuit implementation is shown in Figure T03.1.

. . .

. . .

. . .

. . .

|0⟩m

H

QFT † |yj⟩
H

H

|ψj⟩n U2m−1

U2m−2

U20

1 2

Figure T03.1: Canonical QPE circuit.

This algorithm operates on two different registers: a n qubits one, initialized to the eigenstate |ψj⟩, and a m qubits
one to estimate the phase. Thus, the total number of qubits will be n+m.

The initial state is set to (dashed line 1 in Figure T03.1):

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.5 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

|ψj⟩ ⊗ |0⟩ (T03.2.2)

where |0⟩ = |0⟩⊗m.

As shown in Figure T03.1, a sequence of controlled-U2j operations, where the j-th control qubit is the m − j-th
counting qubit, is applied over the state |ψj⟩ (i.e. over the n qubits register)

This operation maps the initial state to the state (dashed line 2 in Figure T03.1):

1√
2m

(
|0⟩+ e2πi2

m−1λj |1⟩
)
⊗ · · · ⊗

(
|0⟩+ e2πi2

−1λj |1⟩
)
⊗
(
|0⟩+ e2πi2

0λj |1⟩
)
⊗ |ψj⟩ (T03.2.3)

where λj is the unknown eigenvalue correspondent to the eigenstate |ψj⟩. After applying the complex conjugate of
the Quantum Fourier Transformation (operator QFT † in Figure T03.1) on the m qubits register, they are measured
and the resulting binary string |yj⟩ is obtained. Then it can be transformed to an estimator λ̃j of the eigenvalue λj by
(T03.2.4).

λ̃j =
yj
2m

(T03.2.4)

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.6 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

3.Description of the benchmark test case

This section presents the complete description of the BTC for the QPE Kernel. Section 3.1 describes the prob-
lem addressed by the test case. Section 3.2 provides a high-level description of the BTC. Section 3.3 provides the
Benchmark execution workflow. Finally, section 3.4 documents how the results of such executions must be reported.

3.1. Description of the problem

The computation of the eigenvalues of a n qubits unitary operator Rn
z (θ⃗) = ⊗n

i=1Rz(θi), for a vector of n angles
θ⃗ = {θi} i = 0, 1, · · · , n− 1 is the proposed BTC for the QPE Kernel.

The Rz(θ) operator is a Z-axis rotation gate given by (T03.1.1).

Rz(θ) =

(
e−i θ

2 0

0 ei
θ
2

)
= e−i θ

2 |0⟩ ⟨0|+ ei
θ
2 |1⟩ ⟨1| (T03.1.1)

The circuit implementation of the proposed problem is shown in Figure T03.2

q0

q1

...

qn−1

Rn
z (θ⃗) =

q0

q1

...
...

qn−1

Rz(θ0)

Rz(θ1)

Rz(θn−1)

Figure T03.2: Circuit implementation of the Rn
z (θ⃗) operator

Two different set of θ⃗ angles will be used:

1. Random: in this case the n angles will be selected randomly between the interval [0, π]

2. Exact: in this case, the angle selection will depend on the number of auxiliary qubits for the QPE m and is
given by (T03.1.2) where δθ = 4π

2m and a will be a binary random variable that can be {−1, 1}

θi+1 = θi + a ∗ δθ (T03.1.2)

A fixed QPE implementation must be used to compute the probabilities of the different eigenvalues of the Rn
z (θ⃗)

n

operator, for the two aforementioned cases, and these probabilities must be compared with the theoretical probability
distribution using various metrics.

3.2. Benchmark test case description

This section provides a step-by-step workflow of the BTC for the QPE Kernel. The inputs are the number of qubits n,
the number of auxiliary qubits (or discretization parameter1) m, see Figure T03.1, and a set of angles built following
the random or the exact method (provided at the end of Section 3.1).

The following 7 steps should be followed:

1In the canonical solution, m sets the precision of the destination (1
2m

). To avoid linking the benchmark to a fixed implementation this m will be
used for the benchmark as a discretization parameter for comparing histograms.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.7 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

1. Generation of the reference probability distribution of the eigenvalues. The theoretical probabilities must
be computed P th

λ,m(k
2m) where k = 0, 1, · · · 2m − 1 following the next steps:

a) Compute each state of the 2n possible states as a binary string: |i0i1 · · · in−1⟩ with ij = {0, 1}
b) For each state compute the associated eigenvalue λj using (T03.2.3):

λj =

∑n
k (−1)ikθk

4π
(T03.2.3)

c) So for each possible state |j⟩ an eigenvalue λj should be computed. For the angles from the exact case
some eigenvalues can have degeneracy (i.e. can occur several times). In this case, the less frequent
eigenvalue (λlf) and its frequency (fλlf

) should be stored. This is more unlikely for the random case (in
this case, with very high probability fλlf

= 1).

d) Compute a histogram for the complete list of eigenvalues λi according to the following guidelines:

• The number of histogram bins will be 2m.

• The range of the histogram will be [0, 1]

• The frequency of eigenvalues in each bin k should be computed: fλk

• Each bin must be labelled as k
2m where k is the number of the bin (k = 0, 1, 2, · · · 2m − 1)

e) This histogram must be used to build a theoretical discrete probability distribution of the eigenvalues:
P th
λ,m(k

2m) = fλk
. Figure T03.3 shows an example of the theoretical probability distribution of the eigen-

values, for a n = 7 qubits Rn
z (θ) operator with a discretization parameter of m = 7 for the exact case.

Figure T03.3: Example of a histogram showing the theoretical probability distribution of the eigenvalues for a n = 7
qubits operator Rz(θ)

n with a parameter discretization m = 7 for the exact case.

2. Compute the number of shots, nshots that will be used for executing the QPE routine in the quantum device. For
this computation, we want a number of shots that ensures that the less frequent eigenvalue should be measured
at least 1000 times. This condition is satisfied by fixing the number of shots to (T03.2.4) where fλlf

is the
frequency of the less frequent eigenvalue.

nshots =
1000

0.81 ∗ fλlf

(T03.2.4)

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.8 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

3. Create the operator Rn
z (θ⃗) with the input angles.

4. Create an initial state for the QPE routine that is an equiprobable combination of all the 2n possible states:

|ψ0⟩ =
1√
2n

n−1∑

i=0

|i⟩

5. Provide the Rn
z (θ⃗) operator and the initial state |ψ0⟩ to the QPE routine, execute it and measure the eigenvalue.

This should be done nshots times. So a complete list of nshots QPE eigenvalues is generated: λjQPE where
j = 1, 2, · · ·nshots

6. The list of eigenvalues generated by the QPE (λjQPE) must be used to draw a second histogram using the same
procedure as in step 1.d. This generates the measured probability distribution of the values generated by the
QPE: PQPE

λ,m (k
2m) with k = 0, 1, · · · 2m − 1.

7. The two discrete probability distributions, P th
λ,m and PQPE

λ,m , must be compared using the following metrics:

• The Kolmogorov-Smirnov (KS) between P th
λ,m and PQPE

λ,m . This is the maximum of the absolute dif-
ference between the cumulative distribution functions of P th

λ,m and PQPE
λ,m computed following (T03.2.5),

This will be the comparative metric for the angles from random case.

KS = max

(∣∣∣∣∣
i∑

k=0

P th
λ,m(

k

2m
)−

i∑

k=0

PQPE
λ,m (

k

2m
)

∣∣∣∣∣ , ∀k = 0, 1, · · · , 2m − 1

)
(T03.2.5)

• The fidelity. In this case the 2 distributions (P th
λ,m and PQPE

λ,m) will be considered as vectors and the fidelity
will be the cosine of the angle between them that will be computed following (T03.2.6). |P th

λ | and |PQPE
λ |

will be the norm of the vectors corresponding to the theoretical and QPE distributions respectively. This
will be the comparative metric for the angles from exact case.

fidelity =

∑n−1
k=0 P

th
λ,m(k

2m) ∗ PQPE
λ,m (k

2m)

|P th
λ | ∗ |PQPE

λ |
(T03.2.6)

The time from steps 2 to 7 should also be measured and labelled as the elapsed time. If possible, the time of the pure
quantum part, step 5, should be calculated separately as the quantum time.

3.3. Complete benchmark procedure

To execute a complete QPE Benchmark the next procedure must be followed:

1. We must fix in advance the different numbers of qubits to be tested (for example from n=4 to n=8).

2. For each number of qubits n, several numbers of auxiliary qubits (or discretization parameter) m should be
tested, in general it is recommended that m ≥ n. For example, m can range between 4 and 12 in steps of 2.

3. For each possible combination of number of qubits n, discretization parameterm and the two different selection
methods for the angles, random and exact, following steps must be performed:

a) Execute a warm-up step consisting of:

i. Execute 10 iterations of the BTC, as explained in section 3.2, and compute the standard deviation
(σmetric) for the used metric of the angle selection method (metric = KS for random andmetric =
fidelity for the exact case). Additionally, compute the mean and the standard deviation for the elapsed
time, µt, σt

ii. Compute the number of repetitions, Mmetric, using equation (T03.3.7). Where rmetric will be the
desired absolute error for the metric of the angle selection method: rKS = 0.05 for exact case and

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.9 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

rfidelity = 0.001 for the random case. Z1−α
2

is the percentile for α = 0.95

M =
(σmetricZ1−α

2

rmetric

)2
(T03.3.7)

iii. Compute the number of repetitions mandatory, Mt, for having a relative error for the elapsed time of
5%, rt = 0.05, with a confidence level of 95%, α = 0.05, following (T03.3.8), where Z1−α

2
is the

percentile for α :

MT =
(σtZ1−α

2

rµt

)2
(T03.3.8)

b) Execute the complete BTC, section 3.2, M = max(Mt,Mmetric) times. M must be greater than 5.

c) Compute the mean, the standard deviation (σ) and the standard deviation of the mean (σ√
M

) for the elapsed
time, quantum time, if possible, and for the mentioned metrics in step 7 of section 3.2: KS and fidelity.

The method used to calculate the number of repetitionsM in the previous procedure guarantees that the desired metric
(KS for random and fidelity for exact) will have a relative error lower than its correspondent rmetric and the elapsed
time one will have a relative error lower than 5% with a confidence level of 95%, in both cases.

3.4. Benchmark report

Finally, the results of the complete benchmark execution must be reported into a valid JSON file following the JSON
schema NEASQC.Benchmark.V2.Schema.json provided in the document D3.5: The NEASQC Benchmark Suite of the
NEASQC project.

The results of the Benchmark should be stored in the field Benchmarks, under the sub-field Results. This sub-field of
the JSON has associated a list of elements, where each element is a dictionary with the complete result information for
a Benchmark execution: this is, for a fixed number of qubits n (sub-field NumberOfQubits of the dictionary), fixed
discretization parameter m (a new sub-field called AuxiliarNumberOfQubits was created for storing this information)
and angle selection method (a new sub-field called MethodForSettingAngles was created for storing this information).
Each one of these dictionaries stores, under the sub-field Metrics, the mandatory verification metrics: the Kolmogorov-
Smirnov one is stored under the name KS and the fidelity is stored under the name fidelity. Additionally, the mean
elapsed time must be reported in the TotalTime sub-field and its standard deviation in the SigmaTotalTime one.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.10 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

List of Acronyms

Term Definition
BTC Benchmark Test Case
NEASQC NExt ApplicationS of Quantum Computing
QPE Quantum Phase Estimation
QPU Quantum Process Unit
TNBS The NEASQC Benchmark Suite

Table T03.1: Acronyms and Abbreviations

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.11 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

List of Figures

Figure T03.1.: Canonical QPE circuit. T03.5

Figure T03.2.: Circuit implementation of the Rn
z (θ⃗) operator . T03.7

Figure T03.3.: Example of a histogram showing the theoretical probability distribution of the eigenvalues
for a n = 7 qubits operator Rz(θ)

n with a parameter discretization m = 7 for the exact
case. T03.8

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.12 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

List of Tables

Table T03.1.: Acronyms and Abbreviations . T03.11

Table T03.2.: Sub-fields of the Results fields of the TNBS benchmark report. The metrics related with the
quantum time and classical time are not mandatory T03.35

Table T03.3.: Sub-fields of the Metrics field. T03.35

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.13 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

List of Listings

Listing T03.1. QPE RZ class from qpe rz.py library . T03.16
Listing T03.2. Example for QPE RZ class configuration using a Python dictionary and how to use it . . T03.19
Listing T03.3. Command line example for configuring the QPÊ RZ class and executing the benchmark work-

flow . T03.19
Listing T03.4. rz lib.py library . T03.20
Listing T03.5. run code function for executing the BTC of the QPE kernel, as explained in section 3.2 T03.25
Listing T03.6. compute samples function for codifying the strategy for computing the number of repetitions

for the QPE Benchmark. T03.26
Listing T03.7. summarize results function for summarizing the results from BTC execution of the QPE ker-

nel . T03.27
Listing T03.8. build iterator function for creating the iterator of the complete execution of the QPE Bench-

mark . T03.28
Listing T03.9. Example of configuration of a complete Benchmark execution. This part of the code should

be located at the end of the my benchmark execution.py script T03.28
Listing T03.10. Example of configuration of the my environment info.py script T03.30
Listing T03.11. Example of configuration of the my benchmark info.py script T03.32
Listing T03.12. Example of configuration of the summarize results function for QPE benchmark T03.34

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.14 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

Bibliography

Cao, Y., Romero, J., Olson, J. P., Degroote, M., Johnson, P. D., Kieferová, M., Kivlichan, I. D., Menke, T., Peropadre,
B., Sawaya, N. P. D., Sim, S., Veis, L., & Aspuru-Guzik, A. (2019). Quantum chemistry in the age of quantum
computing [PMID: 31469277]. Chemical Reviews, 119(19), 10856–10915. https : / /doi .org /10 .1021/acs .
chemrev.8b00803

Jiang, D., Liu, X., Song, H., & Xie, H. (2021). An survey: Quantum phase estimation algorithms.
2021 IEEE 5th Information Technology,Networking,Electronic and Automation Control Conference (ITNEC),
5, 884–888. https://doi.org/10.1109/ITNEC52019.2021.9587010

Kitaev, A. Y. (1995). Quantum measurements and the abelian stabilizer problem.
Electron. Colloquium Comput. Complex., TR96.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.15 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

A.NEASQC test case reference

As pointed out in deliverable D3.5: The NEASQC Benchmark Suite each proposed Benchmark for TNBS, must
have a complete Eviden myQLM-compatible software implementation. For the QPE kernel, this implementation
can be found in the tnbs/BTC 03 QPE folder of the WP3 Benchmark NEASQC GitHub repository. Additionally,
the execution of a Benchmark must generate a complete result report into a separate JSON file, that must follow
NEASQC JSON schema NEASQC.Benchmark.V2.Schema.json provided into the aforementioned deliverable.

The tnbs/BTC 03 QPE locations contains the following folders and files:

• QPE folder: with all the Python modules mandatory for executing the complete workflow of the QPE as
explained in section 3.2

• my benchmark execution.py

• my environment info.py

• my benchmark info.py

• my benchmark summary.py

• neasqc benchmark.py

The modules inside QPE folder in addition to my benchmark execution.py deal with the QPE Benchmark ex-
ecution. Section A.1 documents, exhaustively, these files. The other script files are related to Benchmark report
generation and are properly explained in section A.2.

A.1. NEASQC implementation of benchmark test case.

This section presents a complete description of the QPE Benchmark implementation. In the subsection A.1.1 the
Python implementation of a BTC step, as explained in 3.2, is presented. Subsection A.1.2 documents the modifications
done in the script my benchmark summary.py that is used for executing a complete Benchmark procedure, as
explained in 3.3.

A.1.1. Implementation of QPE for Rn
z operator

All the Python mandatory modules for executing the complete workflow of the presented BTC, as explained in 3.2,
are stored inside the tnbs/BTC 03 QPE/QPE folder. Inside it following folders and files can be found:

• library qpe rz.py

• library rz lib.py

• folder utils

• folder notebooks

qpe rz.py library

The qpe rz.py library contains the Python class QPE RZ where the basis workflow of the BTC (section 3.2) for a
fixed number of qubits n, a discretization parameter m and an angle selection method is implemented. Listing T03.1
shows the complete class implementation.

