NExt ApplicationS of Quantum Computing

<Nt|As|UL>

D6.11: Preliminary QRBS software and
IDC application specification

Document Properties

Contract Number 951821

Contractual Deadline June-2023

Dissemination Level Public

Nature Report

Editors Vicente Moret-Bonillo, UDC

Andrés Gémez Tato, Cesga

Authors Vicente Moret-Bonillo, UDC
Samuel Magaz-Romero, UDC
Eduardo Mosqueira-Rey, UDC
Diego Alvarez-Estévez, UDC

Reviewers Mohamed Hibti, EDF
Alfons Laarman, ULEI
Date 15-jun-2023
Keywords software implementation, IDC application, QRBS
Status Under Review
Release 1.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

History of Changes

Release

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) < N E | AS | DE >

N

Date

26/05/2023

Author, Organisation

Description of Changes

Samuel Magaz-Romero, UDC
Eduardo Mosqueira-Rey, UDC
Diego Alvarez-Estevez, UDC

1.0 Vicente Moret-Bonillo, UDC First version.
Samuel Magaz-Romero, UDC
Eduardo Mosqueira-Rey, UDC
Diego Alvarez-Estevez, UDC

1.1 15/06/2023 Vicente Moret-Bonillo, UDC First revision.

© NEASQC Consortium Partners. All rights reserved.

Page 2 of 28

b . - D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

NS

Table of Contents

1. Executive Summary 4
2. Context 5
2.1, Project o e e e e e e e 5
2.2, Workpackage L e e e e 5

3. Preliminary QRBS Software 6
3.1, Introduction e e e e 6
32, Code Example o e e e e 6
321, QRBS Creation e e e 6

3.22. QRBSEvaluation 7

3.23. QRBSExecution 8

3.3. Code Documentationo vttt e e e e e e e e e 8

4. IDC Application Specification 9
4.1. Introduction e 9
4.1.1. Categorical reasoninginmedicine 9

4.1.2. Description of the clinical problem Lo oL 9

4.2. Amodel for the staging of IDC L 10
4.3. Quantum system design for breast IDC staging 11

5. Testing 14
5.1. Traceability withuse cases e 14
5.2. Testing methodology andtools 15
5.2.1. Testingapproach e 15

5.2.2. Measuring test COVEIagZe« c v v v v v e e e e e e e e e e e e e e 15

5.23. Testing tools e e e e e e e e 15

5.3. Testexample L 16

6. Conclusions 18
List of Acronyms 19
List of Figures 20
List of Tables 21
Bibliography 22
A. QRBS software documentation 23
A.l. neasqc_gqrbs.knowledgerepmodule L 23
A.2. neasqc_grbs.qgrbsmodule 26

© NEASQC Consortium Partners. All rights reserved. Page 3 of 28

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

NS

1. Executive Summary

This report is the fourth deliverable of Task 6.2 — Quantum Rule-Based Systems (QRBS) for breast cancer detection
of the NEASQC project. The document presents the work carried out so far, and is complementary to the other
deliverables of this task.

D6.11 (M32) will include a preliminary version of the RBS and QRBS software along with the specification of the
IDC application that will be developed.

The report begins with an introduction of the preliminary version of the QRBS software, presenting how the project
is structured, providing some use examples of common operations users will make with the library, and a brief com-
mentary on the library’s documentation which is presented in an appendix.

Following that, we present the specification for the Invasive Ductal Carcinoma (IDC) application, based on previous
work on quantum computing techniques and applying them to the clinical problem specifically.

We continue by extending the work on previous deliverables regarding traceability and testing of the QRBS software,
which is a critical part on making sure that the developed library provides valid and verified functionalities.

To close the report, the conclusions obtained during the development of the work carried out are presented and some
ideas for future work to be included in upcoming deliverables are shown.

© NEASQC Consortium Partners. All rights reserved. Page 4 of 28

b . - D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

NS

2. Context

Some of the concepts referenced in this document have been explained in deliverables D6.2, D6.5 and D6.9. We
encourage to read them for contextual information.

2.1. Project

In the context of this project, this document provides insight into two different objectives: the preliminary version
of the Quantum Rule-Based Systems software library and the initial specification for the Invasive Ductal Carcinoma
application.

On the one hand, following the work of previous deliverables, the development of the QRBS software library has been
continued by implementing a preliminary version, while still following the Unified Process of software development
(Kruchten, 2004). This preliminary version plays several roles: (1) the implementation of the software library goes
one step further in the software development life cycle, (2) gives insight into how adequate the previous steps were,
depending on how they ease the process of coding, and (3) provides enough functionalities to model any desired QRBS
and run it on a basic myQLM simulator, so it is already a working version.

On the other hand, we provide the IDC application specification, following the current manuals of medicine for cancer
staging (Amin et al., 2017). This work was introduced as an appendix in the previous deliverable, and now we delve
into how the model presented then can be implemented in a quantum routine.

2.2. Work package

In the context of the Work Package 6 — “Symbolic Al and graph algorithmics”, this document illustrates one of the
steps (the software implementation) that must be followed in order to develop the framework of Quantum Rule-Based
Systems, and the initial specification for the IDC application.

In our previous deliverable, “D6.9 QRBS software speficications” (Moret-Bonillo, Gomez Tato, et al., 2022), we
established the specifications that the software library for Quantum Rule-Based Systems must comply. These speci-
fications allow for the work of the analysis and design stages to be tied with the software programming process, by
providing the different attributes that each class must provide, as well as their methods and how they must behave.

Regarding the IDC application, we provide its specification, providing the first step on the use case of breast cancer
diagnosing. This first phase involves researching how IDC is classified, also known as staging, in order to build a
model (which we did in our previous deliverable) so we can implement it using the QRBS software library. However,
this is a complicated process, so we delve on categorical reasoning and the clinical problem specifically, making a
great effort on “entangling” symbolic Al and Quantum Computing.

Future deliverables are complementary to this one, since they delve into the following versions of the QRBS software
and the continuation of the developement of the IDC application.

© NEASQC Consortium Partners. All rights reserved. Page 5 of 28

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E A S DE

NS

3. Preliminary QRBS Software

In this chapter, we continue the work carried out in the previous deliverables regarding the developement of the
QRBS software library, this time presenting the preliminary version of the software. For that, we (1) introduce the
software library, its structure and repository, (2) present a use example with code snippets, and (3) give a glimpse of
its documentation so far.

3.1. Introduction

Following the objectives established at the beggining of this project, we are developing a Python programming library
to design and use Quantum Rule-Based Systems. This library is currently hosted in https://github.com/neasqc/qrbs.

