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Abstract

In this work, we present a quantum walks based approach for Probabilistic Safety Assessment problems in
the dynamic Markovian framework.

After presenting well known quantum walk algorithms for detecting or finding marked elements in a graph
or for finding paths in specific graphs, we propose two algorithms to address the more general problem of
finding paths from some point to marked elements. The first algorithm is based on move and store strategy
to built failure sequences from an initial state to the marked states. It uses a full register assembling qubits
representing components of the system under study and other control and ancilla qubits (between n and
2n) to identify all the sequences. The second algorithm is based on a hybrid approach to consider different
cascading circuits for solving relatively large instances.

We present some tests on a Qiskit simulation library that were performed to compare our algorithms against
classical random walks. These tests showed that classical approach has advances in the first iteration but the
hybrid approach scales better in the sense that it identifies a large number of paths and converges towards
all the possible paths to these marked vertices.
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1. Executive Summary

Probabilistic Safety Assessment (PSA) studies are used in different complex industrial systems (nuclear
power plants, space and aviation, medical/pharmaceutical industries, petro-chemical industries, railways,
etc.) to help prevent undesired events and analytically evaluate how they may occur in detail. They provide
decision makers with a set of qualitative and quantitative insight regarding the risk in these systems. The
method was introduced and adopted in the early seventies [35], and has since then been globally adopted,
particularly in the nuclear industry. It was successfully used in different risk informed applications (see [29]
for a detailed survey on the USA experience).

The discipline deals mainly with analysing the different scenarios that may lead to undesired outcomes in
a systematic manner. The goal is to consider all combinations or sequences of elementary failures that
create the conditions for these undesired outcomes, which are represented and evaluated using conditional
probabilities.

This NEASQC report presents quantum walks algorithms and their use for PSA problems. After a brief
overview of the techniques used in different quantum walk algorithms, we present many quantum search
algorithms based on quantum walks and aiming to find or detect marked elements in a graph. We show how
these algorithms were refined to consider different initial conditions regarding the Markov chains distributions
and regarding their complexity. In general, a quadratic speedup was obtained in these algorithms, some
improvements were shown along the different papers. Event if the computational complexity seems identical
for some cases, it should be noted that in general restrictions and assumptions were removed or relaxed.
Our objective was to understand how these algorithms work and how they mayu apply to PSA problems.

In this NEASQC report, we focus on the dynamic Markov approach for reliability which has many similarities
with quantum walk frameworks. However, the same techniques can apply to the static approach. In the static
approach, namely Fault Tree Analysis (FTA), the problem is to find minimal cutsets or prime implicants
that may make true a Boolean formula representing the occurrence of an undesired event. This can be done
either through the minimal content of the sequences or using similar techniques on s-t graphs representing
systems or sequences [54].

While the problem of finding marked elements in graphs is of interest, PSA has an additional requirement:
finding and storing the paths to these marked elements in the graph.

We present two algorithms (cf. [53]) in this report to search for the paths in question in graphs representing
the evolution of the technical systems regarding the failure and successes of their elementary components in
the Markovian process.

The first algorithm is based on move and store strategy to built failure sequences from an initial state to the
marked states. It uses a full register assembling qubits representing components of the system under study
and other control and working qubits (between n and 2n) to help identify all the sequences. This approach
showed a demanding number of qubits which is not compatible with a realistic implementation on current
hardware for industrial systems of relevant size. The second algorithm is a hybrid approach to consider
different cascading circuits for solving relatively large instances.

We present some tests that were performed to compare our algorithms against classical random walks. These
tests showed that the classical approach has advances in the first iteration but our approach scales better
in the sense that it identifies a large number of paths and converges towards all the possible paths to these
marked vertices.

These algorithms however were tested only on a Simulator Qiskit library [21], and need to be tested on a
real hardware to see in particular how the hybrid approach of section 6.2.7 behaves in a real hardware.

© NEASQC Consortium Partners. All rights reserved. Page 6 of 38
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2. Introduction

PSA studies are used in different complex industrial systems (nuclear power plants, space and aviation, med-
ical/pharmaceutical industries, petro-chemical industries, railways, etc.) to help prevent undesired events
and analytically evaluate how they may occur in detail. They provide decision makers with a set of qualita-
tive and quantitative insight regarding the risk in these systems. The method was introduced and adopted
in the early seventies [35], and has since then been globally adopted, particularly in the nuclear industry.
It was successfully used in different risk informed applications (see [29] for a detailed survey on the USA
experience).

The discipline deals mainly with analysing the different scenarios that may lead to undesired outcomes in
a systematic manner. The goal is to consider all combinations or sequences of elementary failures that
create the conditions for these undesired outcomes, which are represented and evaluated using conditional
probabilities.

The problems listed below are central to the field of PSA, and this document discusses some of them in light
of recent advances in quantum computing:

• The first step is modeling these scenarios into sequences of system (or human) failures that lead to
an undesired outcome. These outcomes can then be evaluated to find the minimal combinations of
elementary failures or paths that lead to them.

• The second problem is how accurate this modeling can be and to each extent the model can reflect all
the aspects of the scenarios (their dynamic, their realism . . . ) and considering both parametric and
epistemic uncertainties.

• The third is about how to quantitatively evaluate the different metrics regarding the undesired out-
comes in such a way to be not so conservative and without at all being optimistic, but in a reasonable
time that matches the requirement for operational decision making process. Recall that in the classical
computing framework, many approximations are made and different strategies are followed to deal
with the computational complexity.

Quantum computing is seen as a promising framework to tackle these problems. The problems appear to
be good candidates for quantum computing because of their combinatorial nature and the capability of
quantum superposition and quantum entanglement to help reach areas of the search space in faster ways.
Furthermore, quantum walks have been successfully used for many similar graph problems and especially
in the problems of searching marked vertices in a graph [32, 6, 52, 36, 13, 12]. The techniques used in
this direction allowed to speedup backtracking algorithms [41] or [45], which can be also used to solve FTA
problems.

In the NEASQC project, this report follows other works for solving PSA problems. An early report deals with
solving tree search problems using Divide and quantum (D&Q) approach [45], to split a problem into portions
that fit on small quantum computers. Then extended the approach to deal with quantum backtracking which
allows better results than previous Grover-based methods by possibly pruning the search space. In [45], the
FTA problem is reduced to Circuit-SAT which can also be reduced to k-SAT. Another work [27] presented
a state of the art of quantum computing approaches dealing with SAT and FTA and presented some results
of the implementation the D&Q in ft-2-quantum library1, in addition to an extension of a cooperative
approach [16].

In this work, we present a brief overview of the state of the art of quantum walk algorithms to first understand
these techniques and then explore how they can be applied to PSA problems. In this report, we focus on
the dynamic approach for reliability which has many similarities with quantum walk frameworks. However,
the same techniques can apply to the static approach of finding minimal cutsets or prime implicants for a
Boolean model through the minimal content of the sequences or using similar techniques although they are
not fully based on the quantum walk framework (e.g. hybrid quantum techniques to find minimal cutsets in
the Vertex Separator Problem [54] also been hypothesized to be possible and are in development [26]).