1

2 class QPE_RZ:
3 """
4 Probability Loading
5 """
6

7

8 def __init__(self, **kwargs):
9 """

10

11 Method for initializing the class

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.16 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

12

13 """
14

15 self.n_qbits = kwargs.get("number_of_qbits", None)
16 if self.n_qbits is None:
17 error_text = "The number_of_qbits argument CAN NOT BE NONE."
18 raise ValueError(error_text)
19 self.auxiliar_qbits_number = kwargs.get("auxiliar_qbits_number", None)
20 if self.auxiliar_qbits_number is None:
21 error_text = "Provide the number of auxiliary qubits for QPE"
22 raise ValueError(error_text)
23

24 # Minimum angle measured by the QPE
25 self.delta_theta = 4 * np.pi / 2 ** self.auxiliar_qbits_number
26

27 angles = kwargs.get("angles", None)
28 if type(angles) not in [str, float, list]:
29 error_text = "Be aware! angles keyword can only be str" + \
30 ", float or list "
31 raise ValueError(error_text)
32

33 self.angle_name = ’’
34

35 if isinstance(angles, str):
36 if angles == ’random’:
37 self.angle_name = ’random’
38 self.angles = [np.pi * np.random.random() \
39 for i in range(self.n_qbits)]
40 elif angles == ’exact’:
41 # Here we compute the angles of the R_zˆn operator for
42 # obtaining exact eigenvalues in QPE. We begin in 0.5pi
43 # and sum or rest randomly the minimum QPE measured
44 # angle
45 self.angle_name = ’exact’
46 self.angles = []
47 angle_0 = np.pi / 2.0
48 for i_ in range(self.n_qbits):
49 angle_0 = angle_0 + (-1) ** np.random.randint(2) *\
50 self.delta_theta
51 self.angles.append(angle_0)
52 else:
53 error_text = "Be aware! If angles is str then only" + \
54 "can be random"
55 raise ValueError(error_text)
56

57 if isinstance(angles, float):
58 self.angles = [angles for i in range(self.n_qbits)]
59

60 if isinstance(angles, list):
61 self.angles = angles
62 if len(self.angles) != self.n_qbits:
63 error_text = "Be aware! The number of elements in angles" + \
64 "MUST BE equal to the n_qbits"
65 raise ValueError(error_text)
66

67 # Set the QPU to use
68 self.qpu = kwargs.get("qpu", None)
69 if self.qpu is None:
70 error_text = "Please provide a QPU."
71 raise ValueError(error_text)
72

73 # Shots for measuring the QPE circuit
74 self.shots = kwargs.get("shots", None)
75 if self.shots is not None:
76 text = "BE AWARE! The keyword shots should be None because" +\
77 "shots should be computed in function of the theoretical" +\
78 "eigenvalues. You can only provide 0 for doing some testing" +\
79 "in the class. 0 will imply complete simulation of QPE circuit"
80 print(text)
81 if self.shots != 0:
82 error_text = "BE AWARE! The keyword shots must be None or 0"
83 raise ValueError(error_text)
84

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.17 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

85

86 # For storing classical eigenvalue distribution
87 self.theorical_eigv = None
88 self.theorical_eigv_dist = None
89 # For storing quantum eigenvalue distribution
90 self.quantum_eigv_dist = None
91 # For storing attributes from CQPE class
92 self.circuit = None
93 self.quantum_time = None
94

95 # Computing complete time of the process
96 self.elapsed_time = None
97

98 # Metric attributes
99 self.ks = None

100 self.fidelity = None
101

102 # Pandas DataFrame for summary
103 self.pdf = None
104

105 def theoretical_distribution(self):
106 """
107 Computes the theoretical distribution of Rz eigenvalues
108 """
109 # Compute the complete eigenvalues
110 self.theorical_eigv = rz_lib.rz_eigv(self.angles)
111 # Compute the eigenvalue distribution using auxiliar_qbits_number
112 self.theorical_eigv_dist = rz_lib.make_histogram(
113 self.theorical_eigv[’Eigenvalues’], self.auxiliar_qbits_number)
114 if self.shots is None:
115 # Compute the number of shots for QPE circuit
116 self.shots = rz_lib.computing_shots(self.theorical_eigv)
117 else:
118 if self.shots != 0:
119 self.shots = rz_lib.computing_shots(self.theorical_eigv)
120 else:
121 pass
122

123 def quantum_distribution(self):
124 """
125 Computes the quantum distribution of Rz eigenvalues
126 """
127 self.quantum_eigv_dist, qpe_object = rz_lib.qpe_rz_qlm(
128 self.angles,
129 auxiliar_qbits_number=self.auxiliar_qbits_number,
130 shots=self.shots,
131 qpu=self.qpu
132

133)
134 self.circuit = qpe_object.circuit
135 self.quantum_time = qpe_object.quantum_times
136

137 def get_metrics(self):
138 """
139 Computing Metrics
140 """
141 # Kolmogorov-Smirnov
142 self.ks = np.abs(
143 self.theorical_eigv_dist[’Probability’].cumsum() \
144 - self.quantum_eigv_dist[’Probability’].cumsum()
145).max()
146 # Fidelity
147 qv = self.quantum_eigv_dist[’Probability’]
148 tv = self.theorical_eigv_dist[’Probability’]
149 self.fidelity = qv @ tv / (np.linalg.norm(qv) * np.linalg.norm(tv))
150

151

152 def exe(self):
153 """
154 Execution of workflow
155 """
156 tick = time.time()
157 # Compute theoretical eigenvalues

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.18 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

158 self.theoretical_distribution()
159 # Computing eigenvalues using QPE
160 self.quantum_distribution()
161 # Compute the metrics
162 self.get_metrics()
163 tack = time.time()
164 self.elapsed_time = tack - tick
165 self.summary()
166

167 def summary(self):
168 """
169 Pandas summary
170 """
171 self.pdf = pd.DataFrame()
172 self.pdf["n_qbits"] = [self.n_qbits]
173 self.pdf["aux_qbits"] = [self.auxiliar_qbits_number]
174 self.pdf["delta_theta"] = self.delta_theta
175 self.pdf["angle_method"] = [self.angle_name]
176 self.pdf["angles"] = [self.angles]
177 self.pdf["qpu"] = [self.qpu]
178 self.pdf["shots"] = [self.shots]
179 self.pdf["KS"] = [self.ks]
180 self.pdf["fidelity"] = [self.fidelity]
181 self.pdf["elapsed_time"] = [self.elapsed_time]
182 self.pdf["quantum_time"] = [self.quantum_time[0]]

Listing T03.1: QPE RZ class from qpe rz.py library .

For configuring the QPE RZ class a Python dictionary should be provided, see Listing T03.2 for an example.

1

2 qpe_rz_dict = {
3 ’number_of_qbits’ : 7,
4 ’auxiliar_qbits_number’ : 7,
5 ’angles’ : ’exact’,
6 ’qpu’ : qat.qpus.CLinalg(),
7 }
8

9 qpe_rz_b = QPE_RZ(**qpe_rz_dict)
10 qpe_rz_b.exe()

Listing T03.2: Example for QPE RZ class configuration using a Python dictionary and how to use it

For executing the workflow the exe method of QPE RZ should be used. The following attributes are populated when
this exe method is invoking:

• KS: Kolmogorov-Smirnov distance, see equation (T03.2.5)

• fidelity: fidelity metric, see equation (T03.2.6)

• theorical eigv dist: pandas DataFrame with the theoretical probability distribution of the eigenvalues:
P th
λ,m(k

2m)

• quantum eigv dist: pandas DataFrame with the probability distribution of the eigenvalues from QPE:
PQPE
λ,m (k

2m)

The qpe rz.py library can be executed from the command line. Different arguments can be provided to properly
configure the QPE RZ class. For a usage guide -h parameter can be provided. Listing T03.3 shows an example of the
command line usage. In this case, the Rn

z operator will be of n = 7 qubit, the parameter discretization m = 7 and the
method for loading angles will be the exact method (the 0 argument for -angles). Additionally, CLinAlg solver, from
Eviden myQLM library, will be used for simulating the canonical QPE.

1 python qpe_rz.py -n_qbits 7 -aux_qbits 7 -qpu c -angles 0

Listing T03.3: Command line example for configuring the QPÊ RZ class and executing the benchmark workflow

rz lib.py library

The rz lib library, Listing T03.4 contains all the auxiliary functions needed by the QPE RZ class from qpe rz library.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.19 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

1

2 import numpy as np
3 import pandas as pd
4 import qat.lang.AQASM as qlm
5 from QPE.utils.qpe import CQPE
6

7

8 def get_qpu(qpu=None):
9 """

10 Function for selecting solver.
11

12 Parameters
13 ----------
14

15 qpu : str
16 * qlmass: for trying to use QLM as a Service connection to CESGA QLM
17 * python: for using PyLinalg simulator.
18 * c: for using CLinalg simulator
19

20 Returns
21 ----------
22

23 linal_qpu : solver for quantum jobs
24 """
25

26 if qpu is None:
27 raise ValueError(
28 "qpu CAN NOT BE NONE. Please select one of the three" +
29 " following options: qlmass, python, c")
30 if qpu == "qlmass":
31 try:
32 from qlmaas.qpus import LinAlg
33 linalg_qpu = LinAlg()
34 except (ImportError, OSError) as exception:
35 raise ImportError(
36 "Problem Using QLMaaS. Please create config file" +
37 "or use mylm solver") from exception
38 elif qpu == "python":
39 from qat.qpus import PyLinalg
40 linalg_qpu = PyLinalg()
41 elif qpu == "c":
42 from qat.qpus import CLinalg
43 linalg_qpu = CLinalg()
44 elif qpu == "default":
45 from qat.qpus import get_default_qpu
46 linalg_qpu = get_default_qpu()
47 else:
48 raise ValueError(
49 "Invalid value for qpu. Please select one of the three "+
50 "following options: qlmass, python, c")
51 #print("Following qpu will be used: {}".format(linalg_qpu))
52 return linalg_qpu
53

54 # Functions for generating theoretical eigenvalues of R_zˆn
55 def bitfield(n_int: int, size: int):
56 """Transforms an int n_int to the corresponding bitfield of size size
57

58 Parameters
59 ----------
60 n_int : int
61 integer from which we want to obtain the bitfield
62 size : int
63 size of the bitfield
64

65 Returns
66 ----------
67 full : list of ints
68 bitfield representation of n_int with size size
69

70 """
71 aux = [1 if digit == "1" else 0 for digit in bin(n_int)[2:]]
72 right = np.array(aux)
73 left = np.zeros(max(size - right.size, 0))

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.20 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

74 full = np.concatenate((left, right))
75 return full.astype(int)
76

77 def rz_eigenv_from_state(state, angles):
78 """
79 For a fixed input state and the angles of the R_zˆn operator compute
80 the correspondent eigenvalue.
81

82 Parameters
83 __________
84

85 state : np.array
86 Array with the binary representation of the input state
87 angles: np.array
88 Array with the angles for the R_zˆn operator.
89

90 Returns
91 _______
92

93 lambda_ : float
94 The eigenvalue for the input state of the R_zˆn operator with
95 the input angles
96

97 """
98 new_state = np.where(state == 1, -1, 1)
99 # Computing the eigenvalue correspondent to the input state

100 thetas = - 0.5 * np.dot(new_state, angles)
101 # We want the angle between [0, 2pi]
102 thetas_2pi = np.mod(thetas, 2 * np.pi)
103 # Normalization of the angle between [0,1]
104 lambda_ = thetas_2pi / (2.0 * np.pi)
105 return lambda_
106

107 def rz_eigv(angles):
108 """
109 Computes the complete list of eigenvalues for a R_zˆn operator
110 for an input list of angles
111 Provides the histogram between [0,1] with a bin of 2**discretization
112 for the distribution of eigenvalues of a R_zˆn operator for a given
113 list of angles.
114

115 Parameters
116 __________
117

118 angles: np.array
119 Array with the angles for the R_zˆn operator.
120

121 Returns
122 _______
123

124 pdf : pandas DataFrame
125 DataFrame with all the eigenvalues of the R_zˆn operator for
126 the input list angles. Columns
127 * States : Eigenstates of the Rzˆn operator (least
128 significant bit is leftmost)
129 * Int_lsb_left : Integer conversion of the state
130 (leftmost lsb)
131 * Int_lsb_rightt : Integer conversion of the state
132 (rightmost lsb)
133 * Eigenvalues : correspondent eigenvalue
134

135 """
136

137 n_qubits = len(angles)
138 # Compute eigenvalues of all possible eigenstates
139 eigv = [rz_eigenv_from_state(bitfield(i, n_qubits), angles)\
140 for i in range(2**n_qubits)]
141 pdf = pd.DataFrame(
142 [eigv],
143 index=[’Eigenvalues’]
144).T
145 pdf[’Int_lsb_left’] = pdf.index
146 state = pdf[’Int_lsb_left’].apply(

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.21 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

147 lambda x: bin(x)[2:].zfill(n_qubits)
148)
149 pdf[’States’] = state.apply(lambda x: ’|’ + x[::-1] + ’>’)
150 pdf[’Int_lsb_right’] = state.apply(lambda x: int(’0b’+x[::-1], base=0))
151 pdf = pdf[[’States’, ’Int_lsb_left’, ’Int_lsb_right’, ’Eigenvalues’]]
152 return pdf
153

154 def make_histogram(eigenvalues, discretization):
155 """
156 Given an input list of eigenvalues compute the correspondent
157 histogram using a bins = 2ˆdiscretization
158

159 Parameters
160 __________
161

162 eigenvalues : list
163 List with the eigenvalues
164 discretization: int
165 Histogram discretization parameter: The number of bins for the
166 histogram will be: 2ˆdiscretization
167

168 Returns
169 _______
170

171 pdf : pandas DataFrame
172 Pandas Dataframe with the 2ˆm bin frequency histogram for the
173 input list of eigenvalues. Columns
174 * lambda : bin discretization for eigenvalues based on the
175 discretization input
176 * Probability: probability of finding any eigenvalue inside
177 of the correspoondent lambda bin
178 """
179

180 # When the histogram is computed can be some problems with numeric
181 # approaches. So we compute the maximum number of decimals for
182 # a bare discretization of the bins and use it for rounding properly
183 # the eigenvalues
184 lambda_strings = [len(str(i / 2 ** discretization).split(’.’)[1]) \
185 for i in range(2 ** discretization)]
186 decimal_truncation = max(lambda_strings)
187 trunc_eigenv = [round(i_, decimal_truncation) for i_ in list(eigenvalues)]
188 pdf = pd.DataFrame(
189 np.histogram(
190 trunc_eigenv,
191 bins=2 ** discretization,
192 range=(0, 1.0)
193),
194 index=["Counts", "lambda"]
195).T[:2 ** discretization]
196 pdf["Probability"] = pdf["Counts"] / sum(pdf["Counts"])
197 pdf.drop(columns=[’Counts’], inplace=True)
198

199 return pdf
200

201 # Below are functions for Atos myqlm simulation of R_zˆn
202 def qpe_rz_qlm(angles, auxiliar_qbits_number, shots=0, qpu=None):
203 """
204 Computes the Quantum Phase Estimation for a Rz Kronecker product
205

206 Parameters
207 __________
208

209 angles : list
210 list with the angles that are applied to each qubit of the circuit
211 auxiliar_qbits_number : int
212 number of auxiliary qubits for doing QPE
213 shots : int
214 number of shots for getting the results. 0 for exact solution
215 qpu : Atos QLM QPU object
216 QLM QPU for solving the circuit
217

218 Returns
219 _______

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.22 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

220

221 results : pandas DataFrame
222 pandas DataFrame with the distribution of the eigenvalues with
223 a bin discretization of 2ˆauxiliar_qbits_number
224 * lambda : bin discretization for eigenvalues based on the
225 discretization input (auxiliar_qbits_number input)
226 * Probability: probability of finding any eigenvalue inside
227 of the correspoondent lambda bin
228

229 qft_pe : CQPE object
230

231 """
232 n_qbits = len(angles)
233 #print(’n_qubits: {}’.format(n_qbits))
234 initial_state = qlm.QRoutine()
235 q_bits = initial_state.new_wires(n_qbits)
236

237 # Creating the superposition initial state
238 for i in range(n_qbits):
239 #print(i)
240 initial_state.apply(qlm.H, q_bits[i])
241

242 # Creating the Operator Rz_n
243 rzn_gate = rz_angles(angles)
244 #We create a python dictionary for configuration of class
245 qft_pe_dict = {
246 ’initial_state’: initial_state,
247 ’unitary_operator’: rzn_gate,
248 ’qpu’ : qpu,
249 ’auxiliar_qbits_number’ : auxiliar_qbits_number,
250 ’complete’: True,
251 ’shots’ : shots
252 }
253 qft_pe = CQPE(**qft_pe_dict)
254 qft_pe.run()
255 qft_pe_results = qft_pe.result
256 qft_pe_results.sort_values(’lambda’, inplace=True)
257 results = qft_pe_results[[’lambda’, ’Probability’]]
258 results.reset_index(drop=True, inplace=True)
259 return results, qft_pe
260

261 def rz_angles(thetas):
262 """
263 Creates a QLM abstract Gate with a R_zˆn operator of an input array of angles
264

265 Parameters
266 __________
267

268 thetas : array
269 Array with the angles of the R_zˆn operator
270

271 Returns
272 _______
273

274 r_z_n : QLM AbstractGate
275 AbstractGate with the implementation of R_z_ˆn of the input angles
276

277 """
278 n_qbits = len(thetas)
279

280 @qlm.build_gate("Rz_{}".format(n_qbits), [], arity=n_qbits)
281 def rz_routine():
282 routine = qlm.QRoutine()
283 q_bits = routine.new_wires(n_qbits)
284 for i in range(n_qbits):
285 routine.apply(qlm.RZ(thetas[i]), q_bits[i])
286 return routine
287 r_z_n = rz_routine()
288 return r_z_n
289

290 def computing_shots(pdf):
291 """
292 Compute the number of shots. The main idea is that the samples for

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.23 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

293 the lowest degeneracy eigenvalues will be enough. In this case
294 enough is that that we measured an eigenvalue that will have an
295 error from respect to the theoretical one lower than the
296 discretization precision at least 100 times
297

298 Parameters
299 __________
300

301 pdf : pandas DataFrame
302 DataFrame with the theoretical eigenvalues
303

304 Returns
305 _______
306

307 shots : int
308 number of shots for QPE algorithm
309

310 """
311 # prob of less frequent eigenvalue
312 lfe = min(pdf.value_counts(’Eigenvalues’)) / len(pdf)
313 shots = int((1000 / (lfe * 0.81))) + 1
314 return shots

Listing T03.4: rz lib.py library

Main important functions from rz lib library are:

• rz eigv: computes the theoretical eigenvalues for a Rn
z operator providing it the input angles

• qpe rz qlm: computes the eigenvalues of a Rn
z operator using Eviden myQLM implementation of the QPE

algorithm.