Among the contents of this repository, we can find:
* neasqc_qrbs: the directory with the source code of the library

— knowledge_rep.py: the source code for all the classes regarding the elements for knowledge representation
(facts, operators, rule, knowledge islands, etc.)

— qrbs.py: the source code for all the classes regarding the management of QRBS and QPUs (creation,
evaluation, exeuction, etc.)

* tests: the directory with the source code of the tests for the library
— test_knowledge _rep.py: the tests for the knowledge representation elements
— test_qrbs.py: the tests for the QRBS and QPUs

¢ doc: the directory with the Sphinx files to build the documentation (the content itself is coded with PyDoc inside
their corresponding classes).

Regarding the repository organization, we are following a worflow similar to Gitflow:
* Branches:
— main: for releases of final versions.
— develop: to integrate the different features before making a release.

— feature/[FEATURE_NAME]: one per each feature being developed (these are deleted once the feature is
finished).

» Tags: we tag each version release.

With the publishing of this deliverable, we are making available version 0.1.0 of the library. This version is not
complete (it is a preliminary version), but provides the functionalities to create a QRBS (defining its elements) and
both evaluate it and execute it in myQLM’s PyLinAlg simulator. We have the objective of releasing version 1.0.0 at
the end of the project.

3.2. Code Example

In this section we provide an example of how a user would use the library to create a QRBS, evaluate it against a
QPU and execute it to obtain the results. Since the objective is to demonstrate the use of the library rather, we are
using a QRBS with a single knowledge island, which is derived from the inferential circuit illustrated in Figure 1. The
values of the facts will all be set to 1.0 (since they are abstract facts their value is not relevant), and imprecision and
uncertainty are initialized randomly.

3.2.1. QRBS Creation

Firstly, we initialize a new QRBS object, and assert in it the different knowledge representation elements (facts, rules
and knowledge islands). We need to store them in variables so we can use them later to define the higher elements of
the hierarchy, as well as to check their values after we run the system. Listing 3.1 illustrates how this would be done.

© NEASQC Consortium Partners. All rights reserved. Page 6 of 28

https://github.com/neasqc/qrbs

b . - D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

NS

A
X
B
Y
C
H
D
E

Figure 1: Example inferential circuit

Listing 3.1: QRBS creation code

Create QRBS
system = QRBS()

Assert precedent facts

a = system.assert_fact(’a’, 1.0, 0.8)

b = system.assert_fact(’b’, 1.0, 0.3)

c = system.assert_fact(’c’, 1.0, 0.5)

d = system.assert_fact(’d’, 1.0, 0.7)

e = system.assert_fact(’e’, 1.0, 0.4)

Assert consequent facts (their imprecision comes from executing the system)
X = system.assert_fact(’x’, 1.0)

y = system.assert_fact(C'y’, 1.0)

h = system.assert_fact(’h’, 1.0)

Assert rules

rule_1 = system.assert_rule(AndOperator(a, b), x, 0.6)

rule_2 = system.assert_rule(OrOperator(x, c), y, 0.2)

rule_3 = system.assert_rule(AndOperator(y, OrOperator(d, e)), h, 0.9)

Assert island
island = system.assert_island([rule_1, rule_2, rule_3])

3.2.2. QRBS Evaluation

The next step is to evaluate the created QRBS against a specific QPU in order to check its fitting (whether a QRBS
can be executed in a specific QPU). This process is carried on inside the execution too, but we provide it individually
as it can be useful in several scenarios (for example, a user creates a QRBS dynamically and wants to check whether
the system fits a specific QPU at any point). This evaluation can be by default (evaluate every knowledge island) or
specify which knowledge islands to evaluate. Listing 3.2 continues the code example.

Listing 3.2: ORBS evaluation code

try:
MyQlmQPU.evaluate(system)
except ValueError, err:
print(’System evaluation failed: ’, err)

© NEASQC Consortium Partners. All rights reserved. Page 7 of 28

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

NS

3.2.3. QRBS Execution

Finally, the QRBS is executed in a specific QPU. This execution can be by default (execute every knowledge island)
or specify which knowledge islands to execute. The same strategy will be followed for the evaluation carried on
within the execution process. Once the execution is complete, the imprecision values of the consequents’ facts can be
checked by simply accessing it like a usual attribute of an object. Listing 3.3 shows the reading of the imprecision of
hypothesis H of the knowledge island.

Listing 3.3: QRBS execution code

try:

MyQlmQPU. execute (system)

print(h.imprecision) # Outputs the corresponding value, between 0O and 1
except ValueError, err:

print(’System evaluation failed: ’, err)

3.3. Code Documentation

We provide source documentation for the library, which is available at https://neasqc.github.io/qrbs/neasqc_qrbs.html.

This documentation is autogenerated from PyDoc strings from the source files of the library (available at https://github.
com/neasqc/qrbs), and it is updated every time a new version is made available in the main branch.

So far, it illustrates the software specifics of classes, attributes, methods and exceptions, but we intend to complete it
in future versions with more details on how it works, as well as commented examples regarding its use, such as the
one illustrated in this deliverable.

Appendix A presents the software library documentation up to this point.

© NEASQC Consortium Partners. All rights reserved. Page 8 of 28

https://neasqc.github.io/qrbs/neasqc_qrbs.html
https://github.com/neasqc/qrbs
https://github.com/neasqc/qrbs

b . - D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

NS

4. IDC Application Specification

In this section we present the application of quantum computing techniques for the staging of Invasive Ductal Carci-
noma (IDC) of the breast. It includes: (1) a brief explanation of a classical, and well-established, approach for medical
reasoning, (2) a description of the clinical problem, (3) a conceptual model for staging invasive ductal carcinoma, and
(4) a step-by-step explanation of the proposed approach for quantum staging of the invasive ductal carcinoma. This
work has been published as a preprint in (Moret-Bonillo et al., 2023) and it is currently under review for its publication
in a scientific journal.

4.1. Introduction

4.1.1. Categorical reasoning in medicine

One of the very first papers about artificial intelligence reasoning in medicine was the one published by Ledley and
Lusted in 1959 titled “Reasoning Foundations of Medical Diagnosis” (Ledley & Lusted, 1959). There, the authors
explore the challenges of medical diagnosis and propose the use of computers to simplify the process. However, during
that time, computer capabilities were limited, which restricted the size of the problems they could handle.

Ledley and Lusted identify three key factors in diagnostic tasks: medical knowledge, observed symptoms, and pos-
sible diagnoses consistent with the symptoms and physician’s knowledge. They approached the problem from the
perspective of differential diagnosis, aiming to eliminate incompatible associations between symptoms and diagnoses
based on the knowledge domain. They create an Expanded Logic Base (ELB) by taking the Cartesian product of
associations between symptoms and diagnoses. The ELB contains all possible combinations, but some are eliminated
based on medical knowledge to obtain a Reduced Logic Base (RLB). The RLB only includes associations that are
compatible with the available knowledge.

