
NExt ApplicationS of Quantum Computing

D5.6: Diagrammatical languages to
represent Hamiltonians and how to

compute the exponential of Hamiltonians

Document Properties

Contract Number 951821

Contractual Deadline 30-06-2023

Dissemination Level Public

Nature Report

Editors Emmanuel Jeandel, UL

Authors Emmanuel Jeandel, UL

Reviewers Vedran Dunjko, U. Leiden
Vicente Moret Bonillo , U. Coruña

Date 14-06-2023

Keywords QAOA, Hamiltonians, ZX-Calculus

Status Under Review

Release 0.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

History of Changes

Release Date Author, Organisation Description of Changes

0.1 31/05/2023 E Jeandel, UL First Version

0.2 14/06/2023 E.Jeandel, UL Reviewers comments taken into account

© NEASQC Consortium Partners. All rights reserved. Page 2 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

Table of Contents

1. Executive Summary 4

2. Introduction 5

3. Definitions 6
3.1. Diagrammatic Languages . 6
3.2. The ZX-Calculus . 7

3.2.1. Definitions . 7
3.2.2. Examples . 8

4. A language to represent Hamiltonians 10
4.1. A Pro for Ising Hamiltonians . 10

4.1.1. Discussion . 10
4.1.2. Definition . 10
4.1.3. Example . 11

4.2. A Prop for Ising Hamiltonians . 11
4.2.1. Definition . 11
4.2.2. Definition . 12
4.2.3. Examples . 13
4.2.4. Notes . 14

5. Representing Hamiltonians and their exponential in the ZX-Calculus 15
5.1. Computing the exponential . 15
5.2. Hamiltonians in the ZX-Calculus . 17
5.3. An example . 18

6. Conclusions 19

List of Tables 20

Bibliography 21

A. Appendix 22
A.1. Compatibility of the two compositions . 22

© NEASQC Consortium Partners. All rights reserved. Page 3 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

1.Executive Summary

This deliverable provides a graphical representation of Ising Hamiltonians, with the explicit goal of using this repre-
sentation to analyse later the QAOA algorithm. This analysis entails computations with both the Hamiltonian and its
exponential.

To reach this goal, a language should be provided where both a matrix and its exponential can be described using the
same diagrammatic formalism.

This deliverable achieves this goal by first building a specific graphical language, called UHD, to represent Hermitian
matrices, then provide an algorithm to compute from this representation a representation in the ZX-calculus of both
this matrix and its exponential.

Translations from the Hamiltonian to its exponential are streamlined as much as possible by use of monoidal func-
tors. This implies the exponential is constructed brick by brick by putting together representation of each part of the
Hamiltonian.

An example of such a translation is provided.

© NEASQC Consortium Partners. All rights reserved. Page 4 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

2.Introduction

The ZX-Calculus, introduced in (Coecke & Duncan, 2011), is a graphical language that represents quantum evolu-
tions by diagrams. Each diagram corresponds to a linear transformation between Hilbert spaces. Compared to other
graphical languages for quantum computation, e.g. circuits, the ZX-calculus comes with a set of rules, such that two
diagrams that represent the same evolution can be transformed from one to the other using these rules. This implies in
particular that it is possible to reason entirely diagrammatically about quantum computing using the ZX-Calculus.

This has been applied successfully in various contexts, from measurement-based quantum computing (MBQC) (Dun-
can & Perdrix, 2010; Kissinger & van de Wetering, 2019) to circuit optimization (Cowtan et al., 2020; de Beaudrap
et al., 2020; Duncan et al., 2020; Kissinger & van de Wetering, 2020), and error-correction codes (Garvie & Duncan,
2018).

In this deliverable we set the stage for an application of the ZX-Calculus to the Quantum Approximate Optimization
Algorithm (QAOA) (Farhi et al., 2014).

QAOA is a general method to find approximate solutions to combinatorial problems. Given a function f : {0, 1}n → R
we want to optimize, we represent the function by a diagonal Hamiltonian1 H s.t. ⟨x|H |x⟩ = f(x). In this way,
the problem becomes finding the smallest (or largest) eigenvalue of H . A circuit C(α1, . . . αk) is then built from
eiα1H . . . eiαkH and other generic Hamiltonians and optimized in such a way that the output of C is closest to the
optimal eigenvector.

The analysis of such an algorithm relies therefore in computing ⟨ψ|H |ψ⟩ for a vector |ψ⟩ obtained from a circuit
using exponentials in H . To understand diagrammatically such a circuit, we need a language to represent both a
Hamiltonian and its exponential simultaneously.

We provide such a construction in this deliverable.

More precisely, we provide in the next section a language, called UHD, that can represent Diagonal Hamiltonians. We
then give in the next section an algorithm, starting from the diagram, to represent both the matrix and its exponential
in the ZX-Calculus. An example is given showing how the algorithm works.

Related works

The recent article (Carette et al., 2023) describes a language to represent Hermitian-preserving superoperators. The
maps 0 → n of this language (i.e. diagrams with no inputs) are therefore representations of Hamiltonians of size 2n.
This language uses the ZW-Calculus as a foundation instead of the ZX-Calculus, and it is not clear in full generality
how to use this language to compute the exponential of an Hamiltonian, even it if it is diagonal.

