

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 951821

ã NEASQC Consortium Partners. All rights reserved. Page 1 of 14

NExt ApplicationS of Quantum Computing

Implementation of QRL algorithm
on real architecture (D5.5)

Document Properties

Contract Number 951821

Contractual Deadline M34 (31/06/2023)

Dissemination Level Public

Nature Report

Edited by : Vedran Dunjko (ULEI)

Authors Simon Marshall (ULEI), Vedran Dunjko (ULEI)

Reviewers Gonzalo Ferro Costa
Andres Gomez Tato

Date 22/05/2023

Keywords Quantum algorithms

Status Internal review version

Release 1.0

Implementation of QRL algorithm on real architecture (D5.5)
Release - Internal review version

ã NEASQC Consortium Partners. All rights reserved.

Page 2 of 14

History of Changes
Release Date Author, Organization Description of Changes

0.1 13/04/2023 Vedran Dunjko (ULEI) First draft: structure of the document

 0.2 15/05/2023 Simon Marshall (ULEI) Details and introduction added

 0.3 18/05/2023 Vedran Dunjko (ULEI) Text refinement

 1.0 22/05/2023 Simon Marshall, Vedran Dunjko
(ULEI) Final version for review

Implementation of QRL algorithm on real architecture (D5.5)
Release - Internal review version

ã NEASQC Consortium Partners. All rights reserved.

Page 3 of 14

Table of Contents
1. EXECUTIVE SUMMARY ... 4
2. DESCRIPTION OF THE QUANTUM ALGORITHM AND TASK .. 5

2.1. QUANTUM ALGORITHM FOR REINFORCEMENT LEARNING ... 5
2.2. TEST PROBLEM .. 5

3. SIMULATIONS V.S. REAL DEVICE IMPLEMENTATIONS ... 7
4. RESULTS ... 8
5. CONCLUSION ... 10
6. ACRONYMS AND ABBREVIATIONS ... 11
7. LIST OF FIGURES .. 12
8. LIST OF TABLES ... 13
9. BIBLIOGRAPHY ... 14

Implementation of QRL algorithm on real architecture (D5.5)
Release - Internal review version

ã NEASQC Consortium Partners. All rights reserved.

Page 4 of 14

1. Executive Summary
This report is the second deliverable of Task 5.2 - QRL for the inventory management part of the
NEASQC project. It describes how we successfully deployed a QRL agent on a real quantum computer
to tackle a simplified version of the challenge of inventory management. We describe the setup that
solved this problem and examines some interesting conclusions drawn from comparing the real device
noise to simulators.

We begin by introducing the reader to quantum reinforcement learning as developed within the NEASQC
project, and to the inventory management problem we apply our learning algorithm to in Section 2.
Section 3 highlights the key insights we gained from our experiments, particularly the importance of
noise while training on a simulator and the relative unimportance of the specific noise model. Section 4
goes into the specifics of our methods and results, going into detail, both about how we achieved this
learning problem and the conclusions we draw from our experiments.

Implementation of QRL algorithm on real architecture (D5.5)
Release - Internal review version

ã NEASQC Consortium Partners. All rights reserved.

Page 5 of 14

2. Description of the quantum algorithm and task

2.1. Quantum algorithm for reinforcement learning

Parameterized quantum circuits (PQC) have emerged as a useful tool in quantum machine learning. A
PQC consists of a quantum circuit ansatz and specified parametrized gates. Some of the parameters
are used to input classical data into the system and others can be trained to solve the problem at hand.

Recently, the Leiden group, also as a part of the NEASQC project, has focused on the design of
reinforcement learning (RL) algorithms based on PQCs . RL refers to a class of problems in which an
agent learns to take actions in an environment to maximize some reward signal. This promising
approach involves training a PQC to output a policy, i.e., a mapping from states to actions, which
maximizes the expected reward (or so-called Q-values), i.e. an approximation of the value of each action
in each state. By using gradient-based optimization techniques to update the parameters of the PQC,
this approach holds the potential to significantly speed up the learning process and achieve superior
performance compared to classical reinforcement learning algorithms. This defines “quantum
reinforcement learning” for the purposes of this report.