The quantum walk algorithms cited in this report aim to detect or find marked elements in a graph [32, 11,
6, 52, 36, 9, 10]. The techniques that were used in such algorithms are based on the transition matrix of the
graphs in question and quantisation of the random walk in the graphs in question.

1https://github.com/NEASQC/ft-2-quantum-sat

© NEASQC Consortium Partners. All rights reserved. Page 10 of 38
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The performance of these algorithms is mainly due to the use of the interpolated quantum walk (see subsec-
tion 4.2) introduced by Krovi et al. [32] and the quantum fast-forwarding technique introduced in [11], in
addition to the discriminant matrix that fits the criteria of an ergodic2 reversible3 Markov chain.

While the problem of finding marked elements in graphs is of interest, PSA has an additional requirement:
finding and storing the paths to these marked elements in the graph.

Two algorithms are presented in this report to search for the paths in question in acyclic graphs and some
tests were performed for comparison against classical random walks ([53]).

This report is organized as follows: in section 3 we present the Markovian approach for safety assessment,
while in section 4, we present quantum walks and some techniques and notions used in the different algorithms
we refer to. Section 5 is dedicated to present the short review of quantum walks based search algorithms.
In section 6, we present our algorithms for safety assessment in the dynamic case, with some primary
benchmarks. In section 7, we give some concluding remarks and perspectives.

2A Markov chain is called an ergodic chain if it is possible to go from every state to every state not necessarily in one move
[23].

3A Markov chain is reversible if, in steady state, the backward running sequence of states is statistically indistinguishable from
the forward running sequence. More formally, for every pair of states i and j , the transition probability from state i to state
j is the same as the transition probability from state j to state i.

© NEASQC Consortium Partners. All rights reserved. Page 11 of 38



D6.18 QPSA Quantum Walks and Markov Algorithms (1.0- Submitted)

3. Markovian approach for safety assessment

A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which
the probability of each event depends only on the state attained in the previous event (memorylessness). In
other word, the future evolution of the system depends only on its current state and not on the trajectories
(set of states) it went through [51].

Formally, a discrete-time Markov chain is a sequence of random variables X1, X2, X3, . . . with the Markov
property, namely that the probability of moving to the next state depends only on the present state and not
on the previous states:

Pr(Xn+1 = x | X1 = x1, X2 = x2, . . . , Xn = xn) = Pr(Xn+1 = x | Xn = xn),
if both conditional probabilities are well defined, that is, Pr(X1 = x1, . . . , Xn = xn) > 0..
A stationary distribution of a Markov chain is a probability distribution that remains unchanged in the
Markov chain as time progresses. Typically, it is represented as a row vector π whose entries are probabilities
summing to 1, and given transition matrix P, it satisfies

π = πP

In other words, π is invariant by the matrix P.

Markov chains are used in PSA to represent different states of the system, where each node is a state and
each transition means either the failure or repair of a component in the system. No other evolution aspects
are considered in this framework, we are mainly interested by the failure and repair events.

If we consider the following system with two redundant components we have the following states: AB (A
and B are safe), AB̄ (B is failing), ĀB (A is failing) and ĀB̄ (both Aand B are failing). The Markov graph
corresponding to this small system is shown in figure 1.

AB

ĀB

AB̄

ĀB̄

Failure StatesSafe States

λA

λB

λB

λA

µA

µB

µB

µA

Figure 1: Markov graph with 2 components that can fail or be repaired.

Let’s consider a more general case for a given state i in a Markov chain. We want to represent the probabilities
for the three following cases:

• Transitioning from any state to i

• The state staying as i (i.e. i transitioning to itself)

• Transitioning from i to another state

© NEASQC Consortium Partners. All rights reserved. Page 12 of 38
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The following presentation is a summary of [47]1.

1

k

n

i j

1

n

αi,n

α1,i

αn,i

αk,idt αi,jdt

staying in i1−∑
j
αi,jdt

Figure 2: Transitions in a general case [47]: We can see the different transitions from a state to another
with a transition rate αi,j (t) such as αi,j (t)dt represents the probability of jumping from i to j within the

interval [t, t + dt].
The case in which the transition probability varies according to t is a semi-Markov process2, which generally
requires more complicated analysis. If the transition probabilities are constant in time, it is a homogeneous
Markov process. We consider the latter in this document.

If we consider a system S with n states, the probability to move to state i from every state k is the sum of
the possible transitions to state i ∑

k 6=i αk,iPk (t).dt
where Pk (t) is the probability of the system to be in state k at time t.

Similarly, the probability to leave state i is the sum of all its outgoing transitions:

(∑
k 6=i αi,k )Pi(t).dt

while the probability that S remains in state i is

(1− (∑
k 6=i αi,k ).dt)Pi(t) = 1− αi,i

Therefore, the probability for the system to be in state i at t + dt is the sum of the probability to jump to i
from another state and the probability to stay in i. This can be expressed in equation 3.1.

Pi(t + dt) = ∑
k 6=i αk,iPk (t)dt + (1−∑

i 6=k αi,kdt)Pi(t) (3.1)

Equation 3.2 gives the derivative d(Pi(t))
dt of the probability of the system to be in state i at time t.

dPi(t)
dt = −αiPi(t) +∑

k 6=i αk,jPk (t) (3.2)

where αi = ∑
k 6=i αi,k is the transition rate out of state i.

The reliability problem in PSA is to find the probability Pm of reaching the failure states which can be
considered as the set of marked nodes M in the Markov graph. In addition to these probabilities, we are

1Chapter 31, pp 475-477.
2Semi-Markov processes are generalizations of Markov processes in which the time intervals between transitions have an
arbitrary distribution rather than an exponential distribution (which is the case for Markov processes).

© NEASQC Consortium Partners. All rights reserved. Page 13 of 38
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interested by the trajectories of the Markov graph that start from some initial state and end in the marked
states.

For the probability computation, there are many classical approaches that were identified; considering the
reliability assumptions in [42, 1, 25] (a more recent and complete presentation can be found in [47]) for
solving this problem; Laplace transform, matrix inversion or numerical methods.

Two main cases are of interest regarding safety studies: if we are interested by the reliability R (t) = P(T > t)
then the graph marked states are failure states and thus are considered as absorbing (i.e. a state that has
no outgoing transitions other than to itself). If the target is availability, A(t) = P(System is up at time t),
the marked elements has transitions out.

© NEASQC Consortium Partners. All rights reserved. Page 14 of 38
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4. Quantum walks

In this section, we present some definitions and concepts that may help a casual reader to understand some
methods used in the different algorithms based on quantum walk.

Quantum walks are quantum mechanical analogs of classical random walks. With random walks, the path
of the walk is described by stochastic transitions, while in quantum walks these transitions happen in
superposition; that is, many positions of the “walker” exist in a probability amplitude. They are fundamental
to quantum algorithms, quantum computing , and quantum information processing [8, 14, 4, 5, 24].

4.1 Discrete and continuous quantum walks

Quantum walks can be classified into two main types: Continuous-time quantum walks (CTQW) [22] which
are characterized by a continuous evolution of the system and Discrete-time quantum walks (DTQW) [3] that
can be separated in a repeated application of two operations called “coin” (acting on the state) and “shift”
(acting on the position of the walker) reminding of gate operations in quantum information processing. The
behaviour of the quantum walks may then be influenced by a proper choice of the coin and shift operation.