Up to our knowledge, the only article trying to compute diagrammatically the exponential of an Hamiltonian is (Shaikh
et al., 2022). However their construction relies heavily on the Cayley-Hamilton theorem and therefore works only if
we know the characteristic polynomial of the Hamiltonian, or its eigenvalues. We don’t know of any context in which
their construction can therefore be used.

In this work, we will obtain directly diagrams of the ZX-calculus for an Ising Hamiltonian matrix from its representa-
tion. Previous works (Jeandel et al., 2022; Wang & Yeung, 2022) have suggested how to differentiate diagrams. This
can be used to obtain a diagram from an Hamiltonian matrix H by first writing a diagram for its exponential exp(tH)
(which is sometimes easier) and then differentiate it as a function of t. While this approach is fundamentally different,
it leads to diagrams that are very similar to those we obtain here.

1In our context, an Hamiltonian is the same as an Hermitian matrix

© NEASQC Consortium Partners. All rights reserved. Page 5 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

3.Definitions

3.1. Diagrammatic Languages

In this section, we introduce graphical (diagrammatical) languages.

A prop is one of the categorical ways to represent circuits. Morphisms in a prop (may) represent circuits: we have two
composition laws on circuits: parallel (⊗) and sequential (◦) compositions that should satisfy some obvious properties.

Definition 1 (prop). A prop P is the data, for each pair (n,m) ∈ N2 of nonnegative integers of a set P[n,m], called
the set of morphisms. An element f ∈ P[n,m] is usually written f : n → m. A prop should contain the following
operators and constants:

• A composition ◦ : P[b, c]× P[a, b] → P[a, c] satisfying: (f ◦ g) ◦ h = f ◦ (g ◦ h).

• A tensor product ⊗ : P[a, b] × P[c, d] → P[a + c, b + d], satisfying: (f ⊗ g) ⊗ h = f ⊗ (g ⊗ h) and
(f ◦ g)⊗ (h ◦ k) = (f ⊗ h) ◦ (g ⊗ k).

• An empty morphism 1 : 0 → 0 such that f ⊗ 1 = 1⊗ f = f for all f : a→ b.

• An identity id : 1 → 1 such that f ◦ id⊗a = id⊗b ◦ f = f for all f : a→ b. With the convention id⊗0 = 1.

• A symmetry σ : 2 → 2 satisfying: σ2 = id⊗2 and such that, σa ◦ (f ⊗ id) = (id ⊗ f) ◦ σb, for all f : a → b,
where σn+1 = (1⊗n ⊗ σ) ◦ (1⊗ σn), with σ0 = id.

A prop functor F (i.e. a morphism of props) from P to Q is a set of maps, again denoted F , from P [n,m] to Q[n,m]
such that F (f ◦ g) = F (f) ◦ F (g), F (f ⊗ g) = F (f)⊗ F (g), and F (idP) = idQ, F (0P) = 0Q, F (σP) = σQ.

In the language of categories (Mac Lane, 1971), a prop is a small strict symmetric monoidal category whose monoid
of object is spanned by a unique object.

Props admit a nice diagrammatical representation that gives a topological interpretation to the axioms (Selinger, 2010).
A morphism f : n → m is represented as a box with n inputs and m outputs, with inputs on the left and outputs on
the right. Composition is represented by plugging the boxes, and the tensor product by drawing the boxes side by side.
The identity is represented by a single wire, the empty morphism by an empty diagram and the symmetry by wire
crossing:

...f...
...f...

g...

...f...

...
g...

f : n→ m id : 1 → 1 f ◦ g f ⊗ g σ : 2 → 2

These notations are well chosen, as the equations defining a prop correspond to equalities of diagrams that are obvious
to the eye (Joyal & Street, 1991; Selinger, 2010), so we can equivalently work with equations or with diagrams. To
give one example, the symmetry axioms express that the boxes can move through wires:

=
...

...f...
=

...f...
...

An important example of a prop is the Circuit prop, i.e. the props whose morphisms are unitaries: P [n, n] is the set of
unitaries of size 2n, ◦ is the composition of unitaries, ⊗ is the tensor product of unitaries. Diagrams in this prop are
exactly what is usually called a quantum circuit, without measures or wires initialized to a particular value.

Diagrammatical languages, i.e. props, are usually either defined explicitely, or implicitely by giving a set of generators
and relations, s.t. the prop is everything one can built from the generators, with diagrams corresponding to the relations
supposted to be equal. In this deliverable, we will not focus too much on the relations.

© NEASQC Consortium Partners. All rights reserved. Page 6 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

To simplify the discussion, we will not make a distinction between diagrams and the matrices they represent. Usually
these might be considered two different props, that are isomorphic (or that we are trying to make isomorphic).

3.2. The ZX-Calculus

3.2.1. Definitions

The ZX-Calculus (Coecke & Duncan, 2011; van de Wetering, 2020) is a set of generators and relations that capture
the Qubit prop, that is the prop of matrices of size 2n × 2m:

• P [n,m] is the set of matrices of size 2m × 2n.