Although their procedure was categorical, with no imprecision or uncertainty considered, uncertainty appears sponta-
neously and naturally because it is inherent in human reasoning due to several factors: the nature of heuristic knowl-
edge, inaccuracies, lack of knowledge, and subjectivity in information interpretation.

4.1.2. Description of the clinical problem

A more complete description of the clinical problem can be found in deliverable “D6.2: QRBS models, architecture
and formal specification” (Moret-Bonillo, Mosqueira-Rey, Magaz-Romero, & Go6mez-Tato, 2021), but we include
here a brief summary as a reminder.

Invasive Ductal Carcinoma, sometimes referred to as infiltrating ductal carcinoma, is the most common type of breast
cancer. About 80% of all cases of breast cancer are invasive ductal carcinomas.

Staging is the process used to estimate the extent of invasive ductal carcinoma spread from its original location. The
stage of invasive ductal carcinoma is described on a scale from stage I (the earliest stage) to stage IV (the most
advanced stage) (Amin et al., 2017).

Stage I describes invasive breast cancer (cancer cells take in or invade the normal breast tissue around them). Stage I is
divided into subcategories, known as I-A and I-B. Stage I-A describes invasive breast cancer in which the tumour is up
to 2 cm and no lymph nodes are affected. Stage I-B describes invasive breast cancer in which: (1) there is no tumour
in the breast, (2) small groups of cancer cells greater than 0.2 mm but less than 2 mm are observed in the lymph nodes,
or (3) there is a breast tumour smaller than 2 cm and small groups of cancer cells larger than 0.2 mm but smaller than
2 mm in the lymph nodes.

Stage II is divided into subcategories II-A and II-B. Stage II-A describes invasive breast cancer in which: (1) there is
no tumour in the breast, but cancer cells are found in 1-3 axillary lymph nodes under the arm or in lymph nodes near
the breastbone, or (3) the tumour is 2 cm or smaller and has spread to the axillary lymph nodes, or (4) the tumour is 2
to 5 cm and has not spread to the axillary lymph nodes. Stage II-B describes invasive breast cancer in which: (1) the
tumour is between 2 and 5 cm, and small groups of cancer cells larger than 0.2 mm but smaller than 2 mm are seen in
the lymph nodes, or (2) the tumour is 2 to 5 cm, and the cancer has spread to 1-3 axillary lymph nodes or lymph nodes
near the breastbone, or (3) the tumour is larger than 5 cm but has not spread to the axillary lymph nodes.

Stage II1 is divided into subcategories I1I-A, III-B, and ITI-C. Stage III-A describes invasive breast cancer in which: (1)
the tumour may be any size, and cancer was found in 4-9 axillary lymph nodes or lymph nodes near the breastbone, or

© NEASQC Consortium Partners. All rights reserved. Page 9 of 28

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E A S DE

NS

(2) the tumour is larger than 5 cm, and small clusters of cancer cells larger than 0.2 mm but smaller than 2 mm are seen
in the lymph nodes, or (3) the tumour is larger than 5 cm, and the cancer has spread to 1-3 axillary lymph nodes or
lymph nodes near the breastbone. Stage III-B describes invasive breast cancer in which the tumour is indefinite in size
and has spread to the chest wall or skin of the breast. Stage III-C describes invasive breast cancer in which: (1) there
may be no evidence of disease in the breast or, (2) if a tumour is present, it may be any size and may have spread to
the chest wall or skin of the breast and cancer has spread to 10 or more axillary lymph nodes, or (3) cancer has spread
to lymph nodes above or below the collarbone or cancer has spread to axillary lymph nodes or lymph nodes near the
breastbone.Stage IV describes invasive breast cancer that has spread beyond the breast and surrounding lymph nodes
to other organs in the body, such as the lungs, distant lymph nodes, skin, bones, liver, and brain.

4.2. A model for the staging of IDC

Knowledge engineering is a sub-field of artificial intelligence whose purpose is the design and development of expert
systems. This is supported by instructional methodologies, trying to represent the human knowledge and reasoning in
a certain domain, within an artificial system. The work of knowledge engineers consists of extracting the knowledge
of human experts, and in coding said knowledge so that it can be processed by a computer system. The problem
is that the knowledge engineer is not an expert in the field that tries to model, while the expert in the subject has
no experience modelling his/her knowledge (based on heuristics) in a way that can be represented generically in the
computer system (Waterman, 1985).

Knowledge engineering encompasses the scientists, technology and methodology required to process knowledge. The
goal is to extract, articulate, and computerize knowledge from an expert. The result is a knowledge model, ready to be
implemented and tested. In this case, we use the method provided by the TNM staging system (Giuliano et al., 2018)
to describe the amount and spread of cancer in a patient’s body, where:

* T describes the size of the tumour and any spread of cancer into nearby tissue.

* N describes spread of cancer to nearby lymph nodes.

* M describes metastasis (spread of cancer to other parts of the body).
Each of these categories is furtherly detailed with numbers or letters, differentiating the severeness of the case. We
use a reduced version of this system, only employing the numbers notation and using X/Y to denote that any number

would fit. Figure 2 illustrates the variables we are considering in our knowledge model for staging IDC, and Table 1
shows the correspondence between TNM classifications and IDC stages.

Staging
variables
\4 ¢ \4
Related to the Relateq to Related to
lymphatic or .
tumor . metastasis
axillary nodes

v v v

TO No evidence of tumor NO Absence of cancer in lymph nodes MO No evidence of metastasis
T1 Size less than or equal to 20mm NO Size in lymph nodes less than 0.2mm M1 Cancer cells in other organs
T2 Size between 20mm and 50mm N1 From 1 to 3 affected axillary lymph nodes
T3 Size greater than 50mm N1 Internal lymph nodes affected
T4 Tumor involves chest wall N2 From 4 to 9 affected axillary lymph nodes
T5 Tumor affects skin N2 No axillary lymph node involvement

N3 More than 10 affected axillary lymph nodes

N3 Lymph nodes below the collarbone affected
N3 Superclavicular lymph nodes affected

Figure 2: Variables or symptoms that are considered in the knowledge model for IDC staging.

© NEASQC Consortium Partners. All rights reserved. Page 10 of 28

b . - D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

NS

Table 1: Invasive Ductal Carcinoma stages according with TNM classification system.