DTQW are analogous to classical random walks, where the walker takes discrete steps at regular intervals
of time. In DTQWs, the walker is a quantum system (e.g., a qubit) that moves through a graph. At each
step, the coin is flipped, and the quantum system evolves under the influence of the coin and the graph
topology. The evolution is governed by the unitary operator, which describes the time evolution of the
quantum system.

CTQWs are analogous to classical diffusion processes, where the walker moves continuously in time. In
CTQWs, the walker is also a quantum system, but it evolves under the influence of the Hamiltonian operator,
which describes the energy of the system. The Hamiltonian is defined based on the graph topology and the
quantum coin, and it determines the rate at which the walker moves from one vertex to another.

The main difference between DTQWs and CTQWs is the nature of the evolution of the quantum system.
In DTQWs, the system evolves in discrete steps, while in CTQWs, the system evolves continuously in time.
This difference has implications for the behavior of the quantum walk, such as the speed of spreading and
the degree of localization of the walker.

4.2 Interpolated quantum walks

An interpolated quantum walk [32] is a type of quantum walk that allows for a gradual transition between
two different quantum walks. In a quantum walk, a quantum particle (such as an atom or photon) moves
through a series of locations or “nodes” that are connected by paths, and the particle’s state changes as it
interacts with the nodes and paths.

In an interpolated quantum walk, the particle’s state is gradually transformed from one quantum walk
to another over time, with the transition controlled by a parameter that varies smoothly from one value
to another. This allows for more flexible and controllable quantum walks that can be tailored to specific
applications.

Formally an interpolated walk of some initial one, is the superposition of an initial walk with an absorbing
walk with a parameter ε (between 0 and 1, close to 0“).

(Absorbing walk ).(1− ε) + (Initial walk ).ε
For instance, if we consider the walk in the graph of figure 3 (a), we can interpolate it by modifying the
transition probabilities of the outgoing transition of the node ĀB to which a loop is added (see figure 3 (b)).

Note that for PSA problems, the failure states are absorbing in the case of reliability, and that this is a
natural property of such graphs.

© NEASQC Consortium Partners. All rights reserved. Page 15 of 38
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AB

ĀB

AB̄

ĀB̄

λA

λB

λB

λA

µA

µB

µB

µA

(a)

AB

ĀB

AB̄

ĀB̄

λA

λB

λB

λA

µA

µB

µB.ε

µA.ε

1− ε

(b)

Figure 3: Interpolated quantum walk

4.3 Hitting and Mixing time

In the classical case, the Hitting Time (HT) is the average time (number of steps) that the walker needs to
reach a given position j , when it starts from a particular vertex (c stands for classical) [44]:

hc(j ) = ∞∑
m=0mp(j , m)

Where p(j , m) is the transition probability from j to m.

In the quantum case (i.e. quantum walk), the definition of the hitting time is not the same. The measurement
destroys the quantum characteristics of the walk. and, in general, the m → ∞ limits of Um |ψ0〉 and pm(x)
do not exist. Nevertheless, if we average the distribution over time, in the limit of infinite upper bound on
time it does converge to a probability distribution which can be evaluated.

In quantum mechanics, the Mixing Time (MT) and HT are measures of how long it takes for a quantum
system to reach equilibrium or to transition between different states.

The hitting time, also known as the collision time, is the time it takes for a quantum system to transition
from one state to another. Specifically, it is the time it takes for the system to reach a particular state
with a specified probability. Given a quantum system with an initial state |ψ0〉 and a target state |ψT 〉, the
hitting time TH is the minimum number of discrete time steps required for the system to evolve from |ψ0〉
to |ψT 〉, with the evolution governed by a unitary operator U that describes the dynamics of the system.
Mathematically, the hitting time TH is defined as:

TH = mint|U t |ψ0〉 = |ψT 〉
where U t represents the application of the unitary operator U for t time steps. In this document, it represents
the time to reach some marked element in a graph.

Mixing Time: Let G be a graph and |π0〉 be the initial state of a quantum walker on G. Let U be the unitary
evolution operator that governs the dynamics of the quantum walk. The mixing time of the quantum walk
on G is defined as the smallest time tmix such that

∥∥Ut (|π0〉 ⊗ |πeq〉)− |πeq〉 ⊗ |πeq〉
∥∥

tr ≤ ε,
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where πeq is the stationary distribution1 of the quantum walk, ε is a small constant, and ∥·∥tr denotes the
trace norm2. In other words, the mixing time is the smallest time at which the distribution of the quantum
walker becomes close to the stationary distribution, up to an error of ε.

Hitting Time: Let v be a vertex in G and let Pv be the projector onto the subspace spanned by the vertex v .
The hitting time of the quantum walk on G starting from vertex u is defined as the smallest time thit such
that

∥∥Ut (|π0〉 ⊗ |Pv 〉)− |Pv 〉 ⊗ |Pv 〉∥∥tr ≤ ε,

where |π0〉 is the initial state of the quantum walker on G, ε is a small constant, and ∥·∥tr denotes the trace
norm. In other words, the hitting time is the smallest time at which the probability of the quantum walker
being at vertex v is close to the desired probability, up to an error of ε.

4.4 Discriminant matrix of a Markov chain

The discriminant matrix is a key component of the Szegedy quantum walk [50]. It enhances the efficiency
of the algorithm for searching marked vertices in a graph, by reducing the number of iterations required to
locate the marked vertices.

The discriminant matrix quantifies the difference between the quantum and classical random walks by
measuring the deviation of the eigenvalues of the unitary operator from the real line. The larger the deviation,
the more effective the Szegedy walk is in locating the marked vertices. The discriminant matrix is a useful
tool in quantum walks because it allows us to analyze the behavior of the quantum walk on the graph and
to design efficient algorithms for various graph problems. There are many different formal definitions of
the discriminant matrix that seem coherent with each other (e.g. [50] for a general case, [32] or [9] for a
Markov chain). In this report we don’t necessarily use it per se, but is is used in the quantum walk based
algorithms for finding marked elements in a graph and allow symmetry when the initial transition matrix
is not symmetric. Many results that stand for ergodic reversible Markov chains can be recovered in general
non-reversible one due to the singular values of the “discriminant” matrix associated with it ([39]).

Given a Markov chain with state space S and transition matrix P, the discriminant matrix D can be defined
as:

D = (I − P)(−1) ∗ (I − PT )
where I is the identity matrix and PT is the transpose of the transition matrix P.

1Note that under certain conditions (ergodicity) a Markov Chain has a stationary distribution π with entries (πj : j ∈ S) such
that:

• πj ≥ 0,∀j and ∑
j
πj = 1

• π = πP where P is the transition matrix of the chain (πj = ∑
i
πip(i,j ),∀j )

2See [30] for a potential intuition for the trace norm. It is considered as a way of turning the rank of a matrix (which is very
discontinuous) into a norm (which is continuous). Specifically, the trace norm is the unique norm with the property that
P tr = rank (P) for every orthogonal projection P ∈ Mn(C ) (Mn being the space of n× n complex matrices).
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5. Quantum walk search algorithms

There are different types of continuous and discrete time algorithms that were used to search marked elements
in different graphs (hypercubes [46], lattices [20], [7], triangular graphs [37], Johnson graphs . . . ).