In particular, in [JER21] we have demonstrated the effectiveness of this general framework in deploying
a PQC for reinforcement learning and we have proven the theoretical advantages over classical models.
Here, we have built on this work by deploying a similar RL algorithm for PQCs to the inventory
management use case. For details on the Quantum RL machinery we use, we refer the reader to
[JER21], and to the deliverable D5.2 of the NEASQC problem

2.2. Test problem

A first step in the deployment of new technologies consists of tests in simpler settings, where the
performance can be fully assessed. Here we describe the task we used toward larger-scale inventory
management problems. One commonly studied problem in inventory management is the task of
balancing supplies as a middle-person in a long supply chain, originally formulated as trading crates of
beer which gives rise to the problem's traditional name: “the beer game”. The beer game can be thought
of as a reinforcement learning environment, where multiple agents interact with each other in a supply
chain. The agents form a chain of agents, each able to trade with the agent above and below them in
the chain. The chain begins with the factory where the items for the inventory are produced and ends
with the retailer where inventory is consumed. Between these two are some number of “middle-persons”,
who must balance their inventory to never run out (and lose profit) or to stock too much (and waste
capital).

The goal of the agents is to maximize their profit by balancing their inventory levels and meeting
customer demand. Each agent receives a reward based on their profit, which is determined by the
difference between their revenue from selling beer and their costs of holding and ordering inventory.

The agents can take actions by placing orders for beer from the agent upstream and deciding how much
beer to keep in their inventory. However, the agents only have partial observability of the system, as
they do not know the exact demand or inventory levels of the other agents. The details of the setting are
provided later.

The challenge of the beer game is to learn a policy that maximizes profit while dealing with the
uncertainties and delays inherent in the supply chain. The agents must learn to adapt their inventory
levels and ordering decisions based on the feedback they receive from their rewards, as well as the
observed outcomes of their actions.

Implementation of QRL algorithm on real architecture (D5.5)
Release - Internal review version

ã NEASQC Consortium Partners. All rights reserved.

Page 6 of 14

Figure 1: Illustration of the beer game from [ORO17] modified with DALL.E 2. Two warehouses are
shown between the factory (top) and distributor/end consumer (bottom). At each stage of the
game an individual warehouse/agent decides how much beer to order from the agent above
them in the supply chain and sends the beer ordered by the agent below.

Implementation of QRL algorithm on real architecture (D5.5)
Release - Internal review version

ã NEASQC Consortium Partners. All rights reserved.

Page 7 of 14

3. Simulations v.s. real device implementations

We have successfully implemented a quantum reinforcement learning (QRL) method to solve the
inventory management problem from the previous section. This was done in simulations, but we have
also trained the QRL agent using a simulator and then deployed it on a real device -- at present the full
training on the device is beyond our budget of QC time. Nonetheless, this enables us to suggest how
correct the claims of the effectiveness of QRL in solving RL problems are, compared to literature e.g.
[CHE20, SKO22, LOC20] when one considers realistic noise models and actual device
implementations. In particular, we present a clear comparison of models trained noiselessly and with
noise, and to see how the actual deployments of these algorithms differ.

Our findings show that a QRL model trained with noise present is able to adapt well to different forms
of noise and perform nearly equally well on both simulated and real device noise. However, a QRL
model trained on a noiseless simulator performs poorly on both simulated and real device noise,
indicating a clear gap between these noisy cases. This suggests that QML statements made when
trained on a noisy simulator may carry over to real devices, while QML statements made on a noiseless
simulator may not. These findings are detailed in the next section.

Implementation of QRL algorithm on real architecture (D5.5)
Release - Internal review version

ã NEASQC Consortium Partners. All rights reserved.