• make histogram: computes the histogram of a list of eigenvalues

utils folder

The utils folder contains all the mandatory functions related to the Eviden myQLM implementation of the canonical
QPE algorithm as explained in section 2.2 and Figure T03.1. This implementation was obtained from the QQuantLib
library of the NEASQC Financial Applications GitHub repository.

notebooks folder

In the notebook folder, the following jupyter notebooks are stored:

• 01 BTC 03 QPE for rzn rz library.ipynb: this notebooks is a tutorial of how to use the rz lib library. Detailed
documentation about the canonical QPE and the Rn

z operator is provided here.

• 02 BTC 03 QPE for rzn Procedure.ipynb: this notebook is a tutorial of how to use the QPE RZ class from
qpe rz library.

A.1.2. my benchmark execution.py

This script is a modification of the correspondent template script located in tnbs/templates folder of the
WP3 Benchmark repository. Following the recommendations of Annex B of the deliverable D3.5: The NEASQC
Benchmark Suite the run code, compute samples, summarize results and the build iterator functions were mod-
ified. Meanwhile, the KERNEL BENCHMARK class was not modified. In the following sections, the software
adaptations for the QPE Benchmark are presented.

run code

Listing T03.5 shows the modifications performed into the run code function for the QPE Benchmark. The main
functionality is executing the BTC (section 3.2) for a fixed number of qubits, n, discretization parameter, m, and
an angle selection method. These parameters should be provided as a 3-element Python tuple (iterator step). The
execution will be done repetitions number of times and all the mandatory metrics will be gathered as pandas DataFrame

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.24 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

(metrics). The stage bench is a boolean variable that indicates if the step is executed in the pre-benchmark (step 2.a in
section 3.3) or in the benchmark stage (step 2.b in section 3.3). As can be seen the QPE RZ from qpe rz.py library
and its exe method is used for doing the different executions.

1

2 def run_code(iterator_step, repetitions, stage_bench, **kwargs):
3 """
4 For configuration and execution of the benchmark kernel.
5

6 Parameters
7 ----------
8

9 iterator_step : tuple
10 tuple with elements from iterator built from build_iterator.
11 repetitions : list
12 number of repetitions for each execution
13 stage_bench : str
14 benchmark stage. Only: benchmark, pre-benchamrk
15 kwargs : keyword arguments
16 for configuration of the benchmark kernel
17

18 Returns
19 _______
20

21 metrics : pandas DataFrame
22 DataFrame with the desired metrics obtained for the integral computation
23 save_name : string
24 Desired name for saving the results of the execution
25

26 """
27 # if n_qbits is None:
28 # raise ValueError("n_qbits CAN NOT BE None")
29

30 if stage_bench not in [’benchmark’, ’pre-benchmark’]:
31 raise ValueError(
32 "Valid values for stage_bench: benchmark or pre-benchmark’")
33

34 if repetitions is None:
35 raise ValueError("samples CAN NOT BE None")
36

37 #Here the code for configuring and execute the benchmark kernel
38 kernel_configuration_ = deepcopy(kwargs.get("kernel_configuration", None))
39 if kernel_configuration_ is None:
40 raise ValueError("kernel_configuration can not be None")
41 # Here we built the dictionary for the QPE_RZ class
42 n_qbits = iterator_step[0]
43 aux_qbits = iterator_step[1]
44 angles = iterator_step[2]
45 # print(’n_qbits :{}. aux_qbits: {}. angles: {}’.format(
46 # n_qbits, aux_qbits, angles))
47 qpu = get_qpu(kernel_configuration_[’qpu’])
48 qpe_rz_dict = {
49 ’number_of_qbits’ : n_qbits,
50 ’auxiliar_qbits_number’ : aux_qbits,
51 ’angles’ : angles,
52 ’qpu’ : qpu,
53 }
54

55 list_of_metrics = []
56 #print(qpe_rz_dict)
57 for i in range(repetitions[0]):
58 rz_qpe = QPE_RZ(**qpe_rz_dict)
59 rz_qpe.exe()
60 list_of_metrics.append(rz_qpe.pdf)
61

62 metrics = pd.concat(list_of_metrics)
63 metrics.reset_index(drop=True, inplace=True)
64

65 if stage_bench == ’pre-benchmark’:
66 # Name for storing Pre-Benchmark results
67 save_name = "pre_benchmark_nq_{}_auxq_{}_angles_{}.csv".format(
68 n_qbits, aux_qbits, angles)
69 if stage_bench == ’benchmark’:

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.25 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

70 # Name for storing Benchmark results
71 save_name = kwargs.get(’csv_results’)
72 #save_name = "pre_benchmark_step_{}.csv".format(n_qbits)
73 return metrics, save_name

Listing T03.5: run code function for executing the BTC of the QPE kernel, as explained in section 3.2

compute samples

Listing T03.6 shows the implementation of the compute samples function for the QPE Benchmark. The main
objective is to codify a strategy for computing the number of times a step of the BTC should be executed, for getting
some desired statistical significance (see 3.a.ii and 3.a.iii of section 3.3). This function would implement equations
(T03.3.7) and (T03.3.8) and compute the corresponding maximum as explained in 3.b of section 3.3. As can be seen
depending on the selection angle method the fidelity or the KS metric is used for computing it.

1 def compute_samples(**kwargs):
2 """
3 This function computes the number of executions of the benchmark
4 for ensuring an error r with a confidence level of alpha
5

6 Parameters
7 ----------
8

9 kwargs : keyword arguments
10 For configuring the sampling computation
11

12 Returns
13 _______
14

15 samples : pandas DataFrame
16 DataFrame with the number of executions for each integration interval
17

18 """
19

20 #Configuration for sampling computations
21

22 #Desired Confidence level
23 alpha = kwargs.get("alpha", 0.05)
24 if alpha is None:
25 alpha = 0.05
26 metrics = kwargs.get(’pre_metrics’)
27 bench_conf = kwargs.get(’kernel_configuration’)
28

29 #Code for computing the number of samples for getting the desired
30 #statististical significance. Depends on benchmark kernel
31 #samples_ = pd.Series([100, 100])
32 #samples_.name = "samples"
33

34 method = metrics[’angle_method’].unique()
35 if len(method) != 1:
36 raise ValueError(’Only can provide one angle method!’)
37

38 from scipy.stats import norm
39 zalpha = norm.ppf(1-(alpha/2)) # 95% of confidence level
40

41 method = method[0]
42

43 if method == ’exact’:
44

45 # Error expected for the means fidelity
46 error_fid = bench_conf.get("fidelity_error", 0.001)
47 if error_fid is None:
48 error_fid = 0.001
49 metric_fidelity = [’fidelity’]
50 std_ = metrics[metric_fidelity].std()
51 samples_metric = (zalpha * std_ / error_fid) ** 2
52 elif method == ’random’:
53 # Error expected for the means KS
54 error_ks = bench_conf.get("ks_error", 0.05)
55 if error_ks is None:

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.26 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

56 error_ks = 0.05
57 metric_ks = [’KS’]
58 std_ = metrics[metric_ks].std()
59 samples_metric = (zalpha * std_ / error_ks) ** 2
60 else:
61 raise ValueError(’Angle method can be only: exact or random’)
62

63 time_error = bench_conf.get("time_error", 0.05)
64 if time_error is None:
65 time_error = 0.05
66 mean_time = metrics[["elapsed_time"]].mean()
67 std_time = metrics[["elapsed_time"]].std()
68 samples_time = (zalpha * std_time / (time_error * mean_time)) ** 2
69

70 #Maximum number of sampls will be used
71 samples_ = pd.Series(pd.concat([samples_time, samples_metric]).max())
72

73 #Apply lower and higher limits to samples
74 #Minimum and Maximum number of samples
75 min_meas = kwargs.get("min_meas", None)
76 if min_meas is None:
77 min_meas = 5
78 max_meas = kwargs.get("max_meas", None)
79 samples_.clip(upper=max_meas, lower=min_meas, inplace=True)
80 samples_ = samples_.max().astype(int)
81 return samples_

Listing T03.6: compute samples function for codifying the strategy for computing the number of repetitions for the
QPE Benchmark.

summarize results

Listing T03.7 shows the implementation of the summarize results function for the QPE Benchmark. The main
objective is post-processing the results of a complete Benchmark execution, as described in step 3-c of section 3.3.

This function expects that the results of the complete benchmark execution have been stored in a csv file. The function
loads this file into a pandas DataFrame that is post-processed properly.

1

2 def summarize_results(**kwargs):
3 """
4 Create summary with statistics
5 """
6

7 folder = kwargs.get("saving_folder")
8 csv_results = folder + kwargs.get("csv_results")
9

10 #Code for summarize the benchamark results. Depending of the
11 #kernel of the benchmark
12 pdf = pd.read_csv(csv_results, index_col=0, sep=";")
13 pdf["classic_time"] = pdf["elapsed_time"] - pdf["quantum_time"]
14 # The angles are randomly selected. Not interesting for aggregation
15 pdf.drop(columns=[’angles’], inplace=True)
16 results = pdf.groupby(["n_qbits", "aux_qbits", "angle_method"]).agg(
17 ["mean", "std", "count"] + \
18 [(’std_mean’, lambda x: np.std(x)/np.sqrt(len(x)))])
19 results.drop(columns=[
20 (’delta_theta’, ’std’),
21 (’delta_theta’, ’count’),
22 (’delta_theta’, ’std_mean’),
23 (’shots’, ’std’),
24 (’shots’, ’count’),
25 (’shots’, ’std_mean’)],
26 inplace=True
27)
28

29 results[’qpu’] = [’’.join(list(b_[’qpu’].unique())) for a_, b_ \
30 in pdf.groupby([’n_qbits’, ’aux_qbits’, ’angle_method’])]
31 #results = pd.DataFrame()
32 return results

Listing T03.7: summarize results function for summarizing the results from BTC execution of the QPE kernel

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.27 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

build iterator

Listing T03.8 shows the implementation of the build iterator function for QPE Benchmark. The main objective is
to create a Python iterator for executing the desired complete BTC. In this case, the iterator creates a list with all the
possible combinations of the desired number of qubits, n, parameter discretization, m and angle selection methods
that want to be benchmarked.

1 def build_iterator(**kwargs):
2 """
3 For building the iterator of the benchmark
4 """
5

6 list4int = [
7 kwargs[’list_of_qbits’],
8 kwargs[’kernel_configuration’][’auxiliar_qbits_number’],
9 kwargs[’kernel_configuration’][’angles’],

10]
11

12 iterator = it.product(*list4int)
13 return iterator

Listing T03.8: build iterator function for creating the iterator of the complete execution of the QPE Benchmark

KERNEL BENCHMARK class

No modifications were made to the KERNEL BENCHMARK class. This Python class defines the complete bench-
mark workflow, section 3.3, and its exe method executes it properly by calling the correspondent functions (run code,
compute samples, summarize results, build iterator). Each time a Benchmark step is executed, as defined in section
3.3, the result is stored in a given CSV file.

The only mandatory modification is configuring properly the input keyword arguments, at the end of the
my benchmark execution.py script. These parameters will configure the complete Benchmark workflow, and ad-
ditional options (as the name of the CSV files). Listing T03.9 shows an example for configuring an execution of a
Benchmark.

1

2 if __name__ == "__main__":
3

4 import os
5 import shutil
6

7 kernel_configuration = {
8 "angles" : ["random", ’exact’],
9 "auxiliar_qbits_number" : [4, 6, 8, 10],

10 "qpu" : "c", #python, qlmass, default
11 "fidelity_error" : None,
12 "ks_error" : None,
13 "time_error": None
14 }
15

16 benchmark_arguments = {
17 #Pre benchmark sttuff
18 "pre_benchmark": True,
19 "pre_samples": None,
20 "pre_save": True,
21 #Saving stuff
22 "save_append": True,
23 "saving_folder": "./Results/",
24 "benchmark_times": "kernel_times_benchmark.csv",
25 "csv_results": "kernel_benchmark.csv",
26 "summary_results": "kernel_SummaryResults.csv",
27 #Computing Repetitions stuff
28 "alpha": None,
29 "min_meas": None,
30 "max_meas": None,
31 #List number of qubits tested
32 "list_of_qbits": [4, 6, 8, 10, 12],
33 }
34

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.28 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

35 #Configuration for the benchmark kernel
36 benchmark_arguments.update({"kernel_configuration": kernel_configuration})
37 kernel_bench = KERNEL_BENCHMARK(**benchmark_arguments)
38 kernel_bench.exe()

Listing T03.9: Example of configuration of a complete Benchmark execution. This part of the code should be located
at the end of the my benchmark execution.py script

As can be seen in Listing T03.9, the input dictionary that KERNEL BENCHMARK class needs, bench-
mark arguments, have several keys that allow to modify the benchmark workflow, like:

• pre benchmark: For executing or not the pre-benchmark step.

• pre samples: number of repetitions of the benchmark step.

• pre save: For saving or not the results from the pre-benchmark step.

• saving folder: Path for storing all the files generated by the execution of the KERNEL BENCHMARK class.

• benchmark times: name for the csv file where the initial and the final times for the complete benchmark execu-
tion will be stored.

• csv results: name for the csv file where the obtained metrics for the different repetitions of the benchmark step
will be stored (so the different metrics obtained during step 2 from section 3.3 will be stored in this file)

• summary results: name for the csv file where the post-processed results (using the summarize results) will be
stored (so the statistics over the metrics obtained during step 3 of section 3.3 will be stored in this file)

• list of qbits: list with the different number of qubits for executing the complete Benchmark.

• alpha: for configuring the desired confidence level α

• min meas: for low limiting the number of executions a benchmark step should be executed during the benchmark
stage.

• max meas: for high limiting the number of executions a benchmark step should be executed during the bench-
mark stage.

Additionally, the kernel configuration key is used for configuring the kernel execution. The following keys can be
provided for configuring it:

• angles: for configuring what angle loading methods will be used (in the methodology it is expected that the 2
methods must be tested).

• auxiliar qbits number: For configuring the discretization parameter that will be tested.

• qpu: a string for selecting the quantum process unit (QPU)

• fidelity error: for changing the desired absolute error for the fidelity metric.

• ks error: for changing the desired absolute error for the KS metric.

• time error: for changing the desired relative error for the elapsed time

In general, most of the keys should be fixed to None for executing the Benchmark according to the guidelines of the
QPE Benchmark

For executing the Benchmark following command should be used:
python my benchmark execution.py

A.2. Generation of the benchmark report

Following deliverable D3.5: The NEASQC Benchmark Suite the results of a complete Benchmark must be reported
in a separate JSON file that must satisfy the NEASQC JSON schema NEASQC.Benchmark.V2.Schema.json provided
into the aforementioned deliverable. For automating this process the following files should be modified, as explained
in Annex B of the deliverable D3.5: The NEASQC Benchmark Suite:

• my environment info.py

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.29 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

• my benchmark info.py

• my benchmark summary.py

• neasqc benchmark.py

my environment info.py

This script has the functions for gathering information about the hardware where the Benchmark is executed.

Listing T03.10 shows an example of the my environment info.py script. Here the compiled information corresponds
to a classic computer because the case was simulated instead of executed in a quantum computer.