DTQW are mainly based on a coined quantum walk [2] [34] on the vertices or on Szegedy quantum walks
on the edges.

All these algorithms were developed to speed up the hitting times of reaching marked elements in specific
graphs. Indeed, given some initial distribution σ , which may be an arbitrary or a stationary distribution (in
this case noted π) and the nature of the underlying graphs where the walks occur, the algorithms aimed to
evaluate and reduce as much as possible the time to detect or find one or all the marked elements of the
graph. This time is given as a function of the following parameters of table 2:

Table 2: Computational cost elements
Costs Abbreviation Classical Quantum
Setup cost S Sampling X0 ∼ σ Create |σ〉
Update cost U Sampling y ∼ Nx map |x〉 → 1√

dx

∑
y∈Nx

|y〉

Nx being the neighbors set of x d being the degree of x

Checking cost C Checking whether an element is marked |z〉 →
{
|z〉 if z ∈ M
− |z〉 if z /∈ M

After the introduction of Szegedy quantum walk [50], where given some stationary distribution π, the
algorithm can detect if a marked element exists with a computational cost of S +√HT (U + C ) (HT being
the classical hitting time), many algorithms were proposed for the search of marked elements. In [40] [38],
Magniez et al. showed that from a stationary distribution, one can find a marked element m ∈ M in a time
S + 1√

εδU + 1√
εC where δ is the spectral gap and ε a small fraction such that

ε = P(X ∈ M|X ∼ π) = |M||V | .
In [13], A. Belovs introduced electrical networks that were successfully1 used [19] for classical random walks
to leverage quantum walks. He showed that for any initial distribution σ , one can detect if a marked element
exists in S+√RK (U+C ) (R the effective resistance2 of the corresponding graph and K the number of nodes).

• RK = HT if σ = π.

• RK = CT if σ = 〈τ〉.
In [32], Krovi et al. showed that if σ = π, one can find a marked element m ∈ M in S +√HT (U + C ) where
HT is the classical hitting time and when there are multiple marked elements (any element of M), the cost
is defined as an extended hitting time HT+ defined as follows:

HT+(P,M) := lim
s→0HT (s)

1If we consider a random walk as an electrical current flowing through the graph, where the probabilities of transitioning to
neighboring vertices are proportional to the conductance of the corresponding edges. The electrical potential at each vertex
can be determined based on the flow of current and the resistance values. This potential distribution can then be used to
analyze various properties of the random walk, such as hitting times, cover times, and mixing times.

2R can be obtained by the same rules that serve to determine an electrical circuit resistance as follows :
r1

r1
11

r1 + 1
r2

r1 r2 (r1 + r2)
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where HT (s) is the interpolated hitting time. HT (s) is defined as follows:

HT (s) := n−1∑
k=1
| 〈vk (s)|U〉 |21− λk (s)

where the λk are the eigenvalues of the discriminant matrix D = D(P) in nondecreasing order and |vk〉 their
corresponding eigenvectors, and |U〉 is the unit vector [32].

In [18], Dohotaru and Hloyer showed that if σ = π one can find a marked element m ∈ M in S+√HTU+ 1√
εC )

note the following inequalities ([10]).

S +√HT (U + 1√
ε
C ) ≤ S +√HT (U + C )

S +√HT (U + 1√
ε
C ) ≤ S + 1√

εδ
U + 1√

ε
C )

In [6], Ambainis et al. showed that if σ = π one can find a marked element m ∈ M in S + √HT (U + C )
and Apers et al. in [10] proposed another approach that have a quadratic speedup even starting with any
distribution σ and finding the marked elements (generalizing the results of Belovs and Ambainis et al.).
Indeed, for any σ , one can find m ∈ M in S +√R (τ)m(√τU + C ). The performance of these algorithms is
mainly due to the use of interpolated quantum walk (see subsection 4.2) introduced by Krovi et al. [32] and
the quantum fast-forwarding technique introduced in [11]. Theorem 1 in [11] states that for any quantum
state |v〉 and ε > 0, there exists a time t0 such that for all t ≥ t0 the quantum fast forwarding algorithm
outputs (within O(√ t

ε log( 1
ε ) steps) a quantum state (up to normalization) ε-close to Dt |v〉, with probability

Dt |v〉22, and otherwise outputs “Fail” (Where D is the discriminant matrix of the transition matrix).

In the continuous framework, Apers et al. [9] proposed CTQW to get a quadratic speedup over classical
random walks generalizing a previous result by Chakrabarti et al. [15].

All the aforementioned algorithms are dealing with the problem of finding a (any) marked element in a
graph. The PSA problem, however, requires finding not only marked elements but all paths to them. This
raises the question: can these algorithms serve as a basis for quantum path finding algorithms that provide
an advantage over their classical counterparts?

In [43], it is shown that quantum walks can be used to find a path between two marked elements. In some
specific graphs (N-Tree Mazes3) where the classical search has a cost of O(MN) (M being the deft of the
N-tree), the quantum walk can have a O(√MN). In [31] quantum walks were used to find paths between
marked elements in a tree maze. Two approaches were proposed, one based on applying on the computation
of the eigenvalues and eigenvectors of the walk operator, the other is based on measurements.

In our case we are looking for all the paths that start from some initial element to all the marked elements
except those paths with very low probabilities (the probability here is the resulting probability of the path
knowing each edge has a probability of occurrence). The main objective is to evaluate the whole cumulative
probability of reaching some undesired event (marked element).

3A maze can be represented by a tree data structure, since mazes branch off into different paths, which in turn branch off
into more paths. When you reach a dead end in a maze, you must backtrack to an earlier branching point [49]. An N-tree
maze is a type of maze that is represented by a rooted tree structure consisting of nodes connected by edges. The root node,
serves as the starting point of the maze, and each non-leaf node can have up to N child nodes (N ≥ 2). Note that there are
no cycles or loops in the maze, ensuring that there is a unique path from the root node to each leaf node. As in the example

hereafter.

A

B

E F G

C

H I J

D

K L

© NEASQC Consortium Partners. All rights reserved. Page 19 of 38



D6.18 QPSA Quantum Walks and Markov Algorithms (1.0- Submitted)

6. Dynamic Risk assessment

The probabilistic approach to risk assessment is an approach to identify and evaluate in terms of probabilities
or frequencies all the scenarios that may be triggered by some initiator. In the static case, we only look for
combinations of events that may make some undesired outcome realisable, given some initiator. Accident
scenarios are modeled using Boolean algebra (fault trees) and their quantification give an overview of the
frequency/probability of the undesired outcomes. For each outcome the probability is the sum (in the
probabilistic sense) of the combinations probabilities (cutsets contributions).