Page 8 of 14

4. Results

Figure 2a & 2b: The reward for our model during training on the inventory management task. Figure 2a
is for the noiseless case, 2b includes noise in the simulator. Convergence in the noiseless case is
quicker but potentially less robust (see figure 3).

Methods:
The experimental setup involved using the previously described QRL algorithm which we developed for
previous papers. We utilized a hardware-efficient ansatz with 3 qubits and had a depth of 3. We trained
two models, one noiselessly and one with noise.

We used the in-built simulator in TensorFlow Quantum during training - this was convenient as the
original work in [JER21] already developed all the QRL machinery in that language. In the noisy training
run, we added noise using phase flip and amplitude damping channels. The rates were set to
approximately equal levels seen in the real device although the noise profile was largely different
(amplitude damping with 𝛾 = 0,001 and phase flip with 𝑝 = 0.0014). During deployment, we tested the
model on a real device (IBM Cairo) and a different noisy simulator (this time provided by IBM) to make
a fair comparison.

The inventory management environment was based on the game described and consisted of a middle-
person, a factory that always met demand, and a retailer that purchased beer based on a preset amount.
Our QRL model was in charge of ordering stock for the middleman. The agent could not see the last
order, making it challenging for the model to learn under uncertainty about what was last ordered. We
conducted experiments with episode lengths ranging from 5 to 30 trading steps ultimately settiling on
10 trading steps to not overwhelm the quantum computer during deployment. Reward was assigned
negatively, with -1 point awarded for every unsold piece of inventory held and -2 points awarded for
every missed sale (having demand but not enough stock to fufill this demand)

Implementation of QRL algorithm on real architecture (D5.5)
Release - Internal review version

ã NEASQC Consortium Partners. All rights reserved.

Page 9 of 14

Figure 3: Deployment performance of models on quantum simulator (different from the simulator used
in training) and real quantum device against beta (softmax inverse temperature). When detereministic

both models in both settings perform optimally, although when the policy is made stochastic (by
increasing the temperature) the more robust noiseless case prevails.

Results:
The results showed that the noiseless case had quicker training, with clear and strong convergence
early on in all training runs. In contrast, the noisy case was more spread out, with some training runs
taking much longer to converge to a good policy. When we deployed the trained weights in the real
device and set the agent to maximize the expected reward, all learned models performed optimally and
thus equally well. This result is better than expected, but consistent with the relatively simple nature of
the game.
This only means that the noisy system still has the correct action as the most likely one. However, when
a softmax was applied to choose the action, as is often done during training to encourage the agent to
explore actions it suspects will be fruitful, the model trained on the noisy simulator outperformed the
noiseless model in all instances. This is because now the distribution of actions is not greedy, and
differences between the learned action probabilities become directly influential in the actions of the
agent.

Interestingly, the noisy model also had a much closer performance on the simulator and real quantum
computer, despite the differences in the noise profiles used during training and the noise observed in
the real device.

Figure 4: bThe PQC architecture for n = 2 qubits and depth Denc = 1 comprises alternating layers of
encoding unitaries, denoted as Uenc(s, λi), which take a state vector s = (s0, . . . , sd−1) and scaling
parameters λi (from a vector λ ∈ R^|λ| of dimension |λ|) as input. Additionally, it includes variational
unitaries denoted as Uvar(φi), which take rotation angles φi (from a vector φ ∈ [0, 2π]^|φ| of dimension
|φ|) as input.

Implementation of QRL algorithm on real architecture (D5.5)
Release - Internal review version

ã NEASQC Consortium Partners. All rights reserved.

Page 10 of 14

5. Conclusion

In this deliverable, we have applied quantum reinforcement learning (QRL) to the inventory management
problem, which involves balancing inventory levels in a long supply chain to maximize profit. We have
trained a QRL model using a parameterized quantum circuit (PQC) ansatz and gradient-based
optimization and evaluated its performance on both a simulator and a real quantum device. Our findings
suggest that QRL can be effective in solving reinforcement learning problems, but the performance of
the model can be sensitive to the presence of noise in the training and execution.