1

2 import platform
3 import psutil
4 from collections import OrderedDict
5

6 def my_organisation(**kwargs):
7 """
8 Given information about the organisation how uploads the benchmark
9 """

10 name = "CESGA"
11 return name
12

13 def my_machine_name(**kwargs):
14 """
15 Name of the machine where the benchmark was performed
16 """
17 #machine_name = "None"
18 machine_name = platform.node()
19 return machine_name
20

21 def my_qpu_model(**kwargs):
22 """
23 Name of the model of the QPU
24 """
25 qpu_model = "CLinalg"
26 return qpu_model
27

28 def my_qpu(**kwargs):
29 """
30 Complete info about the used QPU
31 """
32 #Basic schema
33 #QPUDescription = {
34 # "NumberOfQPUs": 1,
35 # "QPUs": [
36 # {
37 # "BasicGates": ["none", "none1"],
38 # "Qubits": [
39 # {
40 # "QubitNumber": 0,
41 # "T1": 1.0,
42 # "T2": 1.00
43 # }
44 #],
45 # "Gates": [
46 # {
47 # "Gate": "none",
48 # "Type": "Single",
49 # "Symmetric": False,
50 # "Qubits": [0],
51 # "MaxTime": 1.0
52 # }
53 #],
54 # "Technology": "other"
55 # },
56 #]
57 #}
58

59 #Defining the Qubits of the QPU

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.30 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

60 qubits = OrderedDict()
61 qubits["QubitNumber"] = 0
62 qubits["T1"] = 1.0
63 qubits["T2"] = 1.0
64

65 #Defining the Gates of the QPU
66 gates = OrderedDict()
67 gates["Gate"] = "none"
68 gates["Type"] = "Single"
69 gates["Symmetric"] = False
70 gates["Qubits"] = [0]
71 gates["MaxTime"] = 1.0
72

73

74 #Defining the Basic Gates of the QPU
75 qpus = OrderedDict()
76 qpus["BasicGates"] = ["none", "none1"]
77 qpus["Qubits"] = [qubits]
78 qpus["Gates"] = [gates]
79 qpus["Technology"] = "other"
80

81 qpu_description = OrderedDict()
82 qpu_description[’NumberOfQPUs’] = 1
83 qpu_description[’QPUs’] = [qpus]
84

85 return qpu_description
86

87 def my_cpu_model(**kwargs):
88 """
89 model of the cpu used in the benchmark
90 """
91 cpu_model = platform.processor()
92 return cpu_model
93

94 def my_frecuency(**kwargs):
95 """
96 Frcuency of the used CPU
97 """
98 #Use the nominal frequency. Here, it collects the maximum frequency
99 #print(psutil.cpu_freq())

100 cpu_frec = psutil.cpu_freq().max/1000
101 return cpu_frec
102

103 def my_network(**kwargs):
104 """
105 Network connections if several QPUs are used
106 """
107 network = OrderedDict()
108 network["Model"] = "None"
109 network["Version"] = "None"
110 network["Topology"] = "None"
111 return network
112

113 def my_QPUCPUConnection(**kwargs):
114 """
115 Connection between the QPU and the CPU used in the benchmark
116 """
117 #
118 # Provide the information about how the QPU is connected to the CPU
119 #
120 qpuccpu_conn = OrderedDict()
121 qpuccpu_conn["Type"] = "memory"
122 qpuccpu_conn["Version"] = "None"
123 return qpuccpu_conn

Listing T03.10: Example of configuration of the my environment info.py script

In general, it is expected that for each computer used (quantum or classic), the Benchmark developer should change
this script to properly get the hardware info.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.31 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

A.2.1. my benchmark info.py

This script gathers the information under the field Benchmarks of the Benchmark report. Information about the
software, the compilers and the results obtained from an execution of the Benchmark is stored in this field.

Listing T03.11 shows an example of the configuration of the my benchmark info.py script for gathering the afore-
mentioned information.

1 import sys
2 import platform
3 from collections import OrderedDict
4 from my_benchmark_summary import summarize_results
5 import pandas as pd
6

7

8 def my_benchmark_kernel(**kwargs):
9 """

10 Name for the benchmark Kernel
11 """
12 return "QuantumPhaseEstimation"
13

14 def my_starttime(**kwargs):
15 """
16 Providing the start time of the benchmark
17 """
18 times_filename = kwargs.get("times_filename", None)
19 pdf = pd.read_csv(times_filename, index_col=0)
20 start_time = pdf["StartTime"][0]
21 return start_time
22

23 def my_endtime(**kwargs):
24 """
25 Providing the end time of the benchmark
26 """
27 times_filename = kwargs.get("times_filename", None)
28 pdf = pd.read_csv(times_filename, index_col=0)
29 end_time = pdf["EndTime"][0]
30 return end_time
31

32 def my_timemethod(**kwargs):
33 """
34 Providing the method for getting the times
35 """
36 time_method = "time.time"
37 return time_method
38

39 def my_programlanguage(**kwargs):
40 """
41 Getting the programing language used for benchmark
42 """
43 program_language = platform.python_implementation()
44 return program_language
45

46 def my_programlanguage_version(**kwargs):
47 """
48 Getting the version of the programing language used for benchmark
49 """
50 language_version = platform.python_version()
51 return language_version
52

53 def my_programlanguage_vendor(**kwargs):
54 """
55 Getting the version of the programing language used for benchmark
56 """
57 language_vendor = "None"
58 return language_vendor
59

60 def my_api(**kwargs):
61 """
62 Collect the information about the used APIs
63 """
64 # api = OrderedDict()
65 # api["Name"] = "None"

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.32 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

66 # api["Version"] = "None"
67 # list_of_apis = [api]
68 modules = []
69 list_of_apis = []
70 for module in list(sys.modules):
71 api = OrderedDict()
72 module = module.split(’.’)[0]
73 if module not in modules:
74 modules.append(module)
75 api["Name"] = module
76 try:
77 version = sys.modules[module].__version__
78 except AttributeError:
79 #print("NO VERSION: "+str(sys.modules[module]))
80 try:
81 if isinstance(sys.modules[module].version, str):
82 version = sys.modules[module].version
83 #print("\t Attribute Version"+version)
84 else:
85 version = sys.modules[module].version()
86 #print("\t Methdod Version"+version)
87 except (AttributeError, TypeError) as error:
88 #print(’\t NO VERSION: ’+str(sys.modules[module]))
89 try:
90 version = sys.modules[module].VERSION
91 except AttributeError:
92 #print(’\t\t NO VERSION: ’+str(sys.modules[module]))
93 version = "Unknown"
94 api["Version"] = str(version)
95 list_of_apis.append(api)
96 return list_of_apis
97

98 def my_quantum_compilation(**kwargs):
99 """

100 Information about the quantum compilation part of the benchmark
101 """
102 q_compilation = OrderedDict()
103 q_compilation["Step"] = "None"
104 q_compilation["Version"] = "None"
105 q_compilation["Flags"] = "None"
106 return [q_compilation]
107

108 def my_classical_compilation(**kwargs):
109 """
110 Information about the classical compilation part of the benchmark
111 """
112 c_compilation = OrderedDict()
113 c_compilation["Step"] = "None"
114 c_compilation["Version"] = "None"
115 c_compilation["Flags"] = "None"
116 return [c_compilation]
117

118 def my_metadata_info(**kwargs):
119 """
120 Other important info user want to store in the final json.
121 """
122

123 metadata = OrderedDict()
124 #metadata["None"] = None
125

126 return metadata
127

128

129 def my_benchmark_info(**kwargs):
130 """
131 Complete WorkFlow for getting all the benchmar informated related info
132 """
133 benchmark = OrderedDict()
134 benchmark["BenchmarkKernel"] = my_benchmark_kernel(**kwargs)
135 benchmark["StartTime"] = my_starttime(**kwargs)
136 benchmark["EndTime"] = my_endtime(**kwargs)
137 benchmark["ProgramLanguage"] = my_programlanguage(**kwargs)
138 benchmark["ProgramLanguageVersion"] = my_programlanguage_version(**kwargs)

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.33 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

139 benchmark["ProgramLanguageVendor"] = my_programlanguage_vendor(**kwargs)
140 benchmark["API"] = my_api(**kwargs)
141 benchmark["QuantumCompililation"] = my_quantum_compilation(**kwargs)
142 benchmark["ClassicalCompiler"] = my_classical_compilation(**kwargs)
143 benchmark["TimeMethod"] = my_timemethod(**kwargs)
144 benchmark["Results"] = summarize_results(**kwargs)
145 benchmark["MetaData"] = my_metadata_info(**kwargs)
146 return benchmark

Listing T03.11: Example of configuration of the my benchmark info.py script

The my benchmark info function gathers all the mandatory information needed by the Benchmarks main field of the
report (by calling the different functions listed in listing T03.11). In order to properly fills this field some mandatory
information must be provided as the typical python kwargs:

• times filename: This is the complete path to the file where the starting and ending time of the benchmark was
stored. This file must be a csv one and it is generated when the KERNEL BENCHMARK class is executed.
This information is used by the my starttime and my endtime functions.

• benchmark file: complete path where the file with the summary results of the benchmark are stored. This infor-
mation is used by the summarize results function from my benchmark summary.py script (see section A.2.2).

A.2.2. my benchmark summary.py

In this script, the summarize results function is implemented. This function formats the results of a complete exe-
cution of a QPE Benchmark with a suitable NEASQC benchmark report format. It can be used for generating the
information under the sub-field Results of the main field Benchmarks in the report.

Listing T03.12 shows an example of implementation of summarize results function for the QPE benchmark procedure.

1 def summarize_results(**kwargs):
2 """
3 Mandatory code for properly present the benchmark results following
4 the NEASQC jsonschema
5 """
6

7 # n_qbits = [4]
8 # #Info with the benchmark results like a csv or a DataFrame
9 # pdf = None

10 # #Metrics needed for reporting. Depend on the benchmark kernel
11 # list_of_metrics = ["MRSE"]
12

13 import pandas as pd
14 benchmark_file = kwargs.get("benchmark_file", None)
15 index_columns = [0, 1, 2, 3, 4, 5]
16 pdf = pd.read_csv(benchmark_file, header=[0, 1], index_col=index_columns)
17 pdf.reset_index(inplace=True)
18 n_qbits = list(set(pdf["n_qbits"]))
19 angle_methods = list(set(pdf["angle_method"]))
20 aux_qbits = list(set(pdf["aux_qbits"]))
21 list_of_metrics = [
22 "KS", "fidelity",
23]
24

25 results = []
26 #If several qbits are tested
27 # For ordering by n_qbits
28 for n_ in n_qbits:
29 # For ordering by auxiliar qbits
30 for aux_ in aux_qbits:
31 for angle_ in angle_methods:
32 result = OrderedDict()
33 result["NumberOfQubits"] = n_
34 result["QubitPlacement"] = list(range(n_))
35 result["QPUs"] = [1]
36 result["CPUs"] = psutil.Process().cpu_affinity()
37 #Select the proper data
38 indice = (pdf[’n_qbits’] == n_) & (pdf[’aux_qbits’] == aux_) \
39 & (pdf[’angle_method’] == angle_)
40 step_pdf = pdf[indice]

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.34 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

41 result["TotalTime"] = step_pdf["elapsed_time"]["mean"].iloc[0]
42 result["SigmaTotalTime"] = step_pdf["elapsed_time"]["std"].iloc[0]
43 result["QuantumTime"] = step_pdf["quantum_time"]["mean"].iloc[0]
44 result["SigmaQuantumTime"] = step_pdf["quantum_time"]["std"].iloc[0]
45 result["ClassicalTime"] = step_pdf["classic_time"]["mean"].iloc[0]
46 result["SigmaClassicalTime"] = step_pdf["classic_time"]["std"].iloc[0]
47

48 # For identifying the test
49 result[’AuxiliarNumberOfQubits’] = aux_
50 result[’MethodForSettingAngles’] = angle_
51 result[’QPEAnglePrecision’] = step_pdf[’delta_theta’].iloc[0]
52 result[’Shots’] = step_pdf[’shots’].iloc[0]
53 metrics = []
54 #For each fixed number of qbits several metrics can be reported
55 for metric_name in list_of_metrics:
56 metric = OrderedDict()
57 #MANDATORY
58 metric["Metric"] = metric_name
59 metric["Value"] = step_pdf[metric_name]["mean"].iloc[0]
60 metric["STD"] = step_pdf[metric_name]["std"].iloc[0]
61 metric["COUNT"] = int(step_pdf[metric_name]["count"].iloc[0])
62 metrics.append(metric)
63 result["Metrics"] = metrics
64 results.append(result)
65 return results

Listing T03.12: Example of configuration of the summarize results function for QPE benchmark

As usual, the kwargs strategy is used for passing the arguments that the function can use. In this case, the only
mandatory argument is benchmark file with the path to the file where the summary results of the Benchmark execution
were stored.

Table T03.2 shows the sub-fields and the information stored, under the Results field. To have proper traceability of the
executions the sub-fields AuxiliarNumberOfQubits, MethodForSettingAngles and QPEAnglePrecision were created
explicitly for the QPE Benchmark.

sub-field information
NumberOfQubits number of qubits, n
TotalTime mean of elapsed time
SigmaTotalTime standard deviation of elapsed time
QuantumTime mean of the quantum time
SigmaQuantumTime standard deviation of quantum time
ClassicalTime mean of the classical time
SigmaClassicalTime standard deviation of classical time
AuxiliarNumberOfQubits discretization parameter, m
MethodForSettingAngles angle selection method (random or exact)
QPEAnglePrecision δθ = 4π

2m

Shots number of shots
Metrics summarize verification metrics. See Table T03.3

Table T03.2: Sub-fields of the Results fields of the TNBS benchmark report. The metrics related with the quantum
time and classical time are not mandatory

The sub-field Metrics gathers information about the obtained metrics of the benchmark. Table T03.3 shows its different
sub-fields and the information stored.

sub-field information
metric fidelity or KS
Value mean value of the metric
STD standard deviation of the metric
Count number of samples for computing the statistics of the metric

Table T03.3: Sub-fields of the Metrics field.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.35 of T03.36

T03 Benchmark for Phase Estimation Algorithms (1.0- Submitted)

A.2.3. neasqc benchmark.py

The neasqc benchmark.py script can be used straightforwardly for gathering all the Benchmark execution information
and results, for creating the final mandatory NEASQC benchmark report.

It does not necessarily change anything about the class implementation. It is enough to update the information of the
kwargs arguments for providing the mandatory files for gathering all the information.

In this case, the following information should be provided as arguments for the exe method of the BENCHMARK
class:

• times filename: complete path where the file with the times of the Benchmark execution was stored.

• benchmark file: complete path where the file with the summary results of the Benchmark execution was stored.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T03.36 of T03.36

D3.5 The NEASQC benchmark suite (TNBS) (1.0- Submitted)

F.T04: Benchmark for Parent Hamiltonian

© 2023 NEASQC Consortium Partners. All rights reserved. Page 145 of 178

NExt ApplicationS of Quantum Computing
Benchmark Suite

T04: Benchmark for Parent Hamiltonian

Document Properties

Contract Number 951821

Contractual Deadline 31/10/2023

Dissemination Level Public

Nature Test Case Definition

Editors Gonzalo Ferro, CESGA

Authors Gonzalo Ferro, CESGA
Diego Andrade, UDC
Andrés Gómez, CESGA
Jan Reiner, HQS
Giorgio Silvi, HQS

Reviewers Cyril Allouche, EVIDEN
Arnaud Gazda, EVIDEN

Date 27/10/2023

Category Variational

Keywords

Status Submitted

Release 1.0

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

History of Changes

Release Date Author, Organisation Description of Changes

0.1 04/10/2023 Gonzalo Ferro, CESGA First version of test case

0.2 08/10/2023 Andrés Gómez, CESGA Formatting

1.0 25/10/2023 Gonzalo Ferro, CESGA Fixing the naming according to the Glossary of
deliverable 3.5

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.2 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

Table of Contents

1. Introduction T04.4

2. Description of the Kernel: Parent Hamiltonian T04.5
2.1. Kernel selection justification . T04.5
2.2. Kernel Description . T04.6

2.2.1. Getting the parent Hamiltonian: naive method . T04.6
2.2.2. Getting the parent Hamiltonian: local Hamiltonian method T04.8

3. Description of the benchmark test case T04.11
3.1. Description of the problem . T04.11
3.2. Benchmark test case description . T04.11
3.3. Complete benchmark procedure . T04.12
3.4. Benchmark report . T04.13

List of Acronyms T04.14

List of Figures T04.15

List of Tables T04.16

List of Listings T04.17

Bibliography T04.18

A. NEASQC test case reference T04.19
A.1. NEASQC implementation of benchmark test case. T04.19

A.1.1. my benchmark execution.py . T04.19
A.1.2. configuration files folder . T04.25
A.1.3. PH package . T04.26

A.2. Generation of the benchmark report . T04.27
A.2.1. my benchmark info.py . T04.29
A.2.2. my benchmark summary.py . T04.31
A.2.3. neasqc benchmark.py . T04.32

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.3 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

1.Introduction

This section describes the T4: Parent Hamiltonian benchmark of The NEASQC Benchmarking Suite (TNBS). This
document must be read alongside the document that describes the TNBS: D3.5: The NEASQC Benchmark Suite.