• The sequential composition ◦ is the composition of matrices

• The spatial composition ⊗ is the tensor product of matrices

The generators are as follows:

• The green node R(n,m)
Z (α) : n→ m that corresponds to the matrix

1 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 eiα

.

It is represented by the following diagram, with the α omitted if it is 0.

...α...

In the special case m = n = 1, this corresponds to the matrix
(
1 0
0 eiα

)
, which is a phase shift gate.

If n = 0, this diagram does not have any input. It represents a matrix of size 2m×20, i.e. a column vector of size
2m. An important special case is when n = 0,m = 1, α = 0, i.e. when the diagram has no input, one output

and angle 0. In this case, it corresponds to the matrix
(

1
−1

)
, i.e. a scaled version of the vector |+⟩ = |0⟩+|1⟩

2 .

Similary, the node with parameters n = 0,m = 1, α = π corresponds to a scaled version of the vector |−⟩.

If m = n = 0, the diagram has no input or output, it represents the scalar (i.e. a 1× 1 vector)
(
1 + eiα

)
• The Hadamard matrix h : 1 → 1 that represents the matrix 1√

2

(
1 1
1 −1

)
and represented by the diagram:

• The red node R(n,m)
X (α) : n → m that represents the same matrix as the green node, but conjugated by the

Hadamard matrix. Formally, it represents the matrix:

(
1√
2

(
1 1
1 −1

))⊗m

1 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 eiα

(

1√
2

(
1 1
1 −1

))⊗n

It is represented pictorially by

© NEASQC Consortium Partners. All rights reserved. Page 7 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

...α...

In the special case when n = m = 1 i.e. a diagram with one input, and one output, the matrix is
1
2

(
1 + eiα 1− eiα

1− eiα 1 + eiα

)
. They can be interpreted as a rotation along the x-axis on the Bloch sphere. When

α = 0 it corresponds to the matrix
(
0 1
1 0

)
, i.e. the X gate.

While green nodes with zero input and one output, and α ∈ {0, π} represent scaled version of |+⟩ and |−⟩, red
nodes with the same parameters correspond to scaled version of |0⟩ and |1⟩ respectively.

Indeed R(0,1)
X (0) =

(√
2
0

)
=

√
2 |0⟩.

• The cup matrix: 2 → 0 that represents the row vector
(
1 0 0 1

)
and is represented by

• The cap matrix: 0 → 2 that represents the column vector

1
0
0
1

 and is represented by

3.2.2. Examples

It is well known that every complex matrix can be represented by a diagram of the ZX-calculus (a ZX-diagram).

The vector |0⟩. For instance, the vector |0⟩ =
(
1
0

)
can be represented by the diagram:

To understand this diagram, note that it consists in two different diagrams side by side. We should therefore compute
to which matrix the two differents parts refers to, and do their tensor product to obtain the matrix corresponding to the
diagram

As explained above, we already know that a red node with 0 inputs and 1 output represents the vector
√
2 |0⟩, so we

focus now on the upper part of the diagram.

The upper part of the diagram consists in a red node with 0 inputs and 3 ouputs composed with a green node with 3
inputs and 0 outputs. We therefore need to understand to which diagrams these two nodes correspond, and then do
their matrix product. Note that the result is a diagram with 0 inputs and 0 outputs, and therefore corresponds to a
matrix of size 20 × 20, i.e. a scalar.

The red node with 0 inputs and 3 outputs represents the column vector 1/
√
2

1
0
0
1
0
1
1
0

and the green node with 3 inputs

and 0 outputs represents the row vector
(
1 0 0 0 0 0 0 1

)
. Their matrix product is:

© NEASQC Consortium Partners. All rights reserved. Page 8 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

(
1 0 0 0 0 0 0 1

) 1√
2

1
0
0
1
0
1
1
0

=

1√
2

The diagram on the top therefore represents the scalar 1√
2

, and the diagram on the bottom represents the vector
√
2 |0⟩.

The two diagrams are put side by side, which means we should do their tensor product to obtain the result:

1√
2
⊗

√
2 |0⟩ = |0⟩

In what follows, to simplify the exposition, we will only represent diagrams upto scalar, i.e. we will say that the red
node with 0 inputs and 1 output is the vector |0⟩ while it is truly the vector

√
2 |0⟩.

The matrix
(
1 1
0 1

)
. Another important example is the matrix

(
1 1
0 1

)
can be represented by the diagram

π
2

π
4

π
4

−π
4

π
4

It is a tedious exercise to show that this diagram indeed corresponds to the intended matrix. Notice that this diagram
contains vertical wires. It is intended to represent that the green node can be applied before the two red nodes (by
representing it slightly to the left), or after the two red nodes, and that both will give the same matrix.

This matrix plays a central role in many applications, and will be represented by a triangle in what follows:

We will represent more generally the matrix
(
1 α
0 1

)
by the picture:

α

A diagram for this matrix is not easy to produce in general for arbitrary α in the ZX-Calculus. If α is an integer, it can
be obtained by composing the triangle with itself n times. Otherwise, the best way to produce this diagram is to use
the algebraic ZX-Calculus (Wang & Yeung, 2021) where the triangle can be understood as a new generator.

