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1 Executive Summary

This document gives an overview of the software delivery D4.5 “RO Beta and QCCC Beta”, where RO stands for
readout optimization and QCCC stands for quantum computing for carbon capturing. It consists of three main contri-
butions:

Two methods for improving the measurement results of a quantum computation, one based on enhanced sampling
using Bayesian statistics and one based on projecting the result to fulfill so-called n-representability constraints which
may be violated in a noisy quantum computation. Furthermore, a VQE ansatz investigating the formation of bound
states between CO2 and benzene in the context of utilizing benzene structures to perform CO2 recapturing.

Consequently, in Chap. 2 we discuss the method for enhanced sampling and show some key results. The software
implementation we developed is based on what can be found in literature [1], and we will make the code available in
the NEASQC GitHub [2]. Currently, it can be found here:
https://github.com/gsilviHQS/Variationals algorithms/tree/enhanced sampling/enhanced sampling

Next, in Chap. 3 we present briefly the projection method based on n-representability constraints and show selected
results. A detailed analysis can be found in our publication on the subject [3]. The software will be made available in
the NEASQC GitHub [2] after the review phase. Currently, it can be found here:
https://github.com/gsilviHQS/Variationals algorithms/tree/enhanced sampling/n-rep projection

Finally, in Chap. 4 we give a short discussion of the findings regarding using quantum computing to analyze the
formation of a benzene-CO2 dimer. Again, the code will be made available online in the NEASQC GitHub. It is a
continuation of an earlier deliverable [4], where some of the Python script’s dependencies originate from and can also
be found. Currently, the program for the benzene-CO2 dimer calculation is published here:
https://github.com/gsilviHQS/Variationals algorithms/tree/enhanced sampling/benzene CO2
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2 Enhanced Sampling

In this chapter, we give an overview of our investigated method of enhanced sampling based on Bayesian statistics.
We first motivate the enhanced sampling method compared to standard sampling, continue with a brief description of
the Bayesian sampling procedure, and finally show a handful of results from our numerical analysis.

2.1 Enhanced Sampling vs. Standard Sampling

Practical implementation of quantum algorithms often faces significant challenges. One of these challenges is the
high demand for measurements in hybrid quantum-classical algorithms such as the Variational Quantum Eigensolver
(VQE). In this section we present a new method of sampling in quantum computing that leverages bayesian inference:
enhanced sampling [1].

2.1.1 Standard Sampling

Standard sampling in quantum computing, particularly in the context of VQE, involves taking a large number of mea-
surements to estimate the expectation value of a Hamiltonian. This process can be computationally expensive and
time-consuming, especially for complex problems. The accuracy of the results depends on the number of measure-
ments taken, with more measurements generally leading to more accurate results. However, the high demand for
measurements can be a significant barrier for many practical applications.

2.2 Enhanced Sampling

The enhanced sampling method proposed in the paper ”Minimizing estimation runtime on noisy quantum comput-
ers” [1] is a technique that maximizes the statistical power of noisy quantum devices. This method is inspired by
quantum-enhanced metrology, phase estimation, and the more recent “alpha-VQE” and aims to improve the efficiency
of quantum amplitude estimation.

In standard sampling, as used in Variational Quantum Eigensolver (VQE), the estimation process is insensitive to
small deviations in the expectation value, leading to low information gain from measurement outcomes. This results
in a high runtime cost for for interesting practical problems.

Enhanced sampling addresses this issue by engineering likelihood functions that increase the rate of information gain,
thereby reducing the runtime of amplitude estimation. The method involves preparing an ansatz state, applying an
operator, adding a phase shift about the ansatz state, and then measuring the operator. The phase shift can be achieved
by performing the inverse of the ansatz circuit, then a phase shift about the initial state, and then re-applying the ansatz
circuit. An example with 1 layer is shown in Fig.1

The likelihood function in enhanced sampling is a degree-3 Chebyshev polynomial in the expectation value, referred
to as a Chebyshev likelihood function (CLF). This is in contrast to standard sampling, where the likelihood function
is a degree-1 polynomial. The higher degree polynomial in enhanced sampling leads to a higher rate of information
gain, which reduces the runtime of the estimation process.

2.2.1 Enhanced-Circuit Choice vs ELF

In the paper ”Minimizing estimation runtime on noisy quantum computers” [1], the Engineered Likelihood Function
(ELF) is used to estimate the parameters of a quantum circuit. The ELF maps the parameters of the quantum circuit to
a likelihood value, which measures how well the circuit fits the data. It is constructed by defining a prior distribution
over the parameters, and then using Bayes’ rule to compute the posterior distribution given the data. The likelihood
function is then defined as the marginal distribution of the data given the parameters. The ELF is used to perform
maximum likelihood estimation of the parameters, which involves finding the parameters that maximize the likelihood
function. This is done using a classical optimization algorithm, such as gradient descent.

