
NExt ApplicationS of Quantum Computing

D6.9: QRBS software specications

Document Properties

Contract Number 951821

Contractual Deadline 31-oct-2022

Dissemination Level Public

Nature Report

Editors Vicente Moret-Bonillo, UDC
Andrés Gómez Tato, Cesga

Authors Vicente Moret-Bonillo, UDC
Samuel Magaz-Romero, UDC
Eduardo Mosqueira-Rey, UDC
Diego Álvarez-Estévez, UDC

Reviewers Vedran Dunjko, Leiden Univ.
Mohamed Hibti, EDF

Date 21-oct-2022

Keywords software specications, static design, dynamic design, testing

Status Reviewed

Release 1.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821



D6.9 QRBS software specications (1.1- Final)

History of Changes

Release Date Author, Organisation Description of Changes

1.0 11/10/2022 Vicente Moret-Bonillo, UDC
Samuel Magaz-Romero, UDC
Eduardo Mosqueira-Rey, UDC

First version.

1.1 21/10/2022 Vicente Moret-Bonillo, UDC
Samuel Magaz-Romero, UDC
Eduardo Mosqueira-Rey, UDC

Post internal review.

© NEASQC Consortium Partners. All rights reserved. Page 2 of 28



D6.9 QRBS software specications (1.1- Final)

Table of Contents

1. Executive Summary 4

2. Context 5
2.1. Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Work package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Software specication 6
3.1. Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. Static design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1. Knowledge representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2. QRBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3. Dynamic design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.1. UC-01: Declarative knowledge management . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2. UC-02: Procedural knowledge management . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3. UC-03: Knowledge islands management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.4. UC-04: Uncertainty management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.5. UC-05: QRBS management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.6. UC-06: QRBS evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.7. UC-07: QRBS execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4. Testing 19
4.1. Traceability with use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2. Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5. Conclusions 21

List of Acronyms 22

List of Figures 23

List of Tables 24

Bibliography 25

A. Appendix: Preliminary knowledge model for breast cancer (Invasive Ductal Carcinoma -
IDC) management 26

© NEASQC Consortium Partners. All rights reserved. Page 3 of 28



D6.9 QRBS software specications (1.1- Final)

1. Executive Summary

This report is the third deliverable of Task 6.2 – Quantum Rule-Based Systems (QRBS) for breast cancer detection
of the NEASQC project. The document presents the work carried out so far, and is complementary to the other
deliverables of this task.

The report begins with an introduction into the software specication process, presenting the necessary denitions for
the reader to comprehend the work carried out. Following those concepts come the several specications obtained,
including both static and dynamic design, as well as the implementations specications for this use case.

Following that, focus is on the testing phase, in order to prove that the specication obtained is coherent regards both
itself and the previous work.

To close the report, the conclusions obtained during the development of the work carried out are presented and some
ideas for future work to be included in upcoming deliverables are shown.

© NEASQC Consortium Partners. All rights reserved. Page 4 of 28



D6.9 QRBS software specications (1.1- Final)

2. Context

2.1. Project

In the context of this project, this document describes the specication of the software regarding the development of
the framework for Quantum Rule-Based Systems (QRBSs). This specication has been approached from a software
engineering perspective, specically following the strategy of the Unied Process of software development (Kruchten,
2004).

The software specication is a widely accepted and established procedure in the eld of software engineering, as it ties
together the analysis of requirements with the implementation of the software itself. The design obtained during the
process of specication should be based on abstraction, coupling and cohesion, decomposition and modularization,
encapsulation of information and completeness (Bourque & Fairley, 2014).

This approach is based on software engineering, but some parts of the specication are related with quantum comput-
ing and used to interact with quantum computers and their simulators.

With this specication we provide the description and models on which the implementation of the software will be
based, in order to follow the software engineering process and to be able to address the problems that may arise on
future work.

2.2. Work package

In the context of the Work Package 6 – “Symbolic AI and graph algorithmics”, this document illustrates one of the
steps (the software specication) that must be followed in order to achieve the nal result of our task, the development
of the framework to represent Quantum Rule-Based Systems.