The ZX-Calculus comes with a complete equational theory, i.e. a set of rules on how to rewrite diagrams s.t. two
diagrams that represents the same matrix are equal up to local applications of the rules. It is not the purpose of this
deliverable to reason about the equational theory, and it will therefore not be presented here. See (Vilmart, 2019) for
one such axiomatisation.

© NEASQC Consortium Partners. All rights reserved. Page 9 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

4.A language to represent Hamiltonians

In this section, we introduce a diagrammatic language that will be able to represent diagonal Hamiltonians. For
presentation purpose, we will mostly focus on representing Ising Hamiltonians, i.e. Hamiltonians of the form∑

i,j αiZi⊗Zj+
∑

i βiZi. Most Hamiltonians that appear in combinatorial problems, and in QAOA applications, are
indeed Ising Hamiltonians. The generalization of the language to arbitrary diagonal Hamiltonians is straightforward,
but adds heavier notation.

4.1. A Pro for Ising Hamiltonians

4.1.1. Discussion

Before introducing the language, it is important to say that Hamiltonians do not enjoy the same closure properties as
other classes of matrices. In particular, the product of two Hermitian matrices is not an Hermitian matrix.

This is a problem because usually diagrammatic languages assume the composition ◦ is the matrix product, or related
to the matrix product.

To obtain a diagrammatic language, we have to do something different. We will indeed suppose that the composition
◦ is the sum of the matrices. This is relevant, because sums of Hermitian matrices are again Hermitian. Changing the
composition ◦ to the matrix sum, also means we need to have a non-obvious parallel composition. Indeed the tensor
product does not commute with the sum. The good solution is to use the tensor sum:

A⊕B = A⊗ IM + IN ⊗B

where IM and IN are the identity matrices of the same size as A and B respectively

There is also a more fundamental problem, which is that a Hermitian matrix with two columns permuted is not a
Hermitian matrix anymore. This means that it will be hard to define the swap generator σ (the diagram that corresponds
to permuting two wires) in a diagrammatic language for Hamiltonians.

In this section, we will therefore merely obtain a pro and not a prop: diagrams that we can compose sequentially or in
parallel, but without having the possibility of permuting two wires.

This problem will be solved in the next section.

4.1.2. Definition

The previous discussion leads to the following definition:

Definition 2. The pro of Hamiltonian matrices is the pro P where:

• P [n, n] is the set of all Hermitian matrices of dimension 2n. P [n,m] is empty1 for n ̸= m.

• The sequential composition of M ∈ P [n, n] and N ∈ P [n, n] is N +M

• The parallel composition of M ∈ P [n, n] and N ∈ P [m,m] is N ⊕M .

• The identity id is the 0 matrix.

We stress again that we merely obtain a pro: we do not have a way to permute wires.

Now that we have the definition of the Pro, we can give generators and represent Hamiltonian matrices in it:

1The fact we need all our morphisms to have the same number of inputs and outputs is similar to what happens for quantum circuits.

© NEASQC Consortium Partners. All rights reserved. Page 10 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

Definition 3. We distinguish two sets of generators in the previous pro:

• The 1 → 1 matrix
(
α 0
0 −α

)
represented by α . α is equal to 1 if not represented.

• The 2 → 2 matrix

α 0 0 0
0 −α 0 0
0 0 −α 0
0 0 0 α

 represented by α . α is equal to 1 if not represented.

4.1.3. Example

Now we have everything to represent Hamiltonians. For instance, the Hamiltonian H = Z1Z2 + Z3 + 2Z3Z4 can be
represented by:

2

Notice that descriptions of Hamiltonian implicitely hide the identity matrices. Indeed, the Hamiltonian H = Z1Z2 +
Z3 + 2Z3Z4 should be written more carefully as H = Z ⊗ Z ⊗ I ⊗ I + I ⊗ I ⊗ Z ⊗ I + 2I ⊗ I ⊗ Z ⊗ Z. This
writing makes the appearance of the tensor sum in our diagrams more natural.

4.2. A Prop for Ising Hamiltonians

4.2.1. Definition

As explained in the previous section, what we have obtained is merely a pro: We did not provide any generator that is
able to permute wires.

In fact, our previous language cannot even express all diagonal Hamiltonians. The problem will be apparent when
trying to represent the Hamiltonian Z1Z3 = Z ⊗ I ⊗ Z. An obvious representation would be:

However such a representation is impossible: Our generator can only be applied to two consecutive wires.

There are two ways to circumvent the problem: The first is to add generators that correspond to operators ZiZj

applied on nonconsecutive wires (a family of generators indexed by the distance between the two wires). This first
solution is very cumbersome, especially once one wants to deal with general diagonal Hamiltonians and not only Ising
Hamiltonians.

The second solution is to indeed find a way to permute wires, so the following diagram makes sense:

© NEASQC Consortium Partners. All rights reserved. Page 11 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

While the diagram might look clean, there are two problems semantically. The first problem is that most permutations
are not Hermitian matrices, which means that our language will be able to express more than just Hermitian matrices.
The second problem is that our composition operator is the matrix sum, and in the previous diagram we certainly are
trying to do the product of the three matrices, and not their sum.