Section 2 describes the Parent Hamiltonian kernel termed the PH kernel in the document. With each TNBS kernel, a
Benchmark Test Case (BTC) must be designed and documented; this is done in Section 3. Finally, the benchmarking
methodology aims to develop a complete software implementation of the BTC using the Eviden myQLM library. A
complete documentation of this implementation is provided in Annex A.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.4 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

2.Description of the Kernel: Parent Hamiltonian

The present section describes the PH Kernel for the TNBS. Section 2.1 justifies Kernel selection according to the
TNBS benchmarking methodology, while section 2.2 presents a complete description of this PH Kernel.

2.1. Kernel selection justification

Variational Quantum Algorithms (VQAs) are a promising group of hybrid classical-quantum algorithms that can
reach quantum advantage for solving many relevant problems in the Noise Intermediate Scale Quantum (NISQ) era
of quantum computers (Cerezo et al., 2021). In a VQA algorithm there are two types of code: the first one is executed
in a quantum computer and consists of a parameterized quantum circuit (usually known as ansatz); on the other hand,
the second type is executed in a classical computer and consists of an optimization routine that tries to find the optimal
parameters of the quantum circuit for solving a desired problem (usually codified as a Hamiltonian). The quantum
parameterized circuits are typically shallow and are more suitable for the actual quantum computers.

One of the most common VQA algorithms is the Variational Quantum Eigensolver, VQE, which aims to find the
quantum state that minimizes the energy of a given Hamiltonian (Peruzzo et al., 2014; Tilly et al., 2022). VQE can
solve small molecules and lattice models, as well as simulate large chemical reactions, perform exact calculations
on crystalline solids and uncover the physics behind complex systems such as the Hubbard model or exotic states of
matter.

Figure T04.1: The VQE pipeline extracted from (Tilly et al., 2022). The yellow blocks correspond to the code
executed in a quantum computer, while the blue ones are related to subroutines executed in a classical computer. The

block 2a is the parametric part of the circuit (the ansatz).

Figure T04.1 shows a complete pipeline for a VQE algorithm, extracted from (Tilly et al., 2022). The figure shows
the two typical subroutines of a VQA: the quantum ones (yellow blocks) and the classical subroutines (blue blocks).
The ansatz of the VQE is represented by the 2a block, while the blocks 2b and 2c depict the Hamiltonian to be solved.
The optimization routines are represented by the blue blocks 2d and 3.

In order to achieve a successful solution, when using VQE algorithms, it is mandatory for the two types of code
(quantum and classical code) to execute properly in their respective platforms. Therefore, it is necessary to develop
benchmark proposals that assess the performance of both hardware devices involved in these kinds of algorithms.

Originally, the Parent Hamiltonian problem, PH Kernel, was proposed as a benchmark problem for VQE (Kobayashi

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.5 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

et al., 2022) from the perspective of evaluating optimizers (blue blocks 2d and 3 in Figure T04.1). In this document,
we use the PH Kernel for assessing the quantum subroutine corresponding to the yellow blocks of Figure T04.1.

The PH Kernel satisfies the three main requirements of the NEASQC benchmark methodology:

1. A mathematical definition of the Kernel can be provided with sufficient accuracy to enable the construction of
a standalone circuit (refer to sections 2.2).

2. The Kernel can be defined for a configurable number of qubits.

3. The output can be verified through a classical computation.

2.2. Kernel Description

The PH Kernel can be defined in the following way:

Let |Ψ(θ⃗)⟩ be the state of a given ansatz. The PH Kernel, aims to find a particular Hamiltonian (the parent Hamilto-
nian), HPH , such that the ansatz is its ground state with energy equal to 0:

HPH |Ψ(θ⃗)⟩ = E0 |Ψ(θ⃗)⟩ with E0 = 0. (T04.2.1)

In the original approximation, (Kobayashi et al., 2022), given an ansatz |Ψ(θ⃗)⟩, the main idea is setting the parameter
vector to θ⃗∗ (this would be the optimal parameter vector) and obtain its particular parent Hamiltonian. Then, the
VQE algorithm would be used by initializing the parameter vector to θ⃗0 (which should be different from θ⃗∗), and
an optimiser, which is the element to be tested, is used to obtain the minimum of the energy. If the optimizer works
properly then the obtained ground state energy, E0, should be close to 0 and the final parameter vector θ⃗f should be
similar to the optimal ones (θ⃗f ∼ θ⃗∗).

In the framework of the TNBS, the PH Kernel is proposed to assess the performance of a quantum device for executing
the quantum part of the VQE algorithm. The PH Kernel, then, can be summarized as follow:

Given:

• A fixed ansatz.

• A fixed parameter vector θ⃗∗ for the ansatz.

• The corresponding parent Hamiltonian for the ansatz with the fixed θ⃗∗

the PH Kernel consists on executing a complete quantum step of the VQE algorithm. This implies executing the
block 2a of Figure T04.1 (the ansatz with the fixed parameters) followed by the block 2b (the parent Hamiltonian) of
the same figure and, finally, the corresponding measurements of block 2c for getting the ground state energy of the
ansatz under the action of the parent Hamiltonian. Ideally, this energy should be close to 0.

One of the mandatory inputs of the PH Kernel is to build the corresponding parent Hamiltonian of the input ansatz.
This will be explained in the following sub-sections.

2.2.1. Getting the parent Hamiltonian: naive method

Given a n-qubit input ansatz, a fixed parameter vector θ⃗∗ and its associated state |Ψ⟩ = |Ψ(θ⃗∗)⟩ the following steps
should be performed for computing its corresponding parent Hamiltonian:

1. Compute the associated 2n × 2n density matrix, ρ(θ⃗), of the state of the ansatz, see equation (T04.2.2).

ρ(θ⃗) = |Ψ⟩ ⟨Ψ| (T04.2.2)

2. Compute the null space1 of the density matrix. The null space of a matrix is the set of linearly independent
vectors such that, the product of the matrix with these vectors is zero, as shown in equation (T04.2.3).

Null Space(ρ) = {|vi⟩ / ρ |vi⟩ = 0, i = 0, 1, · · ·m− 1with m ≤ dim(ρ); ⟨vi|vj⟩ = δij} (T04.2.3)
1Null space of a matrix is also known as the kernel of the matrix. To avoid confusion with TNBS Kernel definition we prefer the null space term.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.6 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

3. Notice that the m vectors of the null space of ρ are orthogonal to the state of the ansatz. This condition can be
obtained from the definition of the null space, equation (T04.2.3), as seen in (T04.2.4).

ρ |vi⟩ = 0 = |Ψ⟩ ⟨Ψ|vi⟩ = 0 → ⟨Ψ|vi⟩ = 0 for i = 0, 1, · · · ,m− 1 (T04.2.4)

4. Create the correspondent projectors of each |vi⟩, for i = 0, 1, · · · ,m− 1, as shown in equation (T04.2.5). The
projectors will be matrices of 2n × 2n.

hi = |vi⟩ ⟨vi| (T04.2.5)

5. Using condition (T04.2.4) it can be shown that the product of each projector with the state |Ψ⟩ is 0, as seen in
equation (T04.2.6).

hi |Ψ⟩ = |vi⟩ ⟨vi|Ψ⟩ = 0 (T04.2.6)

6. Finally, compute the PH for the state |Ψ⟩ given as (T04.2.7).

HPH =
m−1∑

i=0

hi (T04.2.7)

By construction, the built PH from (T04.2.7) satisfies the equation (T04.2.1) as can be seen in the following reasoning
where equations (T04.2.5) and (T04.2.6) were used.

HPH |Ψ⟩ =
m−1∑

i=0

hi |Ψ⟩ =
m−1∑

i=0

|vi⟩ ⟨vi|Ψ⟩ = 0

HPH will be a matrix of 2n × 2n.

In the VQE, given an input Hamiltonian matrix, the most common way to implement it, into a quantum circuit, is by
computing its linear decomposition into the basis of n-generalized Pauli matrices.

A n-generalized Pauli matrix is a 2n×2n matrix resulting from a n-Kronecker product, as shown in equation (T04.2.8),
of the typical 2× 2 Pauli matrices, see (T04.2.9).

σn
I =

n−1⊗

j=0

σij = σi0 ⊗ σi1 · · · ⊗ σin−1 . with ij ∈ {0, 1, 2, 3} (T04.2.8)

σ0 =

(
1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(T04.2.9)

There are 4n different n-generalized Pauli matrices that form a basis for the group of all the possible 2n × 2n matri-
ces. So, in VQE, the HPH should be decomposed into this n-generalized Pauli matrices basis as show in equation
(T04.2.10)

HPH =
4n−1∑

I=0

aIσ
n
I =

3∑

i0,i1,··· ,in−1=0

ai0,i1,··· ,in−1
σi0 ⊗ σi1 · · · ⊗ σin−1

(T04.2.10)

The coefficients aI of the linear combination decomposition can be obtained by computing the Frobenius norm of the
product of the HPH with the corresponding σn

I as can be seen in equation (T04.2.11).

aI =
Tr(HPHσn

I)

2n
(T04.2.11)

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.7 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

The main limitation of this method is that the number of σn
I matrices in the linear decomposition scale with 4n. This

implies, for example, that for a n = 12 qubit Hamiltonian the number of mandatory σn
I matrices is: 16777216. So

this naive approach of computing the PH is computationally expensive and unaffordable when the number of qubits
increases.

|q7⟩
|q6⟩
|q5⟩
|q4⟩
|q3⟩
|q2⟩
|q1⟩
|q0⟩

HPH

Figure T04.2: Example of a circuit where naive PH method was used. In this case, all the particles (qubits) have an
all-to-all interaction.

The naive method for computing the PH assumes that the particles involved with the Hamiltonian have an all-to-all
interaction. This behaviour is schematized in Figure T04.2 where the Hamiltonian affects simultaneously all the qubits
of the circuit.

2.2.2. Getting the parent Hamiltonian: local Hamiltonian method

The local Hamiltonian method for computing the PH, (Kobayashi et al., 2022), is a more efficient method from a
computing perspective. The main idea is computing a local parent Hamiltonian for each particle (qubit) where the
interaction affects only near particles (qubits). Figure T04.3 shows a schematic example of this idea. As can be
seen, each particle (qubits) has an associated local Hamiltonian that affects only adjacent particles. As schematized in
the figure, the different local Hamiltonian can affect different numbers of particles (qubits) and each one is a parent
Hamiltonian (Hi |Ψ(θ)⟩ = 0).

|q7⟩

|q6⟩

|q5⟩

|q4⟩

|q3⟩

|q2⟩

|q1⟩

|q0⟩

H0

H1 H2

H3

H4

H5

H6

H7

Figure T04.3: Example of a circuit where the local parent Hamiltonian method is used. As can be seen, each particle
(qubit) has an associated local Hamiltonian, Hi, that affects only its neighbours

Before describing the local PH method, some concepts and notation will be addressed.

For a given n qubit ansatz, it is a mandatory step to compute its complete state by using any technique like MPS or
StateVector simulation. So, if the state is expressed following the equation (T04.2.12) all the amplitudes bk must be
computed.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.8 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

|Ψ⟩ =
2n−1∑

k=0

bk |k⟩ (T04.2.12)

Additionally, it will be more useful to organize the different amplitudes as a n-rank tensor as shown in the equation
(T04.2.13) where the Einstein summation convention (sum over repeated indices) is used. In this equation bk =
Ψi0i1···in−1

where k =
∑n−1

j=0 2ij and ij = {0, 1} for j = 0, 1, · · · , n− 1.

|Ψ⟩ = Ψi0i1···in−1
|i0i1 · · · in−1⟩ (T04.2.13)

In this framework, the density matrix in equation (T04.2.2), associated with the state |Ψ⟩ can be organized as a 2n-rank
tensor as shown in equation (T04.2.14).

ρ
j0j1···jn−1

i0i1···in−1
= Ψi0i1···in−1

Ψ∗j0j1···jn−1 (T04.2.14)

Finally, the last ingredient is the reduced density matrix for m consecutive qubits from a fixed qubit ik, ρmk . For its
computation all the qubits, except the consecutive set {ik, ik+1, · · · , ik+m}, should be traced out from ρ as seen in
equation (T04.2.15), where the contracted indices are shown in red for visual purposes.

ρmk = Tril /∈{ik,ik+1,··· ,ik+m}(ρ) = ρ
jkjk+1···jk+m

ikik+1···ik+m
=

= Ψi0i1···ikik+1···ik+mik+m+1···in−1Ψ
∗ i0i1···jkjk+1···jk+mik+m+1···in−1

(T04.2.15)

For clarity, some examples of the used notation are provided. For a 5 qubit ansatz, the amplitude tensor will be:
Ψi0,i1,i2,i3,i4 and the associated density matrix will be ρj0,j1,j2,j3,j4

i0,i1,i2,i3,i4
. The following computations could be done:

• Computation of the reduced density matrix from i0 with m = 1: ρm=1
0 = ρj0j1i0i1

= Ψi0i1i2i3,i4Ψ
∗ j0j1i2i3i4

(qubits i2, i3, i4 are traced out).

• Computation of the reduced density matrix from i1 with m = 3: ρm=3
1 = ρj1j2j3j4i1i2i3i4

= Ψi0i1i2i3,i4Ψ
∗ i0j1j2j3j4

(qubit i0 are traced out)

• Computation of the reduced density matrix from i3 with m = 2: ρm=2
3 = ρj3j4j0i3i4i0

= Ψi0i1i2i3,i4Ψ
∗ j0i1i2j3j4

(qubits i1, i2 are traced out)

With these definitions, the method for getting the local PH can be described as follows:

Given an input ansatz and its corresponding amplitude tensor, Ψi0i1···in−1 , for each qubit ij , beginning with j = 0, the
following steps should be carried out by starting with mj = 1:

1. Compute the reduced density matrix for qubit ij and mj , ρmj

j using equation (T04.2.15).

2. Compute the rank of the reduced density matrix ρmj

j : rank(ρmj

j).

3. Using the Rank-nullity theorem, determine if the null space of the reduced density matrix, null space(ρmj

j), can
be computed:

• If dim(ρ
mj

j) = rank(ρ
mj

j), then, the null space cannot be computed. Go to step 1 with mj = mj + 1.

• If dim(ρ
mj

j) > rank(ρ
mj

j), then, the null space can be computed go to step 4.

4. Compute the null space of the reduced density matrix, null space(ρmj

j), see equation (T04.2.3).

5. Compute the corresponding projectors from the computed null space using equation (T04.2.5) and compute the
local PH, Hmj

ij
, using equation (T04.2.7). This Hamiltonian will be a 2mj × 2mj matrix and only qubits from

ij to ij+mj
will be affected by it. In addition, by construction, Hmj

ij
is a parent Hamiltonian over the affected

qubits. Trivially this behaviour is extended to the rest of the circuit by doing nothing to the non-affected qubits.

6. Compute the linear combination decomposition of Hmj

ij
in the basis of mj generalized Pauli matrices by using

(T04.2.10) and (T04.2.11). So, for a Hmj

ij
, a list of 4mj tuples (σ

ij ,mj

I , a
ij ,mj

I) should be obtained, where

σ
ij ,mj

I are all the mj generalized Pauli matrices and aij ,mj

I , the corresponding decomposition coefficients (I =
0, 1, · · · 4mj − 1).

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.9 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

7. It should be noted that the mj-generalized Pauli matrices σj,mj

I act over qubits from ij to ij+mj
. Trivially this

mj generalized Pauli matrices can be generalized to the overall circuit by doing the Kronecker’s product with
identity matrices in the non-affected qubits.

8. Repeat the complete process for qubit, ij+1 (setting the corresponding mj+1 = 1) until all qubits are processed.

At the end of the process, n local parent Hamiltonian, Hmj

ij
, and their respective decomposition in generalized Pauli

matrices, (σj,mj

I , a
j,mj

I), with j = 0, 1, · · ·n− 1, and I = 0, 1, · · · 4mj − 1, should be obtained. The final local PH is
given by (T04.2.16).

HPH =
n−1∑

j=0

H
mj

ij
(T04.2.16)

For the PH Kernel of the TNBS the mandatory parent Hamiltonian should be computed following this local parent
Hamiltonian method.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.10 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

3.Description of the benchmark test case

This section presents the complete description of the BTC for the PH kernel. Section 3.1 describes the problem
addressed by the test case. Section 3.2 provides a high-level description of the case. Section 3.3 provides the execution
workflow. Finally, section 3.4 documents how the results of such executions must be reported.