In the dynamic case, however, we are not looking for events combinations but for sequences of failure and
success events that ends in some undesired outcome. Different aspects are then considered and in the
literature, different approaches are considered as dynamic ([48, 28, 33, 17]). However, these approaches may
have different definitions of what they consider as a dynamic framework. Some of the aspects they may have
in common are consideration of events order (to better consider passive redundancy and standby systems),
the possibility to consider recoveries and time. Therefor considering Markov models as in this report can be
common to all these methods.

When dealing with dynamic models, the physical behavior of a complex system and its components is taken
into account, in particular how their reliability would evolve due to degradation of a component performance,
changes in its operation modes, accidents and other phenomena that would increase the probability of a
certain component to fail at, or after, a given time.

In these approaches, the system has different possible state configurations, expressed in terms of combinations
of failed/operating states of each single component of the system, and the transition probabilities to move
from a state to another. This method is called State Space Model which produces huge models even for
medium size real life systems.

Currently, classical algorithms that are used to solve this kind of problems suffer from a number of limitations
mainly due to computational complexity issues (the combinatorial explosion and the difficulty to explicitly
model the different states the system can go through during its evolution). Another obstacle, in the industry,
is the way these problems are formulated and solved. This requires generally familiarisation with advanced
mathematical models and a very good knowledge of the underlying assumptions and approximations that
may be made in order to get confident results [48].

This method has many characteristics that make it a good candidate quantum computing application.

• The state space can be encapsulated by the superposition of qubits.

• Many quantum algorithms or quantum classes of algorithms could be of interest to explore the state
space and have a significant speedup against classical computation.

6.1 State-space method and some algorithms

In this section we present an algorithm to deal with the state space method. The main objective here is to
consider all the sequences from some initial state to some degraded or failure state of interest. For practical
reasons, we consider only sequences with a maximum of one loop (cf. example in figure 4) assuming that
during a scenario only one recovery can be considered due to time and personnel resources.

Figure 4: A one loop sequence

Our aim here is to use a minimal number of qubits; for a system of N components, we need a quantum
register of 3N qubits and N moves.
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In the example of figure 5, we have a system of three components {x1, x2, x3} and we look for finding all the
scenarios that go from the initial state (all the components are safe) to a failing state (for instance {x̄1, x̄3}
where both x1 and x3 are failing).

We can represent a state of the system by a quantum state (for instance |abc〉, with a, b and c in {0, 1}),
with the j th qubit representing the j th component, and 0 for safe component and 1 for failing component. A
failure state of the system could be |011〉

S

x1 x2
T

x3
Figure 5: Reliability Diagram

In this case, the following graph represents the set of all transitions between all the states of the system.
The aim of the algorithm is to determine all the sequences that go from |000〉 to some failure state (let it be
|011〉), allowing only one loop. A loop here corresponds to the reparation/recovery of a component during a
sequence.

|000〉

|001〉

|010〉

|100〉

|011〉

|110〉

|101〉 |111〉

Figure 6: Graph of the states and transitions

6.1.1 Move and store

To identify all the possible sequences from an initial state1 which may be |000〉 or any other state in the graph,
we will use quantum walks with a storage strategy. Starting from the state |000〉 the idea is to collect all its
successors, which means all states that correspond to a failure of some components (i.e. |100〉 , |010〉 , |001〉).
We assume for now that Common Cause Failures (CCF) are not considered (two or more components failing
at the same time or within a short duration). Therefore, we get 3 paths, and if we consider any of these
states we can also look for its successors. The advantage quantum computing provides us here is the “parallel
way” this process is performed.

If we consider |100〉, we can move to |000〉 , |110〉 , |101〉. Now, the paths are connected to form all the sequences
following algorithm 1:

6.1.2 Quantum walk for sequences identification

In this approach, we consider using only between 2n and 3n qubits with n being the number of components
of the system. With the first n qubits, we can represent all the states of the system and the rest of the qubits
(between n and 2n) can be used to identify the paths.

1We assume initial state is a state where all the components work as expected or are waiting in a standby position without
assuming any failure.
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Algorithm 1: Paths to the failure state
Input : The number of elements to handle n, the number of iterations k and a failure state |failure〉
Output: The list of paths CH between the start state and the failure state |failure〉.
Begin:
Initialize the list of paths to the initial state CH = {{|0〉⊗n}}.
Initialize the set of safe states to the state ψ = {|0〉⊗n}
And the current state to |φ〉 = |0〉⊗n.
for k times do

for n times do
Apply a quantum walk to each |ψi〉 ∈ ψ with |ψi〉 6= |failure〉 and add the new paths to the list.

O(ψi) |φ〉 = ∑
i
αi |xi〉

Add the |xi〉 after each list ending at |ψi〉 to the list CH.
Update state |φ〉 and the state of all safe states ψ.

|φ〉 = O(ψ) |φ〉 = p∑
i
βi |φi〉

ψ = {|φi〉 , i = 0, ..., p}
ψ = {|0〉⊗n}

Remove the list of paths that do not end with the |failure〉 state of the list CH.
return CH

Consider the graph in figure 6, to represent the nodes of the graph we use 3 qubits (n = 3). Let |res〉 be
the resulting state, then we are looking to get at the end of the execution of our algorithm a superposition
of the form :

|res〉 = ∑
i
|i〉
∑
j
αij |wj〉

where the |i〉 represent path indexes and the
∑

j αij |wj〉 represent the path. The order of the states in the
path will be specified by the αij in a decreasing manner. More precisely, the first state will be the state
having the greater value αij the last one is the state with the smallest value. Recall that when dealing with
sequences the probabilities are multiplicative and the αij are decreasing since we multiply by numbers less
than or equal to one.

As an example, if we consider the graph in figure 6, we need 3 move oracles and 9 qubits. 3 to represent the
states of the system and 6 to identify the paths.

Initially we start by applying the Hadamard gates on the qubits used to identify the paths (they are used to
index the results in the n-th qubits). After that we apply the oracles of movements: the first to move from
the initial state to |001〉, |010〉 and |100〉, the second to move to |011〉, |110〉 and |101〉 and finally the third to
the state |111〉 (See Figure 7).

Figure 7: Quantum walk Circuit: The circuit consists of state preparation (gate H) and a succession of
move or transition oracles to the states corresponding to each potential transition

In the graph of figure 8, we can see in red, blue or green the transitions performed in each oracle.
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|000〉

|001〉

|010〉

|100〉

|011〉

|110〉

|101〉 |111〉

Figure 8: The graph of transitions and their corresponding oracles (cf. colors)

In general, we use between 2n and 3n qubits for a system of n components to represent all the direct sequences
that start at the initial state and end in a failure state. These qubits are used to find at the end the following
superposition:

|res〉 = ∑
i
|i〉 (∑

j
αij |wij〉)

where we use n qubits for the states of the system |wij〉 and between n and 2n qubits for the paths identifiers
|i〉.

To read the paths we take for example the path P0 = ∑
j α0j |w0j〉 identified by |i〉 = |000000〉. The order of

the states |w0j〉 is specified in the path by the probabilities α0j . The path P0 for the graph 6 is:

P0 = α00 |000〉+ α01 |100〉+ α02 |110〉+ α03 |111〉
If α00 > α01 > α02 > α03 we present the path P0 in figure 9:

|000〉

|001〉

|010〉

|100〉

|011〉

|110〉

|101〉 |111〉

Figure 9: The path P0 if α00 > α01 > α02 > α03
This approach is quite demanding in terms of qubits and should be difficult to implement for real life instances
in current hardware. In the next section, we present another hybrid approach [53] to find paths in an acyclic
graph.