Some changes are therefore needed the previous diagram to make sense.

For this, we introduce a new prop, called the Unitary-Hermitian prop. In this prop, a diagram represents intuitively an
Hermitian matrix on which some Unitary matrix acts, i.e. a pair (U,H) of matrices. We will only be interested in the
“H” part of this pair, but the diagram really represents both simultaneously.

Diagrammatically, the best way to think about a diagram n → n is to represent a matrix of dimension 2n+1, that is
with one more wire, of the form (

U UH
0 U

)
= (I ⊗ U)

(
I H
0 I

)
where U is any unitary matrix and H is a Hermitian matrix. The additional wire specifies which part of the matrix we
are interested in: if it is initialized with |0⟩ and postselected on |0⟩, we recover the unitary part U . If it is initialized
with |1⟩ and postselected on |0⟩ we recover the Hermitian part (skewed by U), the matrix UH . We can think of this
additional (not represented) wire as some kind of control wire.

The sequential composition of two such matrices is obvious. For the parallel composition of two diagrams M and N ,
we need to be careful : the hidden wire should be shared by M and N .

4.2.2. Definition

This leads to the following definition:

Definition 4. The Unitary-Hermitian prop (UH) is the prop P where:

• P [n, n] are matrices of size 2n+1 of the form (
U UH
0 U

)
where U is unitary and H Hermitian. P [n,m] is empty for n ̸= m.

• The sequential composition of M ∈ P [n, n] and N ∈ P [n, n] is M ◦N =MN

• The parallel composition of M =

(
U UH
0 U

)
and N =

(
U ′ U ′H ′

0 U ′

)
is

M ⊠N =

(
U ⊗ U ′ (U ⊗ U ′)(H ⊕H ′)

0 U ⊗ U ′

)

This formal definition of the parallel composition indeed corresponds to the intuition given above.

There are a few things to prove for the definition to make sense. First that the sequential composition is indeed in
P [n, n]. Indeed:

(
U UH
0 U

)(
V V K
0 V

)
=

(
UV UV K + UHV

UV

)
=

(
UV UV (K + V †HV)

UV

)
and (K + V †HV) is indeed Hermitian.

It is also nontrivial that the two compositions are compatible, i.e. that (A⊠B)(C⊠D) = (AC⊠BD). This is proven
in Appendix A.1

We reiterate that in this prop, diagrams represents pairs (U,H) of matrices, but we will think of them as representing
only the second matrix, with U as a byproduct. If we want to represent only Ising matrices, this prop is too large: we
don’t need all matrices U and we don’t need all Hamiltonians. We will consider the subprop:

© NEASQC Consortium Partners. All rights reserved. Page 12 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

Definition 5. The diagonal subprop UHD is the subprop of UH consisting of all matrices

M =

(
U UH
0 U

)
where H is diagonal Hermitian and U is unitary and has exactly one nonzero coefficient per row and column.

(In pratice, we could require that U is a permutation matrix, but we can accomodate a slightly bigger prop).

In this prop, we can now represent Ising Hamiltonians, using permutations if necessary, by using the same two gener-
ators as before.

Proposition 1. Any Ising Hamiltonian can be represented in UH0 using the following two generators, and possibly
permutation of the wires:

• The 1 → 1 matrix

1 0 α 0
0 1 0 −α
0 0 1 0
0 0 0 1

 represented by α . α is equal to 1 if not represented.

• The 2 → 2 matrix

1 0 0 0 α 0 0 0
0 1 0 0 0 −α 0 0
0 0 1 0 0 0 −α 0
0 0 0 1 0 0 0 α
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

represented by α . α is equal to 1 if not

represented.

More precisely the diagram will represent the matrix
(
I H
0 I

)
.

Notice that these generators are the same as in Definition 3, except they represent different matrices: If a generator

represented a matrix H in the previous pro, it now represents the matrix
(
I H
0 I

)
.

Proof. Let H =
∑

i αiZi +
∑

i,j βiZiZj . It is enough to represent each term independently by a diagram , and then
sum them by putting them one after the other.

The Hamiltonian αiZi can be obtained by using the first generator on the ith wire. The Hamiltonian βi,jZiZj can be
obtained by first exchanging the wire j and the wire i + 1 , using permutations, then using the second generators on
wires i and i+ 1, then exchanging againt the wire j and the wire i+ 1. See the example below for a picture.

4.2.3. Examples

The Hamiltonian H = Z1Z3 + 3Z2Z4 can be represented as:

3

or, without using notations:

© NEASQC Consortium Partners. All rights reserved. Page 13 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

3

More accurately, this diagram represents the matrix
(
I H
0 I

)
.

4.2.4. Notes

We note a few things about our new diagram representation:

• Our composition is now the “normal” composition rather than the sum of matrices.

• There is a prop functor F from the pro of the previous section to the prop UH sending H to
(
I H
0 I

)
. This is

indeed a functor, i.e. F (A+B) = F (A) ◦ F (B), and F (A⊕B) = F (A)⊠ F (B).