We have demonstrated that a QRL model trained with noise present is able to adapt to various forms of
noise and perform nearly equally well on both simulated and real device noise. However, a QRL model
trained on a noiseless simulator performs poorly on both simulated and real device noise, indicating a
clear gap between either noisy case. These results suggest that QML statements made when trained
on a noisy simulator may apply to real devices, while QML statements made on a noiseless simulator
may be more robust.
Overall, our work contributes to the growing body of research on quantum machine learning and
reinforcement learning, demonstrating the potential of QRL in real-world applications. Our results
highlight the importance of considering the impact of noise in the training data and the need for further
research to develop robust and scalable QRL algorithms.

Implementation of QRL algorithm on real architecture (D5.5)
Release - Internal review version

ã NEASQC Consortium Partners. All rights reserved.

Page 11 of 14

6. Acronyms and Abbreviations

Term Definition
 PQC Parametrized quantum circuit

Table 1: Acronyms and Abbreviations

Implementation of QRL algorithm on real architecture (D5.5)
Release - Internal review version

ã NEASQC Consortium Partners. All rights reserved.

Page 12 of 14

7. List of Figures
Figure 1: Illustration of the beer game from [ORO17] modified with DALL.E 2. Two warehouses are
shown between the factory (top) and distributor/end consumer (bottom). At each stage of the game, an
individual warehouse/agent decides how much beer to order from the agent above them in the supply
chain and sends the beer ordered by the agent below. .. 6
Figure 2a & 2b: The reward for our model during training on the inventory management task. Figure 2a
is for the noiseless case, 2b includes noise in the simulator. Convergence in the noiseless case is
quicker but potentially less robust (see figure 3). ... 8
Figure 3: Deployment performance of models on quantum simulator (different from the simulator used
in training) and real quantum device against beta (softmax inverse temperature). When deterministic
both models in both settings perform optimally, although when the policy is made stochastic (by
increasing the temperature) the more robust noiseless case prevails. ... 9
Figure 4: The PQC architecture for n = 2 qubits and depth Denc = 1 comprises alternating layers of
encoding unitaries, denoted as Uenc(s, λi), which take a state vector s = (s0, . . . , sd−1) and scaling
parameters λi (from a vector λ ∈ R^|λ| of dimension |λ|) as input. Additionally, it includes variational
unitaries denoted as Uvar(φi), which take rotation angles φi (from a vector φ ∈ [0, 2π]^|φ| of dimension
|φ|) as input. .. 9

Implementation of QRL algorithm on real architecture (D5.5)
Release - Internal review version

ã NEASQC Consortium Partners. All rights reserved.

Page 13 of 14

8. List of Tables
Table 16: Acronyms and Abbreviations .. 11

Implementation of QRL algorithm on real architecture (D5.5)
Release - Internal review version

ã NEASQC Consortium Partners. All rights reserved.

Page 14 of 14

9. Bibliography

[JER21] Jerbi, S., Gyurik, C., Marshall, S., Briegel, H., & Dunjko, V. (2021). Parametrized Quantum
Policies for Reinforcement Learning. Advances in Neural Information Processing Systems (pp. 28362-
28375). Curran Associates, Inc.
[ORO17] Oroojlooyjadid, A., Nazari, M., Snyder, L. V., & Takác, M. (2017). A deep q-network for the
beer game with partial information. CoRR, abs/1708.05924.
[CHE20] Chen, S. Y. C., Yang, C. H. H., Qi, J., Chen, P. Y., Ma, X., & Goan, H. S. (2020). Variational
quantum circuits for deep reinforcement learning. IEEE Access, 8, 141007-141024.
[SKO22] Skolik, A., Jerbi, S., & Dunjko, V. (2022). Quantum agents in the gym: a variational quantum
algorithm for deep q-learning. Quantum, 6, 720.
[LOC20] Lockwood, O., & Si, M. (2020, October). Reinforcement learning with quantum variational
circuit. In Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment (Vol. 16, No. 1, pp. 245-251).