IDC Stage Compatible TNM classification
I-A T1 NO MO
I-B TO N1 MO/TI1 N1 MO
II-A TON1 MO/ TI N1 MO/ T2 NO MO
11I-B T2 N1 MO/ T3 NO MO
II-A TON2MO/T1N2MO/T2NOMO/T3N2MO/T3 NI MO
11-B T4 NOMO /T4 N1 MO/ T4 N2 MO
II-C TX N3 MO
v TXNY M1

4.3. Quantum system design for breast IDC staging

The next step is to represent our model for the stagin of IDC as a Quantum Rule-Based Systems (QRBS). A QRBS is
a Rule-Based Systems (RBS) that uses the formalism of Quantum Computing (QC) for representing knowledge and
for making inferences (Moret-Bonillo, Magaz-Romero, et al., 2022; Moret-Bonillo, Mosqueira-Rey, Magaz-Romero,
& Gomez-Tato, 2021).

We have to consider the following set of assumptions and domain restrictions, which will condition the design of the
proposed classic-quantum hybrid solution for breast IDC staging: (1) the participation and collaboration of clinical
experts is essential, (2) the magnitude of the problem is limited by the small number of qubits from the NISQ era of
Quantum Computing, which requires us to optimize the overall process by reducing as much as possible the number
of qubits required , (3) the final solution must be neither pure quantum nor pure classical. It must be a hybrid solution
due to the interactions with the experts, and (4) the results obtained must be comparable to what a human expert would
obtain. This framework can be represented as shown in Figure 3.

! S
The results
. .
) (s) obtained
The doctor The, The TNM
assesses ectns classifi- are
. evaluation .. evaluated
and inter- . cation is
is trans- for
prets the o transferred ..
> ferred to | ambiguity
results of . to a quan-
.. a classical . and
the clinical tum routine
exami system for for IDC correctness
: = . against the
nation. TNM (?las staging. & X
—_— sification. — = - doctor’s
input.

Figure 3: Framework for Beast Invasive Ductal Carcinoma Staging.

Next, and considering the knowledge model detailed in Figure 2 and Table 1 , we will focus on the description of the
quantum routine for IDC staging. If we consider the TNM staging system, and in reference to the categorial reasoning
notation introduced in previous sections, notice that for this case S = {70, T1, T2, T3, T4, T5, NO, N1, N2, N3, MO,
M1} and D = {I-A, I-B, II-A, II-B, III-A, III-B, III-C, IV}. Applying now the corresponding medical reasoning model,
only the complexes shown in Table 2 are relevant. For each of these relevant complexes, which can be considered as
vectors, a qubit will be associated to it, which will be the input to the quantum subroutine. Since a given patient cannot
be in two different TNM states at the same time, the quantum subroutine is activated only when one and only one of
the input qubits is in state 1, and all the others are in state 0.

© NEASQC Consortium Partners. All rights reserved. Page 11 of 28

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

NS

Table 2: Relevant TNM states and corresponding input qubits to the quantum system.

Input qubit
q0 ql q2 q3 q4 qs qo6 q7 q8 q9 ql0 qll ql2 ql3 ql4
TO X X
T1 X X X
T2 X X
T3 X X X
T4 X X X
NO X X X X
N1 X X X X X
N2 X X X X
N3 X
MO X X X X X X X X X X X X X
M1 X

TNM

On the other hand, we must design our quantum routine in such a way that—after the measurement process—we
obtain a string of conventional bits that can be directly associated with the stage of the cancer. Also, since there are
eight possible stages of cancer, we need an eight-bit string in the output. Table 3 illustrates the matching between the
output bit string and the different stages of cancer.

Table 3: Correspondence between the output bits and IDC stage.

Output c7 c6 ¢S5 c4 c3 c2 cl c0
Bit
IDC v II-C I11-B III-A II-B II-A I-B I-A
Stage

An added problem is that, according to what is stated in Table 1, in each specific case the same TNM classification
may be compatible with several different stages of cancer. This fact must be considered in the design of our quantum
routine. This implies defining and implementing a set of quantum rules (relating the TNM classification input to the
IDC staging output) and configuring the inferential circuits that represent the different possible cases. For this we
need to use an extra set of qubits on which the logical operations imposed by the quantum rules are carried out. In our
case, we are going to need 10 extra qubits to solve the defined inferential circuits . Thus, for the quantum resolution
of the IDC staging, we need: (a) 15 input qubits to set up the problem, (b) 10 extra qubits to perform the logical
operations imposed by the inferential circuits, and (c) a string of 8 conventional bits, on which -after the corresponding
measurements- the results obtained by the quantum subroutine will be written. The resulting architecture of the
quantum subroutine is illustrated in Figure 4.

© NEASQC Consortium Partners. All rights reserved. Page 12 of 28

IR D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review)
Jino) —{1}
|ing) 71
|ing) 71 E
ling) —{1}
lina) —{1]
|ins) 71
ling) —| I}
|inz) —{7]
|ing) 71
|ing) 71
\L‘”rm> 7;
|ing1) —1]
|inia) 71
\i711:3> 77 E
[in1a) —{1} E
lopo) E
op1) T
lop2) &—1A
[ops) E
|opa)
lops) & ,L
lops) o l\
lopr) A
lops) ;
|opo) & A
Co
c1
cy
c3
cy
c5
Ce
cr

Figure 4: Architecture of the Quantum Subroutine for Breast Invasive Ductal Carcinoma Staging.

The quantum circuit works as follows: note that, conventionally, the initial state of any qubit is always 0. To activate
it, one -and only one- of the input qubits must be “negated” (set to state 1) and the quantum system begins to solve the
corresponding quantum circuits to finally obtain the string of conventional bits, which allows us to identify the IDC
stages that are compatible with the input information. For this quantum subroutine, there are 15 different inputs that
can activate it, one for each individual qubit.

© NEASQC Consortium Partners. All rights reserved. Page 13 of 28

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

N

5. Testing

In this chapter, we continue the work on testing that we have been developing in previous deliverables. We follow up
with the traceability of the use cases and the tests of their scenarios, give some insight into the testing methodology
and tools employed and provide some test examples.

5.1. Traceability with use cases
Following the traceability hierarchy established in (Moret-Bonillo, Mosqueira-Rey, & Magaz-Romero, 2021) (see

Figure 1, page 8), we defined the tests of Table 4 (this table is extracted from (Moret-Bonillo, Gomez Tato, et al.,
2022)).