• There is a prop functor F from the prop of circuits to the prop UH sending U to
(
U 0
0 U

)
. This functor is

also monoidal, i.e. F (A⊗B) = F (A)⊠ F (B). There is a reverse functor G from the prop UH to the prop of

circuits that maps
(
U UH
0 U

)
to U , i.e. that forgets abouts H .

© NEASQC Consortium Partners. All rights reserved. Page 14 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

5.Representing Hamiltonians and their exponential in the ZX-Calculus

We will now explain how we can use the representation of the previous section to represent Hamiltonians and compute
their exponential in the ZX-Calculus.

5.1. Computing the exponential

First, we explain how to compute the exponential of a diagram given in the UHD language. The resulting diagram is
a diagram of the ZX-Calculus. Fix a real number t. We denote by expt(H) the map eitH .

The main theorem is as follows. It implies that we can build the exponential brick by brick.

Theorem 1. The map F from the prop UHD to the prop Qubit that sends M =

(
U UH
0 U

)
to U expt(H) is a prop

functor. In particular, F (MN) = F (M)F (N) and F (M ⊠N) = F (M)⊗ F (N).

The fact that F is a prop functor also expresses that permuting wires in the prop UHD also corresponds to permuting
wires in the prop Qubit, i.e. the image of σ is σ.

Proof. Let M =

(
U UH
0 U

)
and N =

(
V V K
0 V

)
. Then

MN =

(
UV UV K + UHV
0 UV

)
=

(
UV UV (K + V ⋆HV)
0 UV

)
Therefore

F (MN) = UV expt(K + V ⋆HV)

Notice that K and V ⋆HV are both diagonal matrices, so their exponential commute, and we can write:

F (MN) = UV expt(V
⋆HV) expt(K) = UV V ⋆ expt(H)V expt(K) = U expt(H)V expt(K) = F (M)F (N)

Now

M ⊠N =

(
U ⊗ V (U ⊗ V)(H ⊕K)

0 U ⊗ V

)

so that F (M ⊠N) = U ⊗ V expt(H ⊕K).

Now expt(H ⊕K) = expt(H ⊗ I + I ⊗K) = expt(H ⊗ I) expt(I ⊗K) as the two matrices commute and

expt(H ⊗ I) =
∑
n

(it)n(H ⊗ I)n

n!
=

∑
n

(itH)n ⊗ I

n!
=

∑
n

(itH)n

n!
⊗ I = expt(H)⊗ I

Therefore F (M ⊠N) = (U ⊗ V)(expt(H)⊗ I)(I ⊗ expt(K)) = (U expt(H)⊗ V expt(K)) = F (M)⊗ F (N)

The consequence of the theorem is that it is enough to define the exponentials on the generators to obtain the expo-
nential on any diagram. As explained in Proposition 1, Ising Hamiltonians are built using 2 generators presented in
section 4 and the swap. It is therefore enough to give the image of the three generators by F to know how to compute
the exponential of any Ising Hamiltonian.

© NEASQC Consortium Partners. All rights reserved. Page 15 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

We already know that permuting wires in UHD corresponds to permuting wires in Qubit. It remains to find represen-
tations for the image of the two generators of UHD:

• Consider the generator

α

The exponential of the matrix
(
α 0
0 −α

)
is the matrix

(
eitα 0
0 e−itα

)
Upto a scalar this is exactly the matrix related to the green node of parameter −2tα. In other words, it is:

−2tα

• Consider the diagram

α

The exponential of the matrix

α 0 0 0
0 −α 0 0
0 0 −α 0
0 0 0 α

 is the matrix

eitα 0 0 0
0 e−itα 0 0
0 0 e−itα 0
0 0 0 eitα

Up to a scalar, this can be done with the following ZX-diagram:

−2tα

We therefore obtain the following correspondence table

H expt(H)

α −2tα

α −2tα

Table 1: How to transform generators of the UHD calculus into representations of their exponentials

We then obtain the following algorithm to compute the exponential of the diagram:

• See the diagram as parallel and sequential compositions of the generators

• Replace each generator by their exponential using the table

• Compose them using the parallel and sequential compositions of the ZX-Calculus

© NEASQC Consortium Partners. All rights reserved. Page 16 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

5.2. Hamiltonians in the ZX-Calculus

Given an Hamiltonian H , the QAOA algorithm produces a circuit involving its exponential expt(H) that computes a
state |ψ⟩. To analyse the results of the circuit, one needs to compute ⟨ψ|H |ψ⟩. To analyse this diagrammatically, we
need to be able to represent both the matrix H and its exponential in the same formalism. This is not the case for now,
as the matrix is represented in the language UHD and its exponential in the ZX-Calculus.

However, we can also use the language UHD to represent the matrix in the ZX-Calculus itself.

Indeed, we explained in Section 4 that the intuitive understanding of diagrams of the UHD are diagrams with some
kind of hidden additional wire. To produce terms of the ZX-Calculus, we will make this additional wire explicit.