6.2 Quantum approach to find paths in an acyclic directed graph

Let G = (V,E,C) be a graph of n vertices V = {v1, . . . , vn} connected by edges defined in the set E, where
each ei,j ∈ E represents the connection from the vertices vi to vj and has a weight Pi,j . C is the set of marked
vertices on the graph. A path λ in the graph is a succession of steps in the graph that reach a marked vertex
c ∈ C, where the probability of λ is calculated as follows:

P(λ) = ∏
ei,j∈λ

Pi,j
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The objective of this subsection is to find all paths λ from a given vertex to certain marked vertices using
quantum walks. For that, in order to create the space in which these quantum walks pass, we represent
the vertices of the graph by qubits, and we build with the help of these qubits a superposition containing
all paths λ from the source of the graph v0 to all marked vertices c ∈ C. In order to apply quantum walks
and to store the steps of the walks, we propose our approach based on a path saving strategy using for each
vertex of the graph a qubit and each state of these qubits is a path in the graph.

6.2.1 How can we encode paths with quantum states?

In section 5, the algorithms presented can walk through the graph to detect or finf marked elements, but it
is not clear whether these walks can be done all over the complete set of paths. Indeed finding a marked
element using a quantum walk can be done following only one path. Moreover, even if many paths were
followed we have no clue about storing the steps of the paths that lead to a marked element. We propose a
strategy to encode paths in order to extract them at the end of all steps. In what remains in this document,
the path is encoded with a quantum state as follows:
Suppose that we have a state |λ〉 = |v0v1 . . . vn〉 which represents the path λ.

• we say that the vertex vi is in the path λ if and only if the qubit vi of the state |λ〉 is in state |1〉.
• we say that the edge ei,j = (vi, vj ) is in the path λ if and only if the two qubits vi and vj are in states |1〉

and |1〉 respectively and the qubits vk for i < k < j are all in states |0〉.
With this encoding of vertices using qubits, we can keep the history of each path.

Take the example of figure 10, in this example we represent 3 different paths, each path is represented by a
color and the quantum state that represent it is also represented with the same color.

Figure 10: A graph representing the failure paths of a small system without crediting any restoration

The two principal differences between our approach and that of quantum walks represented in the section 5
are:

• with our approach we can find the order of the vertices in paths and with the approach present in 5
we can’t;

• the second difference is in the number of used qubits, with our approach for a graph with N vertices
we use N qubits versus with the approach present in section 5 only log2N qubits are needed. Note that
we can possibly have output of 2ˆN states, and beyond N = 40 it is difficult to store classically and
measure. This why we thought of making a hybrid version, i.e. processing the circuit part by part and
then processing the results classically (and of course this represents a cost for processing large graphs).

6.2.2 How can we manage loops in the graph?

The configuration that we propose to encode paths doesn’t allow us to handle the loops in graphs, which
can cause some problems if we have graphs with loops. The solution that we can use, is to remove these
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loops and change the structure of the graph to keep the possibility of having a single loop configured with
more vertices. In the PSA field, assuming that an element can be repaired only once in a scenario. So, to
remove these loops and improve the structure of the graph, we propose this small transformation: Consider
a graph G = (V,E,C), if (vi, vj ) ∈ E and (vj , vi) ∈ E (there is a loop between vi and vj).

1. We remove the edge (vj , vi) from the set E;

2. we add a new vertex v∗i in the set of the vertices V ;

3. we add the edge (vj , v∗i ) in E and also we add the edges (v∗i , vl),∀vl ∈ Succ(vi) \ vj . Where Succ(vi) is the
set of successors of vi.

With the removal of the edge (vj , vi) from the set E , we have ensured the removal of the loop, and adding
the vertex v∗i and the edges (vj , v∗i ) and (v∗i , vl),∀vl ∈ Succ(vi) \ vj makes it possible to keep the loop only one
time on paths of the graph, where the loop vi −→ vj −→ vi can be represented in the new graph structure
by vi −→ vj −→ v∗i .

(a) (b)

Figure 11: Example of the deletion of a loop

In the figure 11, in order to remove the loop between vi and vj we add the vertex v∗i and the edges (vj , v∗i )(v∗i , vj+1)
and (v∗i , vj−1).
6.2.3 How we can use weights of the graph?

The question that remains now is how we can apply quantum walks in a weighted graph and with our
configuration? To answer this question, we begin by defining exactly the challenge that we are addressing.
Let us suppose that we have done t steps (we have already done t walks on the graph), and that we want to
go to the step t + 1, so we have a number of paths, we suppose k paths, λi, i = 0, . . . , k . The goal is then to
go forward in the paths at the time t, so we have to go forward to the successors of each path ending (the
last vertex of the path). Take the example of the figure 12 where we show an example of a path at time t.

Figure 12: Example of processing a path at time t

Suppose that this path is represented by the state |λ〉 = |v0 . . . vt〉 ⊗ |vt+1vt+2vt+3〉 ⊗ |vt+k+1 . . . vn〉. At time t
we have already successfully built the path to vt and we have nothing after vt . Therefore the quantum state
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that represents the path at time t is |λ〉 = |v0 . . . vt〉⊗ |000〉⊗ |0 . . . 0〉. the vertex vt has three successors, so if
we walk through the three successors we get 3 different paths, where each path contains in addition one of
the 3 successors. So, from the state |λ〉 we will extract 3 different states, where each state has a probability
βi. Formally, we are looking for an oracle O that allows us to perform the following transformations:

|λ′〉 = O |λ〉

= β1
β1 + β2 + β3 |λ1〉+ β2

β1 + β2 + β3 |λ2〉
+ β3
β1 + β2 + β3 |λ3〉

with the three qubits |vt+1〉,|vt+2〉 and |vt+3〉 are in the state |1〉 respectively in the states |λ1〉,|λ2〉 and |λ3〉 as
follows:

|λ1〉 = |v0 . . . vt〉 ⊗ |100〉 ⊗ |0 . . . 0〉
|λ2〉 = |v0 . . . vt〉 ⊗ |010〉 ⊗ |0 . . . 0〉
|λ3〉 = |v0 . . . vt〉 ⊗ |001〉 ⊗ |0 . . . 0〉

In quantum walks, we use the Hadamard gate to advance through the graph, the problem with using this
gate is that we can’t specify the probability for each step of progress and also we can’t deal with the case
where vertices have 3 or more successors.
Then, to specify the probabilities and also to handle the case of more than two successors for each vertex of
the graph, we define the general quantum gate U(θ, φ, λ). This gate is represented by the following matrix:

U(θ, φ, λ) = ( cos (θ/2) −eiλ sin (θ/2)
eiφ sin (θ/2) ei(φ+λ) cos (θ/2))

with the three parameters θ, φ and λ, we can make any rotation of |ψ〉 with respect to x, y and z axis. If we
set phi to 0 and lambda to 0 we find the matrix:

U(θ) = U(θ, 0, 0) = (cos (θ/2) − sin (θ/2)sin (θ/2) cos (θ/2) )
With this matrix, if we are in the state |0〉, we can exactly specify the probability of shifting to the state |1〉
with the θ rotation angle as follows:

U(θ) |0〉 = (cos (θ/2) − sin (θ/2)sin (θ/2) cos (θ/2) )(10) = (cos (θ/2)sin (θ/2))
We use the U(θ) gate and we apply the following sub-circuit 13 to find the state |λ′〉. In this circuit, we take
the qubit |vt〉 as a control to apply the walk to all the paths that have reached the vertex vt , the first gate
U(β1) applies the walk to the vertex vt+1 according to the weight β1 of the edge between vt and vt+1. After
that, we apply the gate X on the qubits vt+1 and we use it also as a control to apply the walk to the second
successor vt+2 and similarly for the third successor vt+3. At the end we apply the two X gates on the two
qubits vt+1 and vt+2 to come back to the state after the walk.