T-01-1 test_fact_creation TestFact

T-01-2 test_fact_deletion TestFact

T-01-3 test_factmodification TestFact

T-02-1 test_rule_creation TestRule

T-02-2 test_rule_deletion TestRule

T-02-3 test_rulemodification TestRule

T-03-1 test_island_creation TestKnowledgeIsland
T-03-2 test_island._deletion TestKnowledgeIsland
T-03-3 test_islandmodification TestKnowledgeIsland
T-03-4 test_island._creation_error TestKnowledgeIsland
T-04-1 test_imprecision TestUncertainty
T-04-2 test_uncertainty TestUncertainty
T-04-3 test_imprecision_uncertainty TestUncertainty
T-05-1 test_grbs_creation TestQRBS

T-05-2 test_grbs_deletion TestQRBS

T-05-3 test_grbs.modification TestQRBS

T-06-1 test positive_evaluation TestEvaluation
T-06-2 test_negative_evaluation TestEvaluation

T-07-1 test_successful_default TestExecution

T-07-2 test_failed.default_evaluation TestExecution

T-07-3 test_failed default_execution TestExecution

T-07-4 test_successful_specified TestExecution

T-07-5 test_failed_ specified evaluation | TestExecution

T-07-6 test_failed_specified_execution TestExecution

Table 4: Test suite

These tests take into consideration several possible scenarios: (a) categorical quantum reasoning with no impreci-
sion nor uncertainty, (b) quantum imprecision in facts, (c) quantum uncertainty propagation, and (d) both quantum
imprecision and quantum uncertainty.

As we presented in Chapter 3, tests are defined inside the tests directory, where we can find a testing module per
source code module. Therefore, the tests classes from Table 4 are organized as follows:

* test_knowledge_rep.py: TestFact, TestRule, TestKnowledgelsland, TestUncertainty.
* test_qrbs.py: TestQRBS, TestEvaluation, TestExecution.

To these tests, we have added also the test classes for the working memory and inference engine classes. These are
TestWorkingMemory and TestInferenceEngine, and can be found in test_qrbs.py as it is their corresponding module.

While neither TestEvaluation and TestExecution were specifically defined to test any QPU in particular, we have used
the MyQImQPU implementation that we previously defined. This means that in future version these tests may change
when we implement more QPUs, whether by including them in these test classes or by adding more to test their
functionalities.

© NEASQC Consortium Partners. All rights reserved. Page 14 of 28

b . - D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

NS

5.2. Testing methodology and tools

In this section we go over some aspects about the testing methodology and tools employed: (1) the approach we have
followed regarding testing, (2) how we have measured how the tests cover the source code and (3) the testing tools we
have used.

5.2.1. Testing approach

According to the testing approach we have followed, test cases represent the requirements that we expect our software
to cover. Since we have defined them following the different scenarios of the use cases, most execution flows are
covered with these test cases.

This approach provides several advantages when developing our software library:

* Focus on the observable behavior of the software: having to develop the code for the tests implies approaching
our software from the perspective of the final users, focusing on it from the interface it provides rather than its
implementation.

* Ease to detect errors: when tests cover most execution flows, errors made when programming are easier to
detect, since they will come up when running their corresponding tests.

* Automation: having the test suite automated eases the development process overall, since relevant changes on
the internal logic or even refactorization will make the tests fail in case they are done incorrectly.

Regarding how deep we should test, we have opted to get down to unit tests for our classes. While it may seem
excessive to test at this level, we think that it is beneficial; we are developing a software library that will be used by
researchers and people conducting different experiments, so it is important to test it deeply and make sure it will not
be easy to “break”.

5.2.2. Measuring test coverage
There are several measures we can consider when evaluating how good our tests are doing:
* Quantity: the more test cases we have, the more trustworthy our tests are.

* Representation: test cases must be representative of the different situations that can take place. In order to
measure representation, we use test coverage:

— Line coverage: amount of lines of source code that are run with the tests.
— Branch coverage: amount of branches (options of conditional statements) are run with the tests.

The objective behind coverage is to find out which segments of source code are not covered by tests. However,
numerical values (e.g. number of lines covered, percentage of branches covered) are not a measure of quality of the
tests.

On top of that, tests do not have to cover the complete source code (a coverage of 100% is not mandatory), since they
should be focused towards those segments of code that can reasonably fail, and other segments can be “overlooked” if
they are too simple to break.

5.2.3. Testing tools

Testing tools vary across programming languages and project paradigms, so it is important to use the tools that better
address the needs in each scenario. In our case, we are developing a Python software library, so pytest fits our needs
perfectly.

The pytest framework makes it easy to write small, readable tests, and can scale to support complex functional testing
for applications and libraries, like is our case. It is widely extended across the Python community, and has a rich plugin
architecture with over 800+ external plugins, covering mostly any need that can arise when testing our software.

Thanks to the auto-discovery of test modules and functions, testing our software with pytest is very simple. As we
presented on chapter 3, we have all our tests inside the corresponding repository. Then, when invoking pytest, it will
search in those files for classes and methods whose names begin with “test” and run them. Inside these tests we use

© NEASQC Consortium Partners. All rights reserved. Page 15 of 28

NE[AS|LE

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review)

NS

our software as required, following the test cases, and use the assert directive to check the desired values. We can
also catch the exceptions to test them, and assert the information they provide.

For coverage, we use the pytest-cov plugin, which provides a clean minimal set of command line options that are
added to pytest. These options add the coverage information to the original pytest report, providing information
like lines and branches covered as desired. Moreover, pytest-cov reports can be exported to different formats, and
the HTML format presents the source code with the coverage information highlighted, which is really useful when
analyzing the tests overall.

5.3. Test example

We provide an example of the tests to illustrate how they work. In this case, Listing 5.1 shows the test
test_grbs.modification, since itis a very complete case of testing different values and exceptions.

Listing 5.1: QRBS modification test

def test_qrbs_modification(self):

Test QRBS modification

system = QRBS()

Modify the system by asserting several elements
fact_1 = system.assert_fact(’ fact_1’, 0.8)

fact_2 = system.assert_fact(’ fact_2’, 0.3)

fact_3 = system.assert_fact(’fact_3’, 0.5)

rule_1 = system.assert_rule(fact_1, fact_2)

rule_2 = system.assert_rule(fact_2, fact_3)

island_.1 = system.assert_island([rule_1])

island_2 = system.assert_island([rule_1, rule_2])
assert system._memory._facts == [fact_1, fact_.2, fact_3]
assert system._engine._rules == [rule_1, rule_2]
assert system._engine._islands == [island_1, island_2]

Modify the system by retracting
system.retract_island(island_2)
assert system._engine._islands ==

Modify the system by retracting

an existing knowledge island
[island_1]

an existing rule

system.retract_rule(rule_2)

assert system._engine._rules == [rule_1]

Modify the system by retracting an existing fact

system.retract_fact(fact_3)

assert system._memory._facts == [fact_1l, fact_2]

Raises an error due to retracting a rule that is part of a knowledge
island

with pytest.raises(AttributeError) as ex_info:
system.retract_rule(rule_1)

assert ex_info.match(’The rule to be retracted is part of a knowledge
island and cannot be retracted’)

Raises an error due to retracting a fact that is part of a rule

with pytest.raises(AttributeError) as ex_info:
system.retract_fact(fact_1)

assert ex_info.match(’The fact to be retracted is part of a rule and
cannot be retracted’)

© NEASQC Consortium Partners. All rights reserved. Page 16 of 28

LS D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

N

This test checks several operations:
* Creates a QRBS and populates it.
* Asserts the elements of the QRBS have been correctly initialized.
* Retracts several items and asserts they are no longer part of the QRBS.
* Attempts to retract several items that cannot be retracted and asserts the exceptions risen.