3.1. Description of the problem

The computation of the ground state energy of the ansatz presented in the original parent Hamiltonian paper
(Kobayashi et al., 2022), depicted in Figure T04.4, under its corresponding local parent Hamiltonian is the proposed
BTC of the PH Kernel.

As can be seen in Figure T04.4, the ansatz is built of several circuit layers, each one composed of parametrized Rx

and Rz gates alternated by a ladder of controlled Z gates.

· · ·

· · ·

· · ·

...
...

...
...

...
...

... · · ·

· · ·

|0⟩ Rx(θ1) Rz(θ2) Rx(θ3) Rz(θ4)

|0⟩ Rx(θ1) Rz(θ2) Rx(θ3) Rz(θ4)

|0⟩ Rx(θ1) Rz(θ2) Rx(θ3) Rz(θ4)

|0⟩ Rx(θ1) Rz(θ2) Rx(θ3) Rz(θ4)

Layer 1 Layer 2

Figure T04.4: Invariant translational ansatz proposed for BTC.

For a fixed i layer the parameters θi (for Rx gate) and θi+1 (for Rz gate) should be fixed as a function of the number
of layers of the ansatz, nl, following equation (T04.1.1).

θi = (i+ 1)δθ i = 0, 1, · · · 2nl − 1 where δθ =
π

4 ∗ (nl + 1)
(T04.1.1)

The selected ansatz is a translational invariant one. For this type of ansatz the procedure provided in section 2.2.2, for
computing the local parent Hamiltonian, can be executed only for the first qubit and the obtained Pauli decomposition
should be replicated for the rest of the qubits of the circuit.

3.2. Benchmark test case description

This section provides a step-by-step workflow of the BTC for the PH kernel.

Given a fixed number of qubits, n, and a selected circuit depth, nl, the quantum VQE step, complete yellow block
code in Figure T04.1, should be executed for obtaining the corresponding energy of the ansatz under the local parent
Hamiltonian. The inputs of this VQE step are:

1. The desired ansatz implementation following Figure T04.4.

2. The parameters of the ansatz following equation (T04.1.1)

3. The complete Pauli decomposition of the local parent Hamiltonian: this is the generalized Pauli matrices, σj,mj

I ,
see equation (T04.2.8), and their corresponding Pauli coefficients aj,mj

I , see equation (T04.2.11)

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.11 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

The VQE step should be executed for nshots = 10000 and Ground State Energy E0 should be returned. The value
of E0 should be close to 0. The complete time for the VQE step should be measured and labelled as the elapsed time.
If possible, the time of the pure quantum part should be measured separately as the quantum time.

The following remarks should be taken into account:

In a naive approach, the procedure would be to build the ansatz with the corresponding parameters, the I th Pauli
matrix, σI , would be added to the circuit and finally, the state would be measured nshots and the obtained mean would
be multiplied by the corresponding Pauli coefficient aI , and the energy term EI would be obtained. This procedure
would be performed for all the Pauli matrices and the ground state energy would be E0 =

∑
I EI .

There exist, however, different algorithms that allow grouping Pauli matrix to decrease the number of executions. Any
algorithm for boosting and optimizing this VQE step can be used but the number of shots for each individual term
should be nshots = 10000.

As can be seen the Pauli decomposition of the local parent Hamiltonian is a mandatory input for the BTC of the PH
Kernel. This computation should be done independently of the execution of the Benchmark and it should not be
included in the Benchmark report nor included in the elapsed time computations.

In the folder configuration files of the WP3 Benchmark NEASQC GitHub repository this Pauli decomposition, as
csv files, can be found for several qubits (from 3 to 30) and for different number of layers (from 1 to 4). Additionally,
the parameters used, following equation (T04.1.1), were stored too. See section A.1.2 of the Appendix for more
information.

3.3. Complete benchmark procedure

To execute a complete PH Benchmark, subsequent steps should be followed:

1. Fix in advance the different numbers of qubits to be tested, for example from n=4 to n=8 (using the configuration
files in the WP3 Benchmark NEASQC GitHub repository until 30 qubits can be tested, see section A.1.2)

2. For each possible number of qubits n, different number of layers nl should be tested, for example from nl = 1
to nl = 4 (using the configuration files in the WP3 Benchmark NEASQC GitHub repository 1, 2, 3 and 4
number of layers can be tested, see section A.1.2).

3. For each possible combination of number of qubits n and number of layers nl following steps must be performed

a) Execute a warm-up step consisting of:

i. Execute 10 iterations of the BTC, section 3.2, and compute the standard deviation of the ground state
energy E0, sE0

, and the mean and the standard deviation for the elapsed time, µt, st.

ii. Compute the number of repetitions, ME0
, for having an absolute error for the ground state energy,

E0, of 0.01, rE0
= 0.01, with a confidence level of 95%, α = 0.95, following equation (T04.3.2),

where Z1−α
2

is the percentile for α.

ME0
=
(sE0

Z1−α
2

rE0

)2
(T04.3.2)

iii. Compute the number of repetitions mandatory, Mt, for having a relative error for the elapsed time of
5%, rt = 0.05, with a confidence level of 95%, α = 0.05, following (T04.3.3), where Z1−α

2
is the

percentile for α.

Mt =
(stZ1−α

2

rtµt

)2
(T04.3.3)

b) Execute the complete BTC, section 3.2, M = max(Mt,ME0
) times. M must be greater than 5.

c) Compute the mean and the standard deviation forE0, the elapsed time and the quantum time, if possible.

The method used to calculate the number of repetitions, M , in the previous procedure guarantees that the Ground
State Energy, E0, will have an absolute error lower than rE0

= 0.01, and the elapsed time will have a relative error
lower than rt = 5% with a confidence level of 95%.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.12 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

3.4. Benchmark report

Finally, the results of the complete benchmark execution must be reported into a valid JSON file following the JSON
schema NEASQC.Benchmark.V2.Schema.json provided in the document D3.5: The NEASQC Benchmark Suite of the
NEASQC project.

The results of the Benchmark should be stored in the field Benchmarks, under the sub-field Results. This sub-field of
the JSON has associated a list of elements, where each element is a dictionary with the complete result information for
a Benchmark execution: this is, for a fixed number of qubits n (sub-field NumberOfQubits of the dictionary) and for
a fixed number of layers nl (a new sub-field called AnsatzDepth was created for storing this information). Each one of
these dictionaries stores, under the sub-field Metrics, the mandatory verification metric: the Ground State Wnergy
one is stored under the name gse. Additionally, the mean elapsed time must be reported in the TotalTime sub-field and
its standard deviation in the SigmaTotalTime one.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.13 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

List of Acronyms

Term Definition
BTC Benchmark Test Case
JSON JavaScript Object Notation
NEASQC NExt ApplicationS of Quantum Computing
NISQ Noise Intermediate-Scale Quantum
PH Parent Hamiltonian
TNBS The NEASQC Benchmark Suite
VQA Variational Quantum Algorithm
VQE Variational Quantum Eigensolver

Table T04.1: Acronyms and Abbreviations

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.14 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

List of Figures

Figure T04.1.: The VQE pipeline extracted from (Tilly et al., 2022). The yellow blocks correspond to
the code executed in a quantum computer, while the blue ones are related to subroutines
executed in a classical computer. The block 2a is the parametric part of the circuit (the
ansatz). T04.5

Figure T04.2.: Example of a circuit where naive PH method was used. In this case, all the particles
(qubits) have an all-to-all interaction. T04.8

Figure T04.3.: Example of a circuit where the local parent Hamiltonian method is used. As can be seen,
each particle (qubit) has an associated local Hamiltonian, Hi, that affects only its neigh-
bours . T04.8

Figure T04.4.: Invariant translational ansatz proposed for BTC. T04.11

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.15 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

List of Tables

Table T04.1.: Acronyms and Abbreviations . T04.14

Table T04.2.: Example of the content of a parameters.csv file (nqubits 04 depth 3 parameters.csv) T04.25
Table T04.3.: Example of the content of a pauli.csv file (nqubits 04 depth 3 pauli.csv) T04.26
Table T04.4.: Sub-fields of the Results fields of the TNBS benchmark report. The metrics related with the

quantum time and classical time are not mandatory T04.32
Table T04.5.: Sub-fields of the Metrics field. T04.32

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.16 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

List of Listings

Listing T04.1. run code function for executing a step of the BTC of the PH kernel, as explained in section
3.2 . T04.19

Listing T04.2. compute samples function for codifying the strategy for computing the number of repetitions
for the BTC of the PH kernel. T04.21

Listing T04.3. summarize results function for summarizing the results from an execution of the PH Bench-
mark . T04.22

Listing T04.4. build iterator function for creating the iterator of the complete execution of the PH Bench-
mark . T04.23

Listing T04.5. Example of configuration of a complete PH Benchmark execution. This part of the code
should be located at the end of the my benchmark execution.py script T04.23

Listing T04.6. Example of configuration of the my environment info.py script T04.27
Listing T04.7. Example of configuration of the my benchmark info.py script T04.29
Listing T04.8. Example of configuration of the summarize results function for PH benchmark T04.31

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.17 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

Bibliography

Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., McClean, J. R., Mitarai, K., Yuan, X.,
Cincio, L., & Coles, P. J. (2021). Variational quantum algorithms. Nature Reviews Physics, 3(9), 625–644.
https://doi.org/10.1038/s42254-021-00348-9

Kobayashi, F., Mitarai, K., & Fujii, K. (2022). Parent hamiltonian as a benchmark problem for variational quantum
eigensolvers. Phys. Rev. A, 105, 052415. https://doi.org/10.1103/PhysRevA.105.052415

Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P. J., Aspuru-Guzik, A., & O’Brien, J. L.
(2014). A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1).
https://doi.org/10.1038/ncomms5213

Tilly, J., Chen, H., Cao, S., Picozzi, D., Setia, K., Li, Y., Grant, E., Wossnig, L., Rungger, I., Booth, G. H., & Tennyson,
J. (2022). The Variational Quantum Eigensolver: A review of methods and best practices. Physics Reports,
986, 1–128. https://doi.org/https://doi.org/10.1016/j.physrep.2022.08.003

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.18 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

A.NEASQC test case reference

As pointed out in deliverable D3.5: The NEASQC Benchmark Suite each proposed Benchmark for TNBS, must
have a complete Eviden myQLM compatible software implementation. For the PH Benchmark, this implementation
can be found in the tnbs/BTC 04 PH folder of the WP3 Benchmark NEASQC GitHub repository. Additionally,
the execution of a Benchmark must generate a complete result report into a separate JSON file, that must follow
NEASQC JSON schema NEASQC.Benchmark.V2.Schema.json provided into the aforementioned deliverable.

The tnbs/BTC 04 PH locations contains the following folders and files:

• PH folder: with all the Python modules mandatory for executing the complete workflow of the PH Kernel BTC
as explained in section 3.2. Additionally, it contains several modules for building parent Hamiltonians of any
input ansatz, as explained in sections 2.2.1 and 2.2.2 (for naive and local methods respectively).

• configuration files folder: where Pauli decomposition of local PH for BTC ansatzes (see Figure T04.4) from
3 to 30 qubits and for a number of layers from 1 to 4 were stored as csv files. Additionally, csv files with the
ansatz parameters, see equation (T04.1.1), were stored too.

• my benchmark execution.py

• my environment info.py

• my benchmark info.py

• my benchmark summary.py

• neasqc benchmark.py

The modules of PH folder, the files from the configuration files and the my benchmark execution.py file allows to
execute a complete PH Benchmark using the Eviden myQLM library. Section A.1 documents, these files. The other
script files are related to benchmark report generation and are properly explained in section A.2.

A.1. NEASQC implementation of benchmark test case.

A.1.1. my benchmark execution.py

This script is a modification of the correspondent template script located in tnbs/templates folder of the
WP3 Benchmark repository. Following the recommendations of Annex B of the deliverable D3.5: The NEASQC
Benchmark Suite the run code, compute samples, summarize results and the build iterator functions were mod-
ified. Meanwhile, the KERNEL BENCHMARK class was not modified. In the following sections, the software
adaptations for the PH Benchmark are presented.

run code

Listing T04.1 shows the modifications performed into the run code function for the PH Benchmark. The main
functionality is executing the BTC, as explained in section 3.2, for a fixed number of qubits, n, a number of layers nl
and its corresponding local parent Hamiltonian Pauli decomposition. The two first parameters should be passed as a
2-element Python tuple (iterator step). The execution will be done repetitions number of times and all the mandatory
metrics will be gathered as pandas DataFrame (metrics). The stage bench is a boolean variable that indicates if the
step is executed in the pre-benchmark (step 3.a in section 3.3) or in the benchmark stage (step 3.b in section 3.3).

1

2 def run_code(iterator_step, repetitions, stage_bench, **kwargs):
3 """
4 For configuration and execution of the benchmark kernel.
5

6 Parameters
7 ----------
8

9 iterator_step : tuple
10 tuple with elements from iterator built from build_iterator.
11 repetitions : list
12 number of repetitions for each execution
13 stage_bench : str

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.19 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

14 benchmark stage. Only: benchmark, pre-benchamrk
15 kwargs : keyword arguments
16 for configuration of the benchmark kernel
17

18 Returns
19 _______
20

21 metrics : pandas DataFrame
22 DataFrame with the desired metrics obtained for the integral computation
23 save_name : string
24 Desired name for saving the results of the execution
25

26 """
27

28 if stage_bench not in ["benchmark", "pre-benchmark"]:
29 raise ValueError(
30 "Valid values for stage_bench: benchmark or pre-benchmark")
31 if repetitions is None:
32 raise ValueError("samples CAN NOT BE None")
33 #Here the code for configuring and execute the benchmark kernel
34 kernel_configuration = deepcopy(kwargs.get("kernel_configuration", None))
35 del kernel_configuration["gse_error"]
36 del kernel_configuration["time_error"]
37 del kernel_configuration["depth"]
38 if kernel_configuration is None:
39 raise ValueError("kernel_configuration can not be None")
40 # Configuring kernel
41

42 nqubits = str(iterator_step[0]).zfill(2)
43 depth = str(iterator_step[1])
44 logger.info("Creating ansatz circuit")
45 ansatz_conf = {
46 "nqubits" :int(nqubits),
47 "depth" : int(depth),
48 }
49 circuit = ansatz_selector("simple01", **ansatz_conf)
50 # Formating Parameters
51 base_fn = "configuration_files/nqubits_{}_depth_{}".format(nqubits, depth)
52 param_file = base_fn + "_parameters.csv"
53 logger.info("Loading Parameters from: %s", param_file)
54

55 parameters_pdf = pd.read_csv(param_file, sep=";", index_col=0)
56 circuit, _ = angles_ansatz01(circuit, parameters_pdf)
57

58 # Loading PH Pauli decomposition
59 pauli_file = base_fn + "_pauli.csv"
60 logger.info("Loading PH Pauli decomposition from: %s", pauli_file)
61 # Loading Pauli
62 pauli_pdf = pd.read_csv(pauli_file, sep=";", index_col=0)
63 affected_qubits = [ast.literal_eval(i_) for i_ in list(pauli_pdf["Qbits"])]
64 pauli_pdf["Qbits"] = affected_qubits
65

66 # Executing VQE step
67 logger.info("Executing VQE step")
68 nb_shots = kernel_configuration.get("nb_shots", None)
69 if nb_shots is None:
70 nb_shots = 10000
71 truncation = kernel_configuration.get("truncation", None)
72 t_inv = kernel_configuration.get("t_inv", None)
73 if t_inv is None:
74 t_inv = True
75

76 vqe_conf = {
77 "qpu" : get_qpu(kernel_configuration["qpu_ph"]),
78 "nb_shots": nb_shots,#kernel_configuration["nb_shots"],
79 "truncation": truncation, #kernel_configuration["truncation"],
80 "t_inv": t_inv,#kernel_configuration["t_inv"],
81 "filename": None,
82 "save": False,
83 }
84 list_of_metrics = []
85 for i in range(repetitions):
86 exe_ph = PH_EXE(circuit, pauli_pdf, int(nqubits), **vqe_conf)

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.20 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

87 exe_ph.run()
88 pdf_info = pd.DataFrame(
89 [int(nqubits), int(depth)], index=["nqubits", "depth"]).T
90 list_ = [
91 pdf_info,
92 pd.DataFrame(kernel_configuration, index=[0]),
93 exe_ph.pdf_result
94]
95 pdf_info = pd.concat(list_, axis=1)
96 list_of_metrics.append(pdf_info)
97 metrics = pd.concat(list_of_metrics)
98 metrics.reset_index(drop=True, inplace=True)
99 metrics["elapsed_time"] = metrics["observable_time"] + \

100 metrics["quantum_time"]
101 if stage_bench == "pre-benchmark":
102 # Name for storing Pre-Benchmark results
103 save_name = "pre_benchmark_nq_{}_depth_{}.csv".format(
104 iterator_step[0],
105 iterator_step[1]
106)
107 if stage_bench == "benchmark":
108 # Name for storing Benchmark results
109 save_name = kwargs.get("csv_results")
110 #save_name = "pre_benchmark_step_{}.csv".format(n_qbits)
111 return metrics, save_name

Listing T04.1: run code function for executing a step of the BTC of the PH kernel, as explained in section 3.2

The workflow of the run code can be schematized in the following steps:

1. Built of the ansatz (Figure T04.4) for the requested n and nl as a myQLM circuit. Line 49 of Listing T04.1.
This is done using the function ansatz selector from PH.ansatzes module.