6.2.4 Quantum Oracle for quantum walks

In the general case, suppose that we have k vertices {vt , . . . vt+k} and each vi, i ∈ {t, . . . , k} has the successors
v si , s ∈ N and each edge e = (vi, v si ) has a probability β(vi ,v si ), the oracle is defined as follows (Figure 14):

This quantum oracle takes as input a number k of inputs, and it allows to apply the walks to all the successors
of each input while keeping the memory of each path.

6.2.5 Quantum algorithm to obtain all paths in an acyclic directed graph

We use the general purpose oracle in figure 14 to introduce the algorithm 2 that allows us to find all the
paths between a source and all the marked vertices in an acyclic directed graph.
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Figure 13: Sub-circuit to generate the state |λ′〉

Figure 14: The architecture of our oracle

The algorithm 2 takes as input the graph G = (V,E,C), and the source v0, with V is the set of vertices, E
the set of edges, and C the set of marked vertices in the graph. We start by initializing n qubits to the state
|0〉⊗n, where n = |V | is the number of vertices. We activate qubit q0, and we initialize the list M by the
source v0.
After this initialization step, we start to apply the quantum walks with our configuration and the oracle
that we have presented previously. In each iteration, we go to the successors of each element of M to add a
step in each path to all successors, in this step for each path λi and vt the end of the path λi at time t, we
will add k (k is the number of successors of vt) similar paths up to step t, and in each path among these k
paths we will add a successor.

With the quantum oracle, just calling the gate that allows the target qubits to rotate by a specified angle
around the base axes allows us to create and add these steps. After that we remove all the elements of M
and we add the new vertices of the instant t + 1 if they are not part of the set of the marked vertices C. We
repeat these three iterations as long as the set M is different to the empty set.
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Algorithm 2: Quantum algorithm to obtain all paths in a DAG (QAPAG)
Input : Graph G = (V,E,C), source v0.
Initialization
Initialize n = |V | qubits in the state |0〉⊗n.
Apply the gate X into the qubit |v0〉.
Initialize the set of steps to be handled M with the initial state M = {v0}
while M 6= ∅ do

Apply the oracle O(M, {Succ(vt ),∀vt ∈ M}).
Empty M, M = {}.
For each vi ∈ Succ(vt ) add vi to M if Succ(vi) 6= ∅ and vi /∈ C .

Measure the circuit and extract the set of paths Ps.
Return: Ps

At the end we measure the circuit to find the superposition that contains all the states that represents the
paths. For each state of this superposition, we extract the corresponding path.
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Figure 15: (a) Quantum walks, (b) Random walks

We take for example the graph (b) of figure 15, with the circuit of figure 16 we can apply all the possible
steps on the graph to attract the marked vertices. In the graph we show with the colors of each oracle the
step that applies.

Each oracle Mi represents a specific case of the general circuit that we have shown in figure 14. In the circuit
of figure 16, we see that the oracle M1 takes only the source S and allows to go to the two qubits v1 and v2
in order to apply the rotation that we have shown with the gate U(θ). The second oracle takes as inputs the
two output qubits of the first oracle and the third takes the outputs of the second oracle and so on, until
the end. By measuring the circuit we find the superposition that includes all the paths between the source
S and all the red vertices of the graph.

6.2.6 Complexity analysis

For the memory complexity, for the graph G = (V,E,C), we use N = |V | qubits (for each vertex we use
a single qubit). For the computational complexity, we use at most m Multi − control − U(β) gates where
m = |E | is the number of edges. These gates are used to build oracles, which are a combination of gates
with a single control qubit and Ms control qubits, where Ms is the maximum number of successors of the
vertices of the graph. In addition to that we use at most 2m X gates.

© NEASQC Consortium Partners. All rights reserved. Page 28 of 38



D6.18 QPSA Quantum Walks and Markov Algorithms (1.0- Submitted)

Figure 16: The general circuit to find the warping path between two sequences

6.2.7 Hybrid approach to find paths in an acyclic directed graph

The biggest limitation of the above approach is that it requires a lot of qubits compared to a standard
quantum walk, as in our approach we use |V | qubits to represent each path. The approach that we have
presented in the section 5. The approach presented in section 4 requires only log2n qubits, while ours requires
N qubits. In addition to that, the number of qubits currently available in quantum computers or quantum
simulators is very small (around 130 or 340 in the best projections for a universal machine ). With this,
a hybrid approach that can explore even a small number of qubits becomes necessary. The hybridization
process means that we should find an approach that allows us to use our algorithm in a way that benefits from
the advantage of quantum computers according to the number of qubits available today for large problems.
To do this, we need to divide the large circuit generated by the algorithm 2 into several smaller circuits and
process them separately, then combine the results at the end. The questions now are:

• How can we cut these circuits?

• And how can we aggregate their results?

To answer these two questions, we propose our approach in this section.

Let’s suppose that we have a weighted graph G = (V,E,C), and the number of vertices N = |V | is very
large compared to the number of qubits Nq available in the quantum computer that we are using (N >> Nq).
Then finding the results with algorithm 2 only becomes impossible.

We start by defining a filter for the search, we define Pmin as the minimal probability for the paths, i.e. we
search for all the paths that have a probability (calculated with the formula 6.2) greater than Pmin. Of course
here, if we want to search all the paths without taking into account the probability Pmin, we search with
Pmin = 0.
Now we start processing the graph G, beginning with the source of the graph s. Assuming we have Nq qubits
available in the quantum computer, we extract a subgraph of Nq vertices from the source s. This extraction
is done as follows: we take the Nq vertices which are the closest successors to the source s. We start by
adding the source and the direct successors of s to the set of vertices, then for each successor we do the same
thing as long as we have the number of selected vertices less than Nq. The algorithm 3 allows us to do this
extraction.
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Algorithm 3: Extraction of a sub-graph
Input : Graph G = (V,E,C), n = |V |, Nq, source s
Initialisation
Initialize a new graph G′ = (V′ = ∅,E′ = ∅,C′ = ∅)
Initialize a list Todo = [S ]
while |V′ | < Nq and |Todo| > 0 do

Take an element v from the list Todo.
if |Succ(v )|+ |V′ | < Nq then

for all element vi in Succ(v ) do
Add vi to V′
Add (v, vi) to E′ if vi ∈ C then

Add vi to C′
Add vi to the Todo list if it doesn’t already exist

Delete v from Todo list
Return: G′ = (V′,E′,C′)
Then we use the algorithm 2 of the previous approach to find all the paths of this sub-graph. From the
results obtained after this first step, we eliminate the paths that have a probability lower than Pmin, and we
add to the result list the paths that have a probability higher than Pmin and that arrived at a marked vertex
ci ∈ C. For the rest of the paths, i.e., the paths that have a probability higher than Pmin and they haven’t
yet arrived to a marked vertex (the current paths), we take the end of each path among these current paths
and we extract a sub-graph from each item of these vertices, and we use the algorithm 2 with the first oracle
take all these output vertices as inputs.