In our work [2], we have chosen to implement an alternative approach where, for a given ansatz and some pre-
sampling, the algorithm selects between two enhanced-circuit with different number of layers, instead of using the
Engineered Likelihood Function (ELF). This method involves selecting the enhanced circuit with the highest Fisher
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Figure 1: Circuit for standard sampling vs enhanced sampling. Source [1].

information to be used for sampling. Fisher information is a measure of the amount of information that an observable
random variable carries about an unknown parameter, and maximizing it can lead to more efficient sampling.

By selecting the circuit with the highest Fisher information, we aim to maximize the information gain from each
measurement, thereby reducing the total number of measurements needed. This approach is more practical for our
purposes than implementing the ELF, as it does not require the time-consuming adaptive scheme to be applied at every
shot.

2.2.2 Results

In our repository, we offer a demonstrative notebook that showcases the capabilities of the algorithm. Specifically,
given a Hamiltonian and an ansatz, we evaluate the root mean square error of the measured energy relative to the
exact energy. As illustrated in Fig.2, following an initial shared presampling phase (standard), we compare the perfor-
mance of the enhanced sampling technique to that of standard sampling as additional measurements are conducted in
both scenarios. In a noiseless environment, it is evident that the enhanced sampling technique outperforms standard
sampling. However, this improvement is accompanied by a rise in complexity and, more significantly, an increase in
circuit depth. The latter is particularly disadvantageous in noisy environments such as those experienced by Near-Term
Intermediate-Scale Quantum (NISQ) devices. This drawback is evident in the case of the noisy 3-qubit system de-
picted in Fig.2d. Here, the performance of enhanced sampling deteriorates to a point below that of standard sampling.

2.2.3 Conclusion

While the ELF formalism offers a promising method for enhancing the power of sampling on quantum devices, its
practical implementation can be challenging due to the time required for the adaptive scheme. The two enhanced-
circuit choice offers a practical alternative that can reduce the number of measurements and runtime compared to
standard sampling, making it a promising approach for the implementation of quantum algorithms in practical appli-
cations.
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(a) 5 Runs on a 2-qubit EfficientSU2 ansatz on a noiseless
simulator.

(b) 5 Runs on a 2-qubit EfficientSU2 ansatz on a noisy
simulator.

(c) 5 Runs on a 3-qubit EfficientSU2 ansatz on a noiseless
simulator.

(d) 5 Runs on a 3-qubit EfficientSU2 ansatz on a noisy
simulator.

Figure 2: Root mean square errors for various experimental setups and configurations.
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3 Post-processing noisy quantum computations utilizing N-representability
constraints

In this chapter, we consider a method for improving the results of a noisy quantum computation, e.g., obtained from a
NISQ device. We will describe here briefly how the method works in the following theory subsection and show some
selected results in the subsequent subsection. A thorough analysis of the approach, including a detailed explanation of
the method and the motivation behind it, as well extensive numerical data and a discussion of its caveats are given in
our publication on this subject [3]:

Tomislav Piskor, Florian G. Eich, Michael Marthaler, Frank K. Wilhelm, and Jan-Michael Reiner, Post-processing
noisy quantum computations utilizing N-representability constraints, arXiv:2304.13401 [quant-ph] (2023), https://
arxiv.org/abs/2304.13401

3.1 Theoretical description

The internal energy is given by the expectation value of the Hamiltonian,

〈H〉 = E0 +
∑
ij

tij(
1Dij) +

∑
ijkl

Vijkl(
2Dijkl), (3.1)

with the annihilation (creation) operators c(†)i of an electron in orbital i, the energy offset E0, the one- and two-electron
integrals tij and Vijkl, as well as the one-particle RDM,

1Dij = 〈c†i cj〉, (3.2)

and the two-particle RDM

2Dijkl = 〈c†i c
†
jclck〉. (3.3)

If 1D and 2D of the ground state are obtained from a quantum computation on a NISQ device, they are obscured
by decoherence and shot noise. We assume, that the dominating noise source is decoherence, and in this case, the
calculated energy would be higher then the actual ground state energy.

One can mitigate this error and the statistical variance from shot noise by imposing constraints that the RDMs need to
fulfill:

From the anti-commutation relations of the fermionic operators, on can derive that they are Hermitian and obey a
certain set of anti-symmetry relations. These constraints are usually fulfilled in a quantum computation by simply
calculating only a minimal necessary set of matrix elements and reconstructing the rest through the Hermiticity and
anti-symmetry constraints.

Less trivial are the constraints that the RDMs need to be positive semi-definite and the trace is given be the particle
number n:

tr(1D) = n,

tr(2D) = n(n− 1).

We impose these by projecting; we find the RDM that fulfills these conditions and is, in some norm, closest to the
RDM calculated on the quantum computer.