This approach (initializing items, asserting their values, operating with the items, asserting their new values or the
exceptions) is the same for the rest of the tests implemented, which can be found in https://github.com/NEASQC/qrbs/
tree/main/tests.

© NEASQC Consortium Partners. All rights reserved. Page 17 of 28

https://github.com/NEASQC/qrbs/tree/main/tests
https://github.com/NEASQC/qrbs/tree/main/tests

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

NS

6. Conclusions

In this deliverable we have presented the preliminary version of the QRBS software library. While most of the effort
has been dedicated to the library’s repository and the implementation of its functionalities, we have taken the oppor-
tunity to present here how it is structured and how to make use of it so far. Following deliverables will continue this
work, presenting the different additions we include in our QRBS software.

Both the software library and its documentation, we have developed them with the user in mind, focusing on concise-
ness and clarity, in order to make it as easy to use as possible. We aim to keep next developments along this line, as
we consider it a priority to introduce users to what we consider a powerful and useful tool.

This approach is supported by the focus on traceability and testing that has been carried from the beginning of the
project, which has seen a major payout in this deliverable. We achieve this by covering every possible scenario so that
the final product is of the maximum quality.

On the IDC application, we have made an effort on using categorical reasoning and the description of the clinical
problem that we introduced in our earliest work to build a model for staging IDC. Moreover, we have taken that model
and applied it into a quantum routine with great success. This effort will allow us to combine the research of breast
cancer diagnosis with our methodology of QRBS, to obtain in the end a system programmed with our software library
for the diagnosis of IDC, which is the final objective of the use case.

In summary, this report represents an important achievement in the work of this use case, starting both the final phase
of the development of the QRBS software library and the development of the IDC application.

© NEASQC Consortium Partners. All rights reserved. Page 18 of 28

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) < N E | AS | IJE >

N

List of Acronyms

Al Artificial Intelligence
ELB Expanded Logic Base
IDC Invasive Ductal Carcinoma

QC Quantum Computing

QRBS | Quantum Rule-Based System
RBS Rule-Based System

RLB Reduced Logic Base

Table 5: Acronyms and Abbreviations

© NEASQC Consortium Partners. All rights reserved. Page 19 of 28

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) < N E ’ AS ‘ DE >

N

List of Figures

Figure 1.: Example inferential circuit 7
Figure 2.: Variables or symptoms that are considered in the knowledge model for IDC staging. 10
Figure 3.: Framework for Beast Invasive Ductal Carcinoma Staging. 11
Figure 4.: Architecture of the Quantum Subroutine for Breast Invasive Ductal Carcinoma Staging. 13

© NEASQC Consortium Partners. All rights reserved. Page 20 of 28

., . - D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) < N E ’ AS ‘ DE >

N

List of Tables
Table 1.: Invasive Ductal Carcinoma stages according with TNM classification system. 11
Table 2.: Relevant TNM states and corresponding input qubits to the quantum system. 12
Table 3.: Correspondence between the output bits and IDC stage. 12
Table 4.: TeStSUIte o o i e 14
Table 5.: Acronyms and Abbreviations L 19

© NEASQC Consortium Partners. All rights reserved. Page 21 of 28

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

NS

Bibliography

Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., Meyer, L., Gress,
D. M., Byrd, D. R., & Winchester, D. P. (2017). The eighth edition ajcc cancer staging manual: Continuing to
build a bridge from a population-based to a more “personalized” approach to cancer staging. CA: A Cancer
Journal for Clinicians, 67(2), 93-99. https://doi.org/10.3322/caac.21388

Giuliano, A. E., Edge, S. B., & Hortobagyi, G. N. (2018). Eighth edition of the ajcc cancer staging manual: Breast
cancer. Annals of Surgical Oncology, 25(7), 1783—1785. https://doi.org/10.1245/s10434-018-6486-6

Kruchten, P. (2004). The rational unified process: An introduction. Addison-Wesley.

Ledley, R. S., & Lusted, L. B. (1959). Reasoning foundations of medical diagnosis. Science, 130(3366), 9-21. https:
//doi.org/10.1126/science.130.3366.9

Moret-Bonillo, V., Gomez Tato, A., Magaz Romero, S., Mosqueira-Rey, E., & Alvarez-Estevez, D. (2022). D6.9: Qrbs
software specifications. https://doi.org/10.5281/zenodo.7299193

Moret-Bonillo, V., Magaz-Romero, S., & Mosqueira-Rey, E. (2022). Quantum computing for dealing with inaccurate
knowledge related to the certainty factors model. Mathematics, 10(2). https://doi.org/10.3390/math 10020189

Moret-Bonillo, V., Mosqueira-Rey, E., & Magaz-Romero, S. (2021). D6.5 Quantum Rule-Based System (QRBS)
Requirement Analysis. https://doi.org/10.5281/zenodo.5949157

Moret-Bonillo, V., Mosqueira-Rey, E., Magaz-Romero, S., & Alvarez-Estevez, D. (2023). Hybrid classic-quantum
computing for staging of invasive ductal carcinoma of breast. arXiv preprint arXiv:2303.10142. https://arxiv.
org/abs/2303.10142

Moret-Bonillo, V., Mosqueira-Rey, E., Magaz-Romero, S., & Gémez-Tato, A. (2021). Quantum rule-based systems
(grbs) models, architecture and formal specification (D6. 2). https://www.neasqc.eu/wp-content/uploads/
2021/05/NEASQC_D6.2_QRBS-Models- Architecture-and-Formal-Specification- V1.5-Final.pdf

Waterman, D. A. (1985). A guide to expert systems. Addison-Wesley Longman Publishing Co., Inc.