2. Loading the correspondent parameters of the ansatz following equation (T04.1.1). This is done by loading the
corresponding csv file, line 55, for n and nl from the configuration files folder (see Section A.1.2). These files
are the ones that have a parameters in their name. The parameters are then loaded into the myQLM ansatz
circuit (line 56) using function angles ansatz01 from PH.ansatzes module.

3. The 2 first steps are equivalent to the block 2a of Figure T04.1.

4. Loading the complete Pauli decomposition of the corresponding local parent Hamiltonian for n qubits and nl
layers from the proper csv file, line 62, from the configuration files folder (see Section A.1.2). They are located
in the files that have a pauli in their names. The Pauli terms would correspond to the block 2b of Figure T04.1.

5. Finally the complete VQE step execution (blocks 2a, 2b and 2c of Figure T04.1 is executed in lines 86 and 87
by creating the PH EXE class, from module PH.execution ph, and invoking its run method.

6. The mandatory metrics results, Ground State Energy and elapsed time are gathered in the subsequent lines.
A pandas DataFrame is built with this information. Additionally, the configuration parameters of the execution
are added to the DataFrame for traceability purposes.

Steps 5 and 6 are done several times (repetitions number of times) for generating a final DataFrame where all results
are gathered (this the metrics one).

The return of the run code function are the metrics DataFrame and filename for storing results if desired.

compute samples

Listing T04.2 shows the implementation of the compute samples function for the PH Benchmark. The main objec-
tive is to codify a strategy for computing the number of times the BTC, as explained in section 3.2, should be executed,
for getting some desired statistical significance (see 3.a.ii and 3.a.iii of section 3.3). This function would implement
equations (T04.3.2) and (T04.3.3) and compute the corresponding maximum as explained in 3.b of Section 3.3.

1

2 def compute_samples(**kwargs):
3 """
4 This function computes the number of executions of the benchmark
5 for ensuring an error r with a confidence level of alpha
6

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.21 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

7 Parameters
8 ----------
9

10 kwargs : keyword arguments
11 For configuring the sampling computation
12

13 Returns
14 _______
15

16 samples : pandas DataFrame
17 DataFrame with the number of executions for each integration interval
18

19 """
20

21 #Configuration for sampling computations
22

23 #Desired Confidence level
24 alpha = kwargs.get("alpha", 0.05)
25 if alpha is None:
26 alpha = 0.05
27 metrics = kwargs.get("pre_metrics")
28 bench_conf = kwargs.get("kernel_configuration")
29

30 #Code for computing the number of samples for getting the desired
31 #statististical significance. Depends on benchmark kernel
32

33 from scipy.stats import norm
34 zalpha = norm.ppf(1-(alpha/2)) # 95% of confidence level
35

36 # Error expected for the Groud State Energy
37 error_gse = bench_conf.get("gse_error", 0.01)
38 if error_gse is None:
39 error_gse = 0.01
40 std_ = metrics[["gse"]].std()
41 samples_gse = (zalpha * std_ / error_gse) ** 2
42

43 # Relative Error for elpased time
44 time_error = bench_conf.get("time_error", 0.05)
45 if time_error is None:
46 time_error = 0.05
47 mean_time = metrics[["elapsed_time"]].mean()
48 std_time = metrics[["elapsed_time"]].std()
49 samples_time = (zalpha * std_time / (time_error * mean_time)) ** 2
50

51 #Maximum number of sampls will be used
52 samples_ = pd.Series(pd.concat([samples_time, samples_gse]).max())
53

54 #Apply lower and higher limits to samples
55 #Minimum and Maximum number of samples
56 min_meas = kwargs.get("min_meas", None)
57 if min_meas is None:
58 min_meas = 5
59 max_meas = kwargs.get("max_meas", None)
60 samples_.clip(upper=max_meas, lower=min_meas, inplace=True)
61 samples_ = samples_[0].astype(int)
62 return samples_

Listing T04.2: compute samples function for codifying the strategy for computing the number of repetitions for the
BTC of the PH kernel.

summarize results

Listing T04.3 shows the implementation of the summarize results function for the PH Benchmark. The main
objective is post-processing the results of the complete Benchmark execution, as described in step 3-c of Section 3.3.

This function expects that the results of the complete benchmark execution have been stored in a csv file. The function
loads this file into a pandas DataFrame that is post-processed properly.

1

2 def summarize_results(**kwargs):
3 """

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.22 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

4 Create summary with statistics
5 """
6

7 folder = kwargs.get("saving_folder")
8 csv_results = folder + kwargs.get("csv_results")
9

10 #Code for summarize the benchamark results. Depending of the
11 #kernel of the benchmark
12 pdf = pd.read_csv(csv_results, index_col=0, sep=";")
13 pdf["classic_time"] = pdf["elapsed_time"] - pdf["quantum_time"]
14 pdf.fillna("None", inplace=True)
15 group_columns = [
16 "nqubits", "depth", "t_inv", "qpu_ph",
17 "nb_shots", "truncation"]
18 metric_columns = ["gse", "elapsed_time", "quantum_time", "classic_time"]
19 results = pdf.groupby(group_columns)[metric_columns].agg(
20 ["mean", "std", "count"])
21 results = results.replace(’None’, None)
22 return results

Listing T04.3: summarize results function for summarizing the results from an execution of the PH Benchmark

build iterator

Listing T04.4 shows the implementation of the build iterator function for the PH Benchmark. The main objective
is to create a Python iterator for executing the desired complete BTC. In this case, the iterator creates a list with all
the possible combinations of the desired number of qubits, n and the number of layers of the ansatz, nl.

1 def build_iterator(**kwargs):
2 """
3 For building the iterator of the benchmark
4 """
5 import itertools as it
6

7 list4it = [
8 kwargs["list_of_qbits"],
9 kwargs["kernel_configuration"]["depth"]

10]
11

12 iterator = it.product(*list4it)
13

14 return list(iterator)

Listing T04.4: build iterator function for creating the iterator of the complete execution of the PH Benchmark

KERNEL BENCHMARK class

No modifications were made to the KERNEL BENCHMARK class. This Python class defines the complete bench-
mark workflow, section 3.3, and its exe method executes it properly by calling the correspondent functions (run code,
compute samples, summarize results, build iterator). Each time a Benchmark step is executed, as defined in section
3.3, the result is stored in a given CSV file.

The only mandatory modification is configuring properly the input keyword arguments, at the end of the
my benchmark execution.py script. These parameters will configure the complete benchmark workflow, and ad-
ditional options (as the name of the CSV files). Listing T04.5 shows an example for configuring an execution of a PH
Benchmark.

1

2 if __name__ == "__main__":
3

4

5 #Anstaz
6 depth = [1, 2, 3, 4]
7 qpu_ph = "c"
8

9 kernel_configuration = {
10 #Ansatz
11 "depth": depth,

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.23 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

12 "t_inv": True,
13 # Ground State Energy
14 "qpu_ph" : qpu_ph,
15 "nb_shots" : 10000,
16 "truncation": None,
17 # Saving
18 "save": True,
19 "folder": None,
20 # Errors for confidence level
21 "gse_error" : None,
22 "time_error": None,
23 }
24

25 list_of_qbits = [3, 4, 5, 6, 7]
26 benchmark_arguments = {
27 #Pre benchmark sttuff
28 "pre_benchmark": True,
29 "pre_samples": None,
30 "pre_save": True,
31 #Saving stuff
32 "save_append" : True,
33 "saving_folder": "./Results/",
34 "benchmark_times": "kernel_times_benchmark.csv",
35 "csv_results": "kernel_benchmark.csv",
36 "summary_results": "kernel_SummaryResults.csv",
37 #Computing Repetitions stuff
38 "alpha": None,
39 "min_meas": None,
40 "max_meas": None,
41 #List number of qubits tested
42 "list_of_qbits": list_of_qbits,
43 }
44

45 #Configuration for the benchmark kernel
46 benchmark_arguments.update({"kernel_configuration": kernel_configuration})
47 kernel_bench = KERNEL_BENCHMARK(**benchmark_arguments)
48 kernel_bench.exe()

Listing T04.5: Example of configuration of a complete PH Benchmark execution. This part of the code should be
located at the end of the my benchmark execution.py script

As can be seen in Listing T04.5, the input dictionary that KERNEL BENCHMARK class needs, bench-
mark arguments, have several keys that allow to modify the benchmark workflow, like:

• pre benchmark: For executing or not the pre-benchmark step.

• pre samples: number of repetitions of the benchmark step.

• pre save: For saving or not the results from the pre-benchmark step.

• saving folder: Path for storing all the files generated by the execution of the KERNEL BENCHMARK class.

• benchmark times: name for the csv file where the initial and the final times for the complete benchmark execu-
tion will be stored.

• csv results: name for the csv file where the obtained metrics for the different repetitions of the benchmark step
will be stored (so the different metrics obtained during step 2 from section 3.3 will be stored in this file)

• summary results: name for the csv file where the post-processed results (using the summarize results) will be
stored (so the statistics over the metrics obtained during step 3 of section 3.3 will be stored in this file)

• list of qbits: list with the different number of qubits for executing the complete Benchmark.

• alpha: for configuring the desired confidence level α

• min meas: for low limiting the number of executions a benchmark step should be executed during the benchmark
stage.

• max meas: for high limiting the number of executions a benchmark step should be executed during the bench-
mark stage.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.24 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

Additionally, the kernel configuration key is used for configuring the kernel execution. The following keys can be
provided for configuring it:

• depth: for configuring the number of layers, nl, of the ansatz.

• t inv: for specifying if the ansatz is or not translational invariant. For PH Benchmark should be set to True.

• qpu ph: a string for selecting the quantum process unit (QPU)

• nb shot: number of shots for measuring the energy of the VQE step. For PH Benchmark should be set to
10000.

• truncation: for discarding Pauli coefficients lower than 10−truncation. For PH Benchmark should be set to
None.

• gse error: for changing the desired absolute error for the Ground State Energy metric.

• time error: for changing the desired relative error for the elapsed time

In general, most of the keys should be fixed to None for executing the Benchmark according to the guidelines of the
PH Benchmark

For executing the Benchmark following command should be used:
python my benchmark execution.py

A.1.2. configuration files folder

In this folder, there are stored the csv files mandatory for executing the BTC of the PH kernel using the run code
function from my benchmark execution (see the corresponding paragraph of section A.1.1). There are two types of
files:

• parameters.csv: These files have the parameters of the BTC ansatz following equation (T04.1.1) for a fixed
number of qubits n and a fixed number of layers nl. Table T04.2 shows an example of the content of these type
of files.

key value
0 \theta 0 0.19634954084936207
1 \theta 1 0.39269908169872414
2 \theta 2 0.5890486225480862
3 \theta 3 0.7853981633974483
4 \theta 4 0.9817477042468103
5 \theta 5 1.1780972450961724

Table T04.2: Example of the content of a parameters.csv file (nqubits 04 depth 3 parameters.csv)

• pauli.csv: These files have the Pauli decomposition of the corresponding parent Hamiltonian for the BTC
ansatz for a fixed number of qubits n and a fixed number of layers nl. Table T04.3 shows an example of the
content of these type of files. In this case the files have 4 columns:

– The first column is a dummy index.

– The second column, PauliCoefficients, holds the Pauli coefficients aI , see equation (T04.2.11).

– The third column, PauliStrings, holds the mj-generalized Pauli matrix σI , see equation (T04.2.8), pro-
vided as Pauli strings (σ0 : I , σ1 = X , σ2 = Y , σ3 = Z).

– The fourth column, Qbits, is the affected qubits for each of the elements of the corresponding Pauli strings.

The names of the different files follow the pattern:
nqubits n depth nl

where n is the number of qubits and nl the number of layers followed by parameters.csv or pauli.csv.

There are files with information for parameters and Pauli decompositions for ansatzes from 3 to 30 qubits and for each
qubit for a number of layers from 1 to 4 (there are 112 files for parameters and for paulis).

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.25 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

PauliCoefficients PauliStrings Qbits
0 0.7500000000000003 III [0, 1, 2]
1 -0.00561596334353707 IIX [0, 1, 2]
2 -0.04441440856772065 IIY [0, 1, 2]
3 -0.04249275519392258 IIZ [0, 1, 2]
4 0.007083873530394136 IXI [0, 1, 2]
5 0.02485387932781642 IXX [0, 1, 2]
6 0.029646274839496427 IXY [0, 1, 2]
7 -0.0298965933873333 IXZ [0, 1, 2]
8 -0.04728533359686948 IYI [0, 1, 2]
9 0.00205881519227738 IYX [0, 1, 2]
10 -6.01116541139278e-05 IYY [0, 1, 2]
11 -0.06548679398263388 IYZ [0, 1, 2]
12 -0.04106203612667689 IZI [0, 1, 2]
13 0.012413011400994774 IZX [0, 1, 2]
14 -0.06617634515720369 IZY [0, 1, 2]
15 0.025838820409241972 IZZ [0, 1, 2]
16 -0.005615963343537162 XII [0, 1, 2]
17 -0.18582269635551796 XIX [0, 1, 2]
18 -0.014995653778895798 XIY [0, 1, 2]
19 -0.024342246603799002 XIZ [0, 1, 2]
20 0.024853879327816464 XXI [0, 1, 2]
21 -0.0003911670057600569 XXX [0, 1, 2]
22 0.019376291486339785 XXY [0, 1, 2]
23 0.039944057923917003 XXZ [0, 1, 2]
24 0.002058815192277178 XYI [0, 1, 2]
25 -0.049992530640230466 XYX [0, 1, 2]
26 -0.022494667621329505 XYY [0, 1, 2]
27 0.07065426613789572 XYZ [0, 1, 2]
28 0.01241301140099471 XZI [0, 1, 2]
29 -0.028120665143850098 XZX [0, 1, 2]
30 -0.06372069429523346 XZY [0, 1, 2]
31 0.022495267000582728 XZZ [0, 1, 2]

PauliCoefficients PauliStrings Qbits
32 -0.04441440856772076 YII [0, 1, 2]
33 -0.014995653778895923 YIX [0, 1, 2]
34 -0.032691597279734835 YIY [0, 1, 2]
35 -0.01591480891702651 YIZ [0, 1, 2]
36 0.029646274839496514 YXI [0, 1, 2]
37 0.019376291486339778 YXX [0, 1, 2]
38 0.20402965738563522 YXY [0, 1, 2]
39 -0.04823614667152235 YXZ [0, 1, 2]
40 -6.011165411385407e-05 YYI [0, 1, 2]
41 -0.02249466762132951 YYX [0, 1, 2]
42 0.014068547954461415 YYY [0, 1, 2]
43 0.004672737470102694 YYZ [0, 1, 2]
44 -0.06617634515720376 YZI [0, 1, 2]
45 -0.0637206942952335 YZX [0, 1, 2]
46 0.009606830354296339 YZY [0, 1, 2]
47 -0.008961855599010384 YZZ [0, 1, 2]
48 -0.04249275519392251 ZII [0, 1, 2]
49 -0.024342246603799116 ZIX [0, 1, 2]
50 -0.015914808917026586 ZIY [0, 1, 2]
51 -0.03148570636474737 ZIZ [0, 1, 2]
52 -0.02989659338733319 ZXI [0, 1, 2]
53 0.039944057923917003 ZXX [0, 1, 2]
54 -0.048236146671522415 ZXY [0, 1, 2]
55 -0.19655461684948114 ZXZ [0, 1, 2]
56 -0.06548679398263389 ZYI [0, 1, 2]
57 0.07065426613789574 ZYX [0, 1, 2]
58 0.004672737470102616 ZYY [0, 1, 2]
59 -0.011361350911100621 ZYZ [0, 1, 2]
60 0.025838820409241986 ZZI [0, 1, 2]
61 0.02249526700058272 ZZX [0, 1, 2]
62 -0.008961855599010395 ZZY [0, 1, 2]
63 -0.022548201337122944 ZZZ [0, 1, 2]

Table T04.3: Example of the content of a pauli.csv file (nqubits 04 depth 3 pauli.csv)

A.1.3. PH package

In the PH folder several modules that implement several functionalities, like computing parent Hamiltonian decom-
position, implementing ansatzes as myQLM circuits or executing the VQE quantum step, are located.