Furthermore, one can transform the one- and two-particle RDMs into the hole and particle-hole sector. This means we
can transform to the one- and two-hole RDMs,

1Dij = 〈cic†j〉, (3.4)
2Dijkl = 〈cicjc†l c

†
k〉, (3.5)
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and the particle-hole RDM,

2Gijkl = 〈c†i cjc
†
l ck〉. (3.6)

In these sectors, the same constraints hold (where the trace now depends not only on the number of electrons in the
system, but also the number of holes). Instead of measuring, projecting, and calculating the energy in the particle
sector, one can, after measurement, transform into a different sector, project there, transform back to the particle
RDMs and calculate the energy.

We perform the projection of the measured RDMs in all three sectors, and return the energetically best of these results,
as we assume the noise to be dominated by decoherence.

Again, more detailed information and reasoning can be found in our paper [3].

3.2 Selected Results

To showcase the performance of the method, we give here examples of a ground state calculation of H2 under the
influence of damping noise in Fig. 3, and under the influence of damping noise and shot noise in Fig. 4. For damping
noise only we look at the energy difference of the calculation to the actual ground state energy, as well as the final
state fidelity. When including shot noise, we looked at the energy difference to the ground state and the measurement
variance.
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Figure 3: Energy difference to the ground state and fidelity of the final state towards the exact ground state for H2;
directly from the quantum calculation (QC), the three individual projection in the particle, hole, or particle-hole

sector (D, Q, or G) and the energetically best result (Best).
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Figure 4: Energy difference to the ground state and measurement variance for H2; directly from the quantum
calculation (QC), the three individual projection in the particle, hole, or particle-hole sector (D, Q, or G) and the

energetically best result (Best).
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In Fig. 3, note the improvement of the energy difference of almost an order of magnitude. Note also the general
improvement in fidelity, but that the energetically best result does not guarantee the best fidelity.

In Fig. 4, we should mention that Best is strictly lower than other projections in this case, as here we average over 100
repetitions of the same measurement with different shot noise, to obtain a variance, and in each repetition different
projections might lead to the energetically best result. The plot shows significant improvement of the energy difference,
but also – and arguably more importantly – the reduction of the measurement variance up to two orders of magnitude.
Note also that there is general reduction in the variance, but that the energetically best result does not guarantee the
smallest variance.

Once more, for a detailed numerical analysis see our manuscript [3].
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4 Quantum computing and carbon capture

NISQ computing algorithms, including the Variational Quantum Eigensolver (VQE), play a significant role in the
current era of quantum computing. NISQ devices are characterized by their intermediate scale, consisting of tens
to hundreds of qubits with a limited coherence time. Despite the inherent noise and imperfections in these quantum
systems, NISQ algorithms offer promising solutions to tackle complex computational problems. VQE, in particular, is
a hybrid quantum-classical algorithm that addresses problems in quantum chemistry and optimization. By leveraging
quantum circuits and classical optimization techniques, VQE aims to find the ground state energy of a given molecular
system. It does so by constructing a parameterized quantum circuit, known as an ansatz, and iteratively adjusting the
parameters to minimize the energy expectation value. Although VQE is susceptible to noise and errors, it can still
provide valuable insights into molecular properties and help optimize chemical processes in areas like drug discovery
and materials science.

The VQE algorithm’s strength lies in its ability to utilize limited quantum resources efficiently while mitigating the
effects of noise and errors. This approach is particularly suitable for NISQ devices, where achieving fault-tolerant
quantum computing is a significant challenge. VQE’s adaptability makes it a promising candidate for near-term quan-
tum applications, as it can be executed on current quantum hardware with a reasonable number of qubits. Moreover,
VQE’s hybrid nature allows it to take advantage of classical optimization algorithms, making it more robust against
the inherent noise and inaccuracies of NISQ devices. Researchers continue to explore various enhancements to VQE,
such as improved ansatz construction techniques, noise mitigation strategies, and error correction methods, to improve
the algorithm’s performance and broaden its applicability. As the field of NISQ quantum computing progresses, algo-
rithms like VQE are expected to play a vital role in advancing quantum technologies and unlocking their potential in
solving real-world problems.

In this deliverable we model the energy of the benzene-CO2 dimer as a function of distance (see Fig. 5) to model a
potential procedure using benzene structures to recapture CO2. We compare a hardware efficient ansatz to qUCCSD
and exact diagonalization (see Fig. 6). The dimer doesn’t have any clear minimum as a function of distance for the
mean field HF solution, qUCCSD or exact diagnoalization. The only method which gives a minimum is the hardware
efficient ansatz but this is quite likely due to the low expressibility of this ansatz.

Figure 5: Benzene-CO2 dimer distance displayed.
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Figure 6: The energy of the benzene-CO2 dimer as a function of distance.
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