© NEASQC Consortium Partners. All rights reserved. Page 22 of 28

https://doi.org/10.3322/caac.21388
https://doi.org/10.1245/s10434-018-6486-6
https://doi.org/10.1126/science.130.3366.9
https://doi.org/10.1126/science.130.3366.9
https://doi.org/10.5281/zenodo.7299193
https://doi.org/10.3390/math10020189
https://doi.org/10.5281/zenodo.5949157
https://arxiv.org/abs/2303.10142
https://arxiv.org/abs/2303.10142
https://www.neasqc.eu/wp-content/uploads/2021/05/NEASQC_D6.2_QRBS-Models-Architecture-and-Formal-Specification-V1.5-Final.pdf
https://www.neasqc.eu/wp-content/uploads/2021/05/NEASQC_D6.2_QRBS-Models-Architecture-and-Formal-Specification-V1.5-Final.pdf

b . - D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

NS

A. QRBS software documentation

This appendix presents the software library documentation up to the point of development when this document is
published. The current version of the documentation can be found in https://neasqc.github.io/qrbs/neasqc_qrbs.html.

A.1. neasqc_grbs.knowledge_rep module

class neasqc_qgrbs.knowledge_rep.AndOperator(left_child, right _child) Bases:
neasqgc_grbs.knowledge_rep.LeftHandSide

Class representing an AndOperator.

An AndOperator relates the statements of its children with an AND relationship. This class is used to model the
Composite design pattern, acting as (one of) the Composite class.

left_child One of the children which is relating.
Type LeftHandSide
right_child One of the children which is relating.
Type LeftHandSide
build(builder) — QRoutine
class neasqc_qrbs.knowledge_rep.Buildable Bases: abc.ABC
Interface for knowledge elements that can be built into quantum routines.
abstract build(builder) — QRoutine
class neasqc_qrbs.knowledge_rep.Builder Bases: abc.ABC
Interface for building the corresponding quantum routine from a Buildable element.
abstract static build_and() — QRoutine Builds the quantum routine of an and operator.
Returns The corresponding quantum routine.
Return type QRoutine
abstract static build_fact(fact) — QRoutine Builds the quantum routine of a fact.
Parameters fact (Fact) — The Fact whose quantum routine is being built.
Returns The corresponding quantum routine.
Return type QRoutine

Parameters island (KnowledgeIsland) — The Knowledgelsland whose quantum routine is being
built.

Returns A tuple containing the corresponding quantum routine and the index of which qubit corresponds
to each LeftHandSide element.

Return type Tuple[QRoutine, Dict[LeftHandSide, int]]

abstract static build_not() — QRoutine Builds the quantum routine of a not operator.
Returns The corresponding quantum routine.
Return type QRoutine

abstract static build_or() — QRoutine Builds the quantum routine of an or operator.
Returns The corresponding quantum routine.
Return type QRoutine

abstract static build_rule(rule) — QRoutine Builds the quantum routine of a rule.

© NEASQC Consortium Partners. All rights reserved. Page 23 of 28

https://neasqc.github.io/qrbs/neasqc_qrbs.html

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E A S DE

Parameters rule (Rule) — The Rule whose quantum routine is being built.
Returns The corresponding quantum routine.
Return type QRoutine
class neasqc_qrbs.knowledge_rep.Builderlmpl Bases: neasgc_grbs.knowledge_rep.Builder

Implementation of Builder interface.

static build_and() — QRoutine Builds the quantum routine of an and operator.
Returns The corresponding quantum routine.
Return type QRoutine

static build_fact(fact) — QRoutine Builds the quantum routine of a fact.
Parameters fact (Fact) — The Fact whose quantum routine is being built.
Returns The corresponding quantum routine.

Return type QRoutine

static build_island(island) — Tuple[QRoutine, Dict[neasqc_grbs.knowledge_rep.LeftHandSide, int]]

Builds the quantum routine of a knowledge island.

Parameters island (KnowledgeIsland) — The Knowledgelsland whose quantum routine is being
built.

Returns A tuple containing the corresponding quantum routine and the index of which qubit corresponds
to each LeftHandSide element.

Return type Tuple[QRoutine, Dict[LeftHandSide, int]]

static build_not() — QRoutine Builds the quantum routine of a not operator.
Returns The corresponding quantum routine.
Return type QRoutine

static build_or() — QRoutine Builds the quantum routine of an or operator.
Returns The corresponding quantum routine.
Return type QRoutine

static build_rule(rule) — QRoutine Builds the quantum routine of a rule.
Parameters rule (Rule) — The Rule whose quantum routine is being built.
Returns The corresponding quantum routine.
Return type QRoutine

class neasqc_qrbs.knowledge_rep.Fact(attribute, value, imprecission=0.0) Bases:
neasqgc_grbs.knowledge_rep.LeftHandSide

Class representing a Fact.

A Fact is the smallest unit of knowledge that can be represented. This class is used to model the Composite
design pattern, acting as the Leaf class.

attribute Attribute that the fact is representing.
Type str

value Value of the attribute that the fact is representing.
Type float

imprecission Imprecission of the fact; the certainty of the attribute having said value (0 if not specified).
Must be in range [0,1].

Type float, optional
© NEASQC Consortium Partners. All rights reserved. Page 24 of 28

* %

k5 x D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E A S DE

build(builder) — QRoutine
property imprecission
class neasqc_grbs.knowledge_rep.Knowledgelsland(rules) Bases: neasgc_grbs.knowledge_rep.Buildable
Class representing a Knowledge Island.
A Knowledge Island is a set of rules that conform the inferential reasoning towards a hypothesis.
rules Set of rules that conform the knowledge island.
Type List[Rule]
build(builder) — QRoutine
class neasqc_grbs.knowledge_rep.LeftHandSide Bases: neasgc_grbs.knowledge_rep.Buildable

Interface for elements that can be part of the left hand side of a rule. This class is used to model the Composite
design pattern, acting as the Component interface.

build() — QRoutine
class neasqc_grbs.knowledge_rep.NotOperator(child) Bases: neasqc_grbs.knowledge_rep.LeftHandSide
Class representing a NotOperator.

A NotOperator negates the statement of its child. This class is used to model the Composite design pattern,
acting as (one of) the Composite class.

child Child which statement is negating.
Type LeftHandSide
build(builder) — QRoutine

class neasqc_qrbs.knowledge_rep.OrOperator(left_child, right child) Bases:
neasgc_grbs.knowledge_rep.LeftHandSide

Class representing an OrOperator.

An OrOperator relates the statements of its children with an OR relationship. This class is used to model the
Composite design pattern, acting as (one of) the Composite class.

left_child One of the children which is relating.
Type LeftHandSide

right_child One of the children which is relating.
Type LeftHandSide

build(builder) — QRoutine

class neasqc_grbs.knowledge_rep.Rule(/efthandside, righthandside, uncertainty=0.0) Bases:
neasqgc_grbs.knowledge_rep.Buildable

Class representing a Rule.