Following is a quick summary of the most important Python modules:

• ansatzes: this module contains Eviden myQLM implementation of different ansatzes. Additionally, the func-
tions (and classes) for simulating them using Eviden myQLM solvers are coded here.

• parent hamiltonian: this module contains the PH class that allows computing a parent Hamiltonian using the
naive of the local methods (see sections 2.2.1 and 2.2.2 respectively).

• execution ph: this module contains the mandatory functions and classes for, given an ansatz and its local parent
Hamiltonian Pauli decomposition, executing the VQE quantum step (blocks 2a, 2b and 2c of Figure T04.1) and
getting its corresponding ground state energy.

• workflow: this module uses the three previous ones for executing a complete workflow (this is the computation
of the state of a desired ansatz, its local parent Hamiltonian and its ground state energy using quantum VQE
step).

• pauli: this module has functions that deal with the decomposition of matrices in n-generalized Pauli matrices
(see equations (T04.2.8) and (T04.2.11))

• contractions: this module contains several functions for computing contraction of indices and for computing

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.26 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

reduced density matrices mandatory for the parent Hamiltonian computations (see equations (T04.2.14) and
(T04.2.15)).

• utils: this module contains several auxiliary functions needed for the rest of the modules of the package.

The other python files presented in the PH are for executing the different modules in an easy way (launch ansatzes.py,
launch parent hamiltonian.py, launch execution ph.py, launch get jobs.py and launch workflow.py). And the json
files are for configuring in an easy way these executions (ansatzes.json, parent hamiltonian.json, execution ph.json
and workflow.json).

Finally, a folder called notebook is presented in the PH one. This folder contains several jupyter notebooks that
explain how to use the different modules of the PH package.

A.2. Generation of the benchmark report

Following deliverable D3.5: The NEASQC Benchmark Suite the results of a complete Benchmark must be reported
in a separate JSON file that must satisfy the NEASQC JSON schema NEASQC.Benchmark.V2.Schema.json provided
into the aforementioned deliverable. For automating this process the following files should be modified, as explained
in Annex B of the deliverable D3.5: The NEASQC Benchmark Suite:

• my environment info.py

• my benchmark info.py

• my benchmark summary.py

• neasqc benchmark.py

my environment info.py

This script has the functions for gathering information about the hardware where the Benchmark is executed.

Listing T04.6 shows an example of the my environment info.py script. Here the compiled information corresponds
to a classic computer because the case was simulated instead of executed in a quantum computer.

1

2 import platform
3 import psutil
4 from collections import OrderedDict
5

6 def my_organisation(**kwargs):
7 """
8 Given information about the organisation how uploads the benchmark
9 """

10 name = "CESGA"
11 return name
12

13 def my_machine_name(**kwargs):
14 """
15 Name of the machine where the benchmark was performed
16 """
17 machine_name = platform.node()
18 return machine_name
19

20 def my_qpu_model(**kwargs):
21 """
22 Name of the model of the QPU
23 """
24 qpu_model = "None"
25 return qpu_model
26

27 def my_qpu(**kwargs):
28 """
29 Complete info about the used QPU
30 """
31 #Basic schema
32 #QPUDescription = {
33 # "NumberOfQPUs": 1,

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.27 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

34 # "QPUs": [
35 # {
36 # "BasicGates": ["none", "none1"],
37 # "Qubits": [
38 # {
39 # "QubitNumber": 0,
40 # "T1": 1.0,
41 # "T2": 1.00
42 # }
43 #],
44 # "Gates": [
45 # {
46 # "Gate": "none",
47 # "Type": "Single",
48 # "Symmetric": False,
49 # "Qubits": [0],
50 # "MaxTime": 1.0
51 # }
52 #],
53 # "Technology": "other"
54 # },
55 #]
56 #}
57

58 #Defining the Qubits of the QPU
59 qubits = OrderedDict()
60 qubits["QubitNumber"] = 0
61 qubits["T1"] = 1.0
62 qubits["T2"] = 1.0
63

64 #Defining the Gates of the QPU
65 gates = OrderedDict()
66 gates["Gate"] = "none"
67 gates["Type"] = "Single"
68 gates["Symmetric"] = False
69 gates["Qubits"] = [0]
70 gates["MaxTime"] = 1.0
71

72

73 #Defining the Basic Gates of the QPU
74 qpus = OrderedDict()
75 qpus["BasicGates"] = ["none", "none1"]
76 qpus["Qubits"] = [qubits]
77 qpus["Gates"] = [gates]
78 qpus["Technology"] = "other"
79

80 qpu_description = OrderedDict()
81 qpu_description[’NumberOfQPUs’] = 1
82 qpu_description[’QPUs’] = [qpus]
83

84 return qpu_description
85

86 def my_cpu_model(**kwargs):
87 """
88 model of the cpu used in the benchmark
89 """
90 cpu_model = platform.processor()
91 return cpu_model
92

93 def my_frecuency(**kwargs):
94 """
95 Frcuency of the used CPU
96 """
97 #Use the nominal frequency. Here, it collects the maximum frequency
98 #print(psutil.cpu_freq())
99 cpu_frec = psutil.cpu_freq().max/1000

100 return cpu_frec
101

102 def my_network(**kwargs):
103 """
104 Network connections if several QPUs are used
105 """
106 network = OrderedDict()

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.28 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

107 network["Model"] = "None"
108 network["Version"] = "None"
109 network["Topology"] = "None"
110 return network
111

112 def my_QPUCPUConnection(**kwargs):
113 """
114 Connection between the QPU and the CPU used in the benchmark
115 """
116 #
117 # Provide the information about how the QPU is connected to the CPU
118 #
119 qpuccpu_conn = OrderedDict()
120 qpuccpu_conn["Type"] = "memory"
121 qpuccpu_conn["Version"] = "None"
122 return qpuccpu_conn

Listing T04.6: Example of configuration of the my environment info.py script

In general, it is expected that for each computer used (quantum or classic), the Benchmark developer should change
this script to properly get the hardware info.

A.2.1. my benchmark info.py

This script gathers the information under the field Benchmarks of the benchmark report. Information about the soft-
ware, the compilers and the results obtained from an execution of the Benchmark is stored in this field.

Listing T04.7 shows an example of the configuration of the my benchmark info.py script for gathering the afore-
mentioned information.

1

2 import sys
3 import platform
4 from collections import OrderedDict
5 from my_benchmark_summary import summarize_results
6 import pandas as pd
7

8

9 def my_benchmark_kernel(**kwargs):
10 """
11 Name for the benchmark Kernel
12 """
13 return "ParentHamiltonian"
14

15 def my_starttime(**kwargs):
16 """
17 Providing the start time of the benchmark
18 """
19 times_filename = kwargs.get("times_filename", None)
20 pdf = pd.read_csv(times_filename, index_col=0)
21 start_time = pdf["StartTime"][0]
22 return start_time
23

24 def my_endtime(**kwargs):
25 """
26 Providing the end time of the benchmark
27 """
28 times_filename = kwargs.get("times_filename", None)
29 pdf = pd.read_csv(times_filename, index_col=0)
30 end_time = pdf["EndTime"][0]
31 return end_time
32

33 def my_timemethod(**kwargs):
34 """
35 Providing the method for getting the times
36 """
37 time_method = "time.time"
38 return time_method
39

40 def my_programlanguage(**kwargs):
41 """

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.29 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

42 Getting the programing language used for benchmark
43 """
44 program_language = platform.python_implementation()
45 return program_language
46

47 def my_programlanguage_version(**kwargs):
48 """
49 Getting the version of the programing language used for benchmark
50 """
51 language_version = platform.python_version()
52 return language_version
53

54 def my_programlanguage_vendor(**kwargs):
55 """
56 Getting the version of the programing language used for benchmark
57 """
58 language_vendor = "None"
59 return language_vendor
60

61 def my_api(**kwargs):
62 """
63 Collect the information about the used APIs
64 """
65 # api = OrderedDict()
66 # api["Name"] = "None"
67 # api["Version"] = "None"
68 # list_of_apis = [api]
69 modules = []
70 list_of_apis = []
71 for module in list(sys.modules):
72 api = OrderedDict()
73 module = module.split(’.’)[0]
74 if module not in modules:
75 modules.append(module)
76 api["Name"] = module
77 try:
78 version = sys.modules[module].__version__
79 except AttributeError:
80 #print("NO VERSION: "+str(sys.modules[module]))
81 try:
82 if isinstance(sys.modules[module].version, str):
83 version = sys.modules[module].version
84 #print("\t Attribute Version"+version)
85 else:
86 version = sys.modules[module].version()
87 #print("\t Methdod Version"+version)
88 except (AttributeError, TypeError) as error:
89 #print(’\t NO VERSION: ’+str(sys.modules[module]))
90 try:
91 version = sys.modules[module].VERSION
92 except AttributeError:
93 #print(’\t\t NO VERSION: ’+str(sys.modules[module]))
94 version = "Unknown"
95 api["Version"] = str(version)
96 list_of_apis.append(api)
97 return list_of_apis
98

99 def my_quantum_compilation(**kwargs):
100 """
101 Information about the quantum compilation part of the benchmark
102 """
103 q_compilation = OrderedDict()
104 q_compilation["Step"] = "None"
105 q_compilation["Version"] = "None"
106 q_compilation["Flags"] = "None"
107 return [q_compilation]
108

109 def my_classical_compilation(**kwargs):
110 """
111 Information about the classical compilation part of the benchmark
112 """
113 c_compilation = OrderedDict()
114 c_compilation["Step"] = "None"

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.30 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

115 c_compilation["Version"] = "None"
116 c_compilation["Flags"] = "None"
117 return [c_compilation]
118

119 def my_metadata_info(**kwargs):
120 """
121 Other important info user want to store in the final json.
122 """
123 metadata = OrderedDict()
124 return metadata

Listing T04.7: Example of configuration of the my benchmark info.py script

The my benchmark info function gathers all the mandatory information needed by the Benchmarks main field of the
report (by calling the different functions listed in listing T04.7). In order to properly fills this field some mandatory
information must be provided as the typical python kwargs:

• times filename: This is the complete path to the file where the starting and ending time of the benchmark was
stored. This file must be a csv one and it is generated when the KERNEL BENCHMARK class is executed.
This information is used by the my starttime and my endtime functions.

• benchmark file: complete path where the file with the summary results of the benchmark are stored. This infor-
mation is used by the summarize results function from my benchmark summary.py script (see section A.2.2).

A.2.2. my benchmark summary.py

In this script, the summarize results function is implemented. This function formats the results of a complete exe-
cution of the PH Benchmark with a suitable NEASQC benchmark report format. It can be used for generating the
information under the sub-field Results of the main field Benchmarks in the report.

Listing T04.8 shows an example of implementation of summarize results function for the PH Benchmark procedure.

1 def summarize_results(**kwargs):
2 """
3 Mandatory code for properly present the benchmark results following
4 the NEASQC jsonschema
5 """
6

7 # n_qbits = [4]
8 # #Info with the benchmark results like a csv or a DataFrame
9 # pdf = None

10 # #Metrics needed for reporting. Depend on the benchmark kernel
11 # list_of_metrics = ["MRSE"]
12

13 import pandas as pd
14 benchmark_file = kwargs.get("benchmark_file", None)
15 index_columns = [0, 1, 2, 3, 4, 5]
16 pdf = pd.read_csv(benchmark_file, header=[0, 1], index_col=index_columns)
17 pdf.reset_index(inplace=True)
18 n_qbits = list(set(pdf["nqubits"]))
19 depth = list(set(pdf["depth"]))
20 list_of_metrics = ["gse"]
21

22 results = []
23 #If several qbits are tested
24 # For ordering by n_qbits
25 for n_ in n_qbits:
26 for depth_ in depth:
27 # For ordering by auxiliar qbits
28 result = OrderedDict()
29 result["NumberOfQubits"] = n_
30 result["QubitPlacement"] = list(range(n_))
31 result["QPUs"] = [2]
32 result["CPUs"] = psutil.Process().cpu_affinity()
33 #Select the proper data
34 indice = (pdf["nqubits"] == n_) & (pdf["depth"] == depth_)
35 step_pdf = pdf[indice]
36 result["TotalTime"] = step_pdf["elapsed_time"]["mean"].iloc[0]
37 result["SigmaTotalTime"] = step_pdf["elapsed_time"]["std"].iloc[0]
38 result["QuantumTime"] = step_pdf["quantum_time"]["mean"].iloc[0]

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.31 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

39 result["SigmaQuantumTime"] = step_pdf["quantum_time"]["std"].iloc[0]
40 result["ClassicalTime"] = step_pdf["classic_time"]["mean"].iloc[0]
41 result["SigmaClassicalTime"] = step_pdf["classic_time"]["std"].iloc[0]
42

43 # For identifying the test
44 result["AnsatzDepth"] = depth_
45 result["Shots"] = int(step_pdf["nb_shots"].iloc[0])
46 result["Truncation"] = int(step_pdf["nb_shots"].iloc[0])
47 metrics = []
48 #For each fixed number of qbits several metrics can be reported
49 for metric_name in list_of_metrics:
50 metric = OrderedDict()
51 #MANDATORY
52 metric["Metric"] = metric_name
53 metric["Value"] = step_pdf[metric_name]["mean"].iloc[0]
54 metric["STD"] = step_pdf[metric_name]["std"].iloc[0]
55 metric["COUNT"] = int(step_pdf[metric_name]["count"].iloc[0])
56 metrics.append(metric)
57 result["Metrics"] = metrics
58 results.append(result)
59 return results

Listing T04.8: Example of configuration of the summarize results function for PH benchmark

As usual, the kwargs strategy is used for passing the arguments that the function can use. In this case, the only
mandatory argument is benchmark file with the path to the file where the summary results of the Benchmark execution
were stored.

Table T04.4 shows the sub-fields and the information stored, under the Results field. To have proper traceability of the
executions the sub-fields AnsatzDepth, Truncation and Shots were created explicitly for the PH Benchmark.

sub-field information
NumberOfQubits number of qubits, n
TotalTime mean of elapsed time
SigmaTotalTime standard deviation of elapsed time
QuantumTime mean of the quantum time
SigmaQuantumTime standard deviation of quantum time
ClassicalTime mean of the classical time
SigmaClassicalTime standard deviation of classical time
Shots number of shots
Metrics sub-field with the obtained metrics
AnsatzDepth number of layers of the ansatz
Truncation for specifying the truncation of the Pauli coefficients (None)

Table T04.4: Sub-fields of the Results fields of the TNBS benchmark report. The metrics related with the quantum
time and classical time are not mandatory

The sub-field Metrics gathers information about the obtained metrics of the benchmark. Table T04.5 shows its different
sub-fields and the information stored.

sub-field information
metric Ground State Energy
Value mean value of the metric
STD standard deviation of the metric
Count number of samples for computing the statistics of the metric

Table T04.5: Sub-fields of the Metrics field.

A.2.3. neasqc benchmark.py

The neasqc benchmark.py script can be used straightforwardly for gathering all the Benchmark execution information
and results, for creating the final mandatory NEASQC benchmark report.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.32 of T04.33

T04 Benchmark for Parent Hamiltonian (1.0- Submitted)

It does not necessarily change anything about the class implementation. It is enough to update the information of the
kwargs arguments for providing the mandatory files for gathering all the information.

In this case, the following information should be provided as arguments for the exe method of the BENCHMARK
class:

• times filename: complete path where the file with the times of the Benchmark execution was stored.

• benchmark file: complete path where the file with the summary results of the Benchmark execution was stored.

© 2023 NEASQC Consortium Partners. All rights reserved. Page T04.33 of T04.33

	1 Executive Summary
	2 Introduction
	2.1 Structure of the TNBS
	2.2 TNBS Glossary

	3 General execution rules
	4 Benchmark results generation
	5 Benchmark results submission
	6 List of benchmarks
	7 The NEASQC benchmark suite repository.
	7.1 Design of the architecture and main components
	7.2 Web interface organization
	7.2.1 Report visualization and comparison

	7.3 Initial implementation and first steps

	8 Conclusions
	List of Acronyms
	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Appendices
	A TNBS JSON schema
	B Templates for NEASQC benchmark
	B.1 my_benchmark_execution.py
	B.1.1 KERNEL_BENCHMARK class
	B.1.2 build_iterator
	B.1.3 run_code
	B.1.4 compute_samples
	B.1.5 summarize_results

	B.2 Generating the benchmark report
	B.2.1 my_environment_info.py
	B.2.2 my_benchmark_info.py
	B.2.3 my_benchmark_summary.py
	B.2.4 neasqc_benchmark.py

	C T01: Benchmark for Probability Loading Algorithms document
	D T02: Benchmark for Amplitude Estimation Algorithms
	E T03: Benchmark for Phase Estimation Algorithms
	F T04: Benchmark for Parent Hamiltonian