Algorithm 4: Hybrid Quantum algorithm to obtain all paths in an acyclic graph (HQAPAG)
Input : A weighted acyclic graph G = (V,E,C), source vt , number of qubit available in the quantum

computer Nq, and the minimal probability of the paths Pmin.
Initialisation
Initialize the set of walks to be processed M with the source M = {vt}
Initializes the set of paths that arrived at a given vertex marked at Pg = ∅ and the current paths at Pt = ∅.
while M 6= ∅ do

vt is the first item of M
Extract a sub-graph Gi of G from vt such that the number of vertices of Gi is less than Nq.
Extract the paths pathsi from Gi using the algorithm 2
Calculate the exact probability of each path
Remove the item vt from the list M
Update the two path sets Pg,Pt and the set M with the new list of found paths pathsi according to Pmin.

Return: Pg

Of course if the number of qubits allows to do these tasks at the same time, if not, we can process all the
outputs in a separate way. And we do this again until all the paths arrive to the marked vertices or the end
of the graph. This whole process is summarized in the algorithm 4.

In the algorithm 4, we proposed to use for each iteration a single source since the number of qubits today
in quantum computers is very small. If the number of qubits is a little bit larger, we can simply process all
the elements of the list M at the same time in each step. In order to make it more clear, we show the circuit
in the general case of a large graph in the figure 17.

Each box marked in blue in the circuit 17 is an iteration of our algorithm 4, where each box takes no more
than Nq qubits as input, in the circuit |ψ〉 is the superposition found after the first step and |ψf〉 is the
superposition of the execution at the last step. The results are extracted in the classical way after each part
of the circuit, then we take each output as input to the next circuit, this is a better way because we don’t
need to initialize the superposition and then avoid its computational cost, but we have to call the small
circuit which comes several times and this takes time but of course gives good results while waiting for large
quantum computers.
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Figure 17: Subdivision of the big circuit for a big graph

With this hybrid approach, we can handle large graphs with our algorithm 2. That means that we can get
all paths from the source (or any vertex) of the graph to the marked vertices in an acyclic weighted graph.
The weights here play the role in the probability of each state in the superposition at the end, where we find
the order of importance of each path. The exact probability of each path with our approach is calculated in
a classical way along the running of our hybrid algorithm 4.

6.3 Results and tests

In this subsection, we start by comparing our proposed approach in 3 with the classical Random walk
algorithm. To do, we set the maximum running time to 20s, and the minimal probability of sequences to
Pmin = 10−8. We have randomly generated 6 graphs of different size and we have chosen the marked vertices
in these graphs in a random way, after that we have applied our algorithm and the classical algorithm to
find the paths to these marked vertices and we have represented the results in the table 6.3.

Graph 1 2 3 4 5 6
Number of vertices 50 60 70 80 100 120
Number of edges 235 285 335 385 485 585
Number of Paths found by RW 2060 5182 6682 7726 8762 9405
Number of Paths foundby our approach 2463 17134 50989 317324 389869 1475909

In Table 6.3, we can see that in all 6 cases, our approach finds more paths than the classical approach. Also,
when we increase the size of the graph, we find a very large number of additional paths compared to the
random walk approach.

To find these results we have used the IBM quantum simulator with 32 qubits, then, we have used our
algorithm 4 with the setting Nq = 30. In order to compare the time spent for each approach, we present the
comparative results in the figure 18.

The results presented here are based on tests over an IBM Qiskit library [21], both tests (classical and
quantum simulation) are made on the same computer. In figure 18, we can see that the classical time
reaches the maximum time given for each approach (20s), and that nevertheless it doesn’t succeed to find
the number of paths found by our approach, as we have already shown in the table 6.3. For our approach
we can see that the time spent to run the quantum circuits is very small compared to the classical time,
which shows that even if we use a simulator with a very small number of qubits (32 qubits). We remark
in our hybrid approach’s results that the classical processing time increases drastically with the graph size,
as classical processing is necessary to join the paths found in each partition of the graph. However, it still
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Figure 18: The running time spent for each approach

beats the random walk by a large margin, both in terms of the number of paths found and computation
time. This classical time spent in our approach will decrease with the increase of the number of qubits in
the simulator that we use. In order to compare the functionality of our approach, we show the results of the
number of paths found according to time in the figure 19.

In the figure 19, for all 6 graphs, we can see that the search for paths starts with a small advance from the
classical random walk, then our approach goes up very quickly and remains stable, contrary to the classical
approach which goes up very slowly all the time.

The classical approach has advances in the first iteration because it searches the paths one by one and our
approach propagates the graph in a parallel way, to search all the paths at the same time, which requires
some time to reach the marked vertices. But when our approach arrives, it arrives with a large number of
paths, which implies the increase of the number of paths in this manner. In the case of our approach the
results after some time remain unchanged, which means that our approach converges towards all the possible
paths to these marked vertices.
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(a) Graph 1 (b) Graph 2

(c) Graph 3 (d) Graph 4

(e) Graph 5 (f) Graph 6

Figure 19: Number of paths found according to time
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7. Conclusion

In this work, we presented a brief overview of the state of the art of quantum walk algorithms applied to
find marked elements in graphs. The main objective is to understand these techniques and then explore how
they can be applied to PSA problems in the dynamic Markovian framework.

While in the quantum walks algorithms there is an interest in detecting and finding marked elements in
a graph, we proposed two algorithms to address the more general problem of finding sequences to marked
elements. The first algorithm is based on move and store strategy to built failure sequences from an initial
state to the marked states. It uses a full register assembling qubits representing components of the system
under study and other control and working qubits (between n and 2n) to help identify all the sequences.

This approach showed a demanding number of qubits which is not compatible with a realistic implementation
on current hardware for industrial systems of relevant size. Therefore another approach was proposed to
consider a hybrid approach to consider different cascading circuits for solving relatively large instances.

We presented some tests that were performed to compare our algorithms against classical random walks.
These tests showed that classical approach has advances in the first iteration but our approach scales better
in the sense that it identifies a large number of paths and converges towards all the possible paths to these
marked vertices.

These algorithms however were tested only on a Simulator Qiskit library [21], and need to be tested on a
real hardware to see in particular how the hybrid approach of section 6.2.7 behaves in a real hardware.
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