A Rule which establishes a relationship (to some level of uncertainty) between a left hand side element and a
right hand side, which in this context is a Fact.

leftHandSide Left hand side element of the rule (also known as precedent).
Type LeftHandSide

rightHandSide Right hand side element of the rule (also known as consecuent).
Type Fact

uncertainty Uncertainty of the relationship between precedent and consecuent (0 if not specified). Must be in
range [0,1].

Type float, optional

© NEASQC Consortium Partners. All rights reserved. Page 25 of 28

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E A S DE

build(builder) — QRoutine

property uncertainty

A.2. neasqc_qrbs.qrbs module

class neasqc_qrbs.qrbs.InferenceEngine(rules=[], islands=[]) Bases: object
Class representing an Inference Engine.

An Inference Engine is an element of a Rule-Based System that manages its rules and knowledge islands,
providing the tools to evaluate them in order.

_rules List of rules established for the system.
Type List[Rule], optional

_islands List of knowledge island established for the system.
Type List{(KknowledgeIsland], optional

assert_island(island) — neasqc_qrbs.knowledge_rep.Knowledgelsland Asserts a knowledge is-
land into the engine.

Parameters island (KnowledgeIsland)— The knowledge island to be asserted.
Returns The asserted knowledge island.
Return type KnowledgeIsland

Raises AttributeError — In case the rules that compose the knowledge island are not asserted in the
system’s inference engine or the rules that compose the knowledge island are not chained.

assert_rule(rule) — neasqc_qgrbs.knowledge_rep.Rule Asserts a rule into the engine.
Parameters rule (Rule) — The rule to be asserted.
Returns The asserted rule.
Return type Rule
retract_island(island) — None Retracts a knowledge island from the engine.
Parameters island (KnowledgeIsland)— The knowledge island to be retracted.
retract_rule(rule) — None Retracts a rule from the engine.
Parameters rule (Rule) — The rule to be retracted.
Raises AttributeError — In case the rule to be retracted is part of a knowledge island.
class neasqc_qrbs.qrbs.MyQImQPU Bases: neasgc_grbs.qgrbs.QPU
myQLM implementation of a Quantum Processing Unit (QPU).
MAX_ARITY =20
static evaluate(qrbs, eval_islands=[]) — bool Evaluates whether a QRBS can be executed on this QPU.
Parameters
e qrbs (QRBS) — The QRBS to be evaluated.

* eval_islands (ListfKnowledgeIsland], optional) — A list of specific Knowledgelsland to be
evaluated.

Raises ValueError — In case an specified knowledge island is not part of the QRBS or an evaluated
knowledge island requires more qubits than supported.

static execute(qrbs, eval_islands=[]) — None Executes the QRBS on this QPU.
Parameters

© NEASQC Consortium Partners. All rights reserved. Page 26 of 28

* %

k5 x D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E A S DE

* qrbs (ORBS) — The QRBS to be executed.

* eval_islands (List(KnowledgeIsland], optional) — A list of specific Knowledgelsland to be
executed.

class neasqc_qrbs.qrbs.QPU Bases: abc.ABC
Interface defining the structure to implement Quantum Processing Units (QPU).
abstract static evaluate(qrbs) — bool Evaluates whether a QRBS can be executed on this QPU.
Parameters qrbs (QRBS) — The QRBS to be evaluated.
abstract static execute(qrbs) — None Executes the QRBS on this QPU.
Parameters qrbs (QRBS) — The QRBS to be executed.
class neasqc_qrbs.qrbs.QRBS Bases: object
Class representing a Quantum Rule-Based System.

A Quantum Rule-Based System (QRBS) is a Rule-Based System implemented in a quantum computer, taking
advatange of some of its capabilities, like quantum superposition, to represent certain aspects such as imprecis-
sion and uncertainty.

_memory The Working Memory of the system.
Type WorkingMemory
_engine The Inference Engine of the system.
Type InferenceEngine
assert _fact(attribute, value, imprecission=0.0) — Creates a fact and asserts it into the system.
Parameters
« attribute (szr) — The attribute of the fact.
* value (floar) — The value of the fact.
 imprecission (float, optional) — The imprecission of the fact.
Returns The asserted fact.
Return type Fact
assert_island(rules) — Creates a knowledge island and asserts it into the system.
Parameters rules (List{Rule]) — The rules of the knowledge island.
Returns The asserted knowledge island.
Return type KnowledgeIsland

assert_rule(/efthandside, righthandside, uncertainty=0.0) — Creates a rule and asserts it into the
system.

Parameters
¢ lefthandside (Le ft HandSide) — The left hand side of the rule.
¢ righthandside (Fact) — The right hand side of the rule.
* uncertainty (float, optional) — The uncertainty of the rule.
Returns The asserted rule.
Return type Rule
retract_fact(fact) — None Retracts a fact from the system.
Parameters fact (Fact) — The fact to be retracted.
retract_island(island) — None Retracts a knowledge island from the system.

© NEASQC Consortium Partners. All rights reserved. Page 27 of 28

D6.11 Preliminary QRBS software and IDC application specification (1.1- Under Review) N E AS DE

NS

Parameters island (KnowledgeIsland)— The knowledge island to be retracted.
retract_rule(rule) — None Retracts a rule from the system.
Parameters rule (Rule) — The rule to be retracted.
class neasqc_qrbs.qrbs.WorkingMemory(facts=[]) Bases: object
Class representing a Working Memory.
A Working Memory is an element of a Rule-Based System that manages its facts, keeping trace of their state.
_facts List of facts asserted into the system.
Type List[Fact], optional
assert_fact(fact) — Asserts a fact into the memory.
Parameters fact (Fact) — The fact to be asserted.
Returns The asserted fact.
Return type Fact
retract_fact(fact) — None Retracts a fact from the memory.

Parameters fact (Fact) — The fact to be retracted.

© NEASQC Consortium Partners. All rights reserved. Page 28 of 28

	1 Executive Summary
	2 Context
	2.1 Project
	2.2 Work package

	3 Preliminary QRBS Software
	3.1 Introduction
	3.2 Code Example
	3.2.1 QRBS Creation
	3.2.2 QRBS Evaluation
	3.2.3 QRBS Execution

	3.3 Code Documentation

	4 IDC Application Specification
	4.1 Introduction
	4.1.1 Categorical reasoning in medicine
	4.1.2 Description of the clinical problem

	4.2 A model for the staging of IDC
	4.3 Quantum system design for breast IDC staging

	5 Testing
	5.1 Traceability with use cases
	5.2 Testing methodology and tools
	5.2.1 Testing approach
	5.2.2 Measuring test coverage
	5.2.3 Testing tools

	5.3 Test example

	6 Conclusions
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography
	A QRBS software documentation
	A.1 neasqc_qrbs.knowledge_rep module
	A.2 neasqc_qrbs.qrbs module