The two generators of UHD correspond to the two matrices:
1 0 α 0
0 1 0 −α
0 0 1 0
0 0 0 1

and

1 0 0 0 α 0 0 0
0 1 0 0 0 −α 0 0
0 0 1 0 0 0 −α 0
0 0 0 1 0 0 0 α
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

They can be represented in the ZX-Calculus by the following two diagrams

α

α

In these two diagrams, the upper wire represents the hidden (control) wire.

To obtain a ZX-diagram, we just have to use this correspondence, keeping in mind that the control wire should be
common among all generators, which implies that we should first “linearize” the diagram so that there are never two

generators in parallel. We will then obtain a diagram that represents the matrix
(
I H
0 I

)
, and we will need to initialize

the control wire with |1⟩ and postselect it on |0⟩.

H in the UHD calculus H in the ZX-Calculus

α α

α

α

Table 2: How to transform diagrams of the UHC calculus into diagrams of the ZX-calculus. The wire on top should
be common among all generators.

© NEASQC Consortium Partners. All rights reserved. Page 17 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

We then obtain the following algorithm to transform a diagram of the UHD calculus into a diagram of the ZX-
calculus.:

• See the diagram as parallel and sequential compositions of the generators, in such a way that there is never two
generators in parallel

• Replace each generator by their equivalent in the ZX-calculus using the table, and adding a wire. The top wire
should be common among all generators

• Compose them using the parallel and sequential compositions of the ZX-Calculus

• Initialize the top wire with |1⟩ and postselect it on |0⟩ by putting a red node 0 → 1 with parameter π on the left
(which corresponds to |1⟩, and a red node 1 → 0 with parameter π on the right (which corresponds to ⟨0|).

5.3. An example

To put everything together, we give an example of an Hamiltonian in the UHD calculus, how it is represented in the
ZX-calculus, and how its exponential is represented.

Our example is the Hamiltonian H = Z1Z3 + Z2 + 2Z3Z4.

In the UHD calculus, this can be represented by:

2

Using the table of section 5.2, we obtain the following diagram for the same Hamiltonian in the ZX-Calculus.

2

π

And its exponential can be found using the table of section 5.1

−2t

−4t

−2t

© NEASQC Consortium Partners. All rights reserved. Page 18 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

6.Conclusions

This deliverable provides a way to represent Hamiltonians in a new language, called UHD, and an algorithm to obtain
representations of the same matrix and its exponential in the ZX-Calculus. Subsequent work in the context of the
NEASQC project consists in using this representation to analyse formally some particular instances of QAOA.

© NEASQC Consortium Partners. All rights reserved. Page 19 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

List of Tables

Table 1.: How to transform generators of the UHD calculus into representations of their exponentials . . 16
Table 2.: How to transform diagrams of the UHC calculus into diagrams of the ZX-calculus. The wire on

top should be common among all generators. 17

© NEASQC Consortium Partners. All rights reserved. Page 20 of 22

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

Bibliography

Carette, T., Hoffreumon, T., Larroque, É., & Vilmart, R. (2023). Complete graphical language for hermiticity-
preserving superoperators. Proceedings of the 38th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS).

Coecke, B., & Duncan, R. (2011). Interacting quantum observables: Categorical algebra and diagrammatics. New
Journal of Physics, 13(4), 043016. https://doi.org/10.1088/1367-2630/13/4/043016

Cowtan, A., Dilkes, S., Duncan, R., Simmons, W., & Sivarajah, S. (2020). Phase gadget synthesis for shallow circuits.
Electronic Proceedings in Theoretical Computer Science, 318, 213–228. https://doi.org/10.4204/eptcs.318.13

de Beaudrap, N., Bian, X., & Wang, Q. (2020). Techniques to reduce π/4-parity-phase circuits, motivated by the ZX
calculus. Electronic Proceedings in Theoretical Computer Science, 318, 131–149. https://doi.org/10.4204/
eptcs.318.9

Duncan, R., Kissinger, A., Perdrix, S., & van de Wetering, J. (2020). Graph-theoretic simplification of quantum circuits
with the ZX-calculus. Quantum, 4, 279. https://doi.org/10.22331/q-2020-06-04-279

Duncan, R., & Perdrix, S. (2010). Rewriting measurement-based quantum computations with generalised flow. In S.
Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, & P. G. Spirakis (Eds.), Automata, languages
and programming (pp. 285–296). Springer Berlin Heidelberg.

Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization algorithm. https://doi.org/10.
48550/ARXIV.1411.4028

Garvie, L., & Duncan, R. (2018). Verifying the smallest interesting colour code with quantomatic. Electronic Proceed-
ings in Theoretical Computer Science, 266, 147–163. https://doi.org/10.4204/eptcs.266.10

Jeandel, E., Perdrix, S., & Veshchezerova, M. (2022). Addition and differentisdation of zx-diagrams. International
Conference on Formal Structures for Computation and Deduction (FSCD). https://doi.org/10.4230/LIPIcs.
FSCD.2022.13

Joyal, A., & Street, R. (1991). The geometry of tensor calculus, I. Advances in mathematics, 88(1), 55–112.
Kissinger, A., & van de Wetering, J. (2019). Universal MBQC with generalised parity-phase interactions and pauli

measurements. Quantum, 3, 134. https://doi.org/10.22331/q-2019-04-26-134
Kissinger, A., & van de Wetering, J. (2020). Reducing the number of non-clifford gates in quantum circuits. Physical

Review A, 102(2). https://doi.org/10.1103/physreva.102.022406
Mac Lane, S. (1971). Categories for the working mathematician. Springer.
Selinger, P. (2010). A survey of graphical languages for monoidal categories. In New structures for physics (pp. 289–

355). Springer.
Shaikh, R. A., Wang, Q., & Yeung, R. (2022). How to sum and exponentiate hamiltonians in zxw calculus

[arXiv:2212.04462].
van de Wetering, J. (2020). Zx-calculus for the working quantum computer scientist.
Vilmart, R. (2019). A near-optimal axiomatisation of ZX-calculus for pure qubit quantum mechanics. Proceedings of

the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). https://arxiv.org/abs/1812.
09114

Wang, Q., & Yeung, R. (2021). Representing and implementing matrices using algebraic zx-calculus. https://doi.org/
10.48550/ARXIV.2110.06898

Wang, Q., & Yeung, R. (2022). Differentiating and integrating zx diagrams.

© NEASQC Consortium Partners. All rights reserved. Page 21 of 22

https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.4204/eptcs.318.13
https://doi.org/10.4204/eptcs.318.9
https://doi.org/10.4204/eptcs.318.9
https://doi.org/10.22331/q-2020-06-04-279
https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.4204/eptcs.266.10
https://doi.org/10.4230/LIPIcs.FSCD.2022.13
https://doi.org/10.4230/LIPIcs.FSCD.2022.13
https://doi.org/10.22331/q-2019-04-26-134
https://doi.org/10.1103/physreva.102.022406
https://arxiv.org/abs/1812.09114
https://arxiv.org/abs/1812.09114
https://doi.org/10.48550/ARXIV.2110.06898
https://doi.org/10.48550/ARXIV.2110.06898

D5.6 Diagrammatical languages to represent Hamiltonians and how to compute the exponential of Hamiltonians (0.2- Delivered)

A.Appendix

A.1. Compatibility of the two compositions

In this section, we use the following facts about ⊕:

• (M +N)⊕ (O + P) = (M ⊕O) + (N ⊕ P)

• (U ⊗ V)(M ⊕N)(U† ⊗ V †) = (UMU†)⊕ (V NV †) if U and V are unitary.

Now let A =

(
U UH
0 U

)
, B =

(
U ′ U ′H ′

0 U ′

)
, C =

(
V V K
0 V

)
and D =

(
V ′ V ′K ′

0 V ′

)
Then

A⊠B =

(
U ⊗ U ′ (U ⊗ U ′)(H ⊕H ′)

0 U ⊗ U ′

)

C ⊠D =

(
V ⊗ V ′ (V ⊗ V ′)(K ⊕K ′)

0 V ⊗ V ′

)

and therefore

(A⊠B)(C ⊠D) =

(
UV ⊗ U ′V ′ (UV ⊗ U ′V ′)(K ⊕K ′) + (U ⊗ U ′)(H ⊕H ′)(V ⊗ V ′)

0 UV ⊗ U ′V ′

)
=

(
UV ⊗ U ′V ′ (UV ⊗ U ′V ′)

[
K ⊕K ′ + (V † ⊗ V ′†)(H ⊕H ′)(V ⊗ V ′)

]
0 UV ⊗ U ′V ′

)
=

(
UV ⊗ U ′V ′ (UV ⊗ U ′V ′)

(
K ⊕K ′ + V †HV ⊕ V ′†H ′V ′)

0 UV ⊗ U ′V ′

)

On the other hand

AC =

(
UV UV K + UHV
0 UV

)
=

(
UV UV (K + V †HV)
0 UV

)
and

BD =

(
U ′V ′ U ′V ′(K ′ + V ′†H ′V ′)
0 U ′V ′

)
so that

AC ⊠BD =

(
UV ⊗ UV ′ (UV ⊗ UV ′)((K + V †HV)⊕ (K ′ + V ′†H ′V ′))

0 UV ⊗ U ′V ′

)
= (A⊠B)(C ⊠D)

© NEASQC Consortium Partners. All rights reserved. Page 22 of 22

	1 Executive Summary
	2 Introduction
	3 Definitions
	3.1 Diagrammatic Languages
	3.2 The ZX-Calculus
	3.2.1 Definitions
	3.2.2 Examples

	4 A language to represent Hamiltonians
	4.1 A Pro for Ising Hamiltonians
	4.1.1 Discussion
	4.1.2 Definition
	4.1.3 Example

	4.2 A Prop for Ising Hamiltonians
	4.2.1 Definition
	4.2.2 Definition
	4.2.3 Examples
	4.2.4 Notes

	5 Representing Hamiltonians and their exponential in the ZX-Calculus
	5.1 Computing the exponential
	5.2 Hamiltonians in the ZX-Calculus
	5.3 An example

	6 Conclusions
	List of Tables
	Bibliography
	A Appendix
	A.1 Compatibility of the two compositions