In our previous deliverable, “D6.5 Quantum Rule-Based System” (Moret-Bonillo et al., 2021), we analyzed the re-
quirements, in the form of needs, features, use cases and test cases, that the nal framework for Quantum Rule-Based
Systems must contain. That analysis allowed us to establish the functionalities that must be provided for our use case.
Now, those denitions support the work carried out on this document, since they will serve as the basis on which we
base the specication of the different components that make up the software.

The software specication, according to the knowledge model for breast cancer diagnosis, screening and treatment
of Invasive Ductal Carcinoma (IDC) (see appendix A) is a core step in the process of software development since
it provides the design on which the implementation of the software itself will be based. This design species the
characteristics and functionalities of each component of the system, as well as how they interact with each other.
Therefore, it allows us to understand the architecture and structure of the system as a whole and the different ows
that take place with each possible procedure (Pressman, 2005).

Future deliverables are complementary to this one, since they delve into the specics of the implementation of the
system designed here and its application for breast cancer detection.

© NEASQC Consortium Partners. All rights reserved. Page 5 of 28



D6.9 QRBS software specications (1.1- Final)

3. Software specication

In this chapter, we introduce the reader into the basic ideas of software specication in order to comprehend the
following work, conformed by the design obtained through this process and some details regarding its implementation
in Python.

3.1. Denitions

In this section we describe the concepts of software specication on which the work is based. As we specied
on our previous deliverable, we will follow the strategy of the agile version of the Unied Process, presented in
(Ambler, 2002). The results of this methodology will be represented in UML diagrams. UML (that stands for Unied
Modeling Language) is a graphical language for visualizing, specifying, constructing, and documenting the artifacts
of a software-intensive system. UML is a standardized general-purpose modeling language in the eld of object-
oriented software engineering but also expressive enough to model other software engineering approaches and even
non-software systems.

UML is organized in diagrams, which are drawn to visualize a system from different perspectives, so a diagram is a
projection into a system. Diagrams are organized in two main groups:

• Static diagrams: which represents the program’s structure based on packages and interrelated objects. The
main static diagram is the class diagram, which shows the structure of the designed system at the level of classes
and interfaces, shows their features, constraints and relationships (associations, generalizations, dependencies,
etc).

• Dynamic diagrams: which represents the program’s behavior based on communications between objects. The
main dynamic diagram is the sequence diagram, which describes the temporal sequence of messages that are
exchanged, along with their corresponding occurrence specications on the lifelines.

In addition, we must address the focus from which we will approach this process. Since we are developing a soft-
ware library, we are approaching this process from the perspective of the development view. This view models the
organization of the actual software modules (components, subsystems), often organized in layers.

To further develop the work on the previous deliverable (Moret-Bonillo et al., 2021), where we dened the use cases
that must be covered, we use the concept of use case realization, an articial artifact in the sense that it is effectively
a collection of one or more models that describes the implementation of a single use case. We do this by exploring
the different elements that conform the system via static diagrams and the ows of logic through the use cases—the
scenarios dened for each use case—via dynamic diagrams.

With that we cover the necessary aspects for the development view to be complete, so it can satisfy the needs of the
implementation process, having covered the work carried out so far.

3.2. Static design

In the rst place, we begin with the static design of the system, since we need to comprehend the elements that
compose it. This design is illustrated in Figure 1 via a class diagram, as we previously mentioned.

In our case, classes are logically divided into two packages:

• knowledge representation: this package is conformed by the classes that allow us to encode knowledge
into the system. These being LeftHandSide (and the subclasses Fact, AndOperator, OrOperator,
NotOperator), Rule and KnowledgeIsland.

• qrbs: this package is conformed by the classes that manage the encoded knowledge and extract utility from
it. These being QRBS (and its respective WorkingMemory and InferenceEngine), QRBSHandler that
works as a facade between the classical world and the quantum world, and QPU and its implementations, that
represents the quantum backend in which we evaluate and execute quantum circuits.

© NEASQC Consortium Partners. All rights reserved. Page 6 of 28



D6.9 QRBS software specications (1.1- Final)

Figure 1: Class diagram of the system

With Figure 1, we model all the classes that conform the system and their relationships, allowing us to understand the
system itself as a whole. However, we need to provide specic details of each class, which is presented on tables 1
through 14.

These tables are organized with the logically division in mind, having the “knowledge representation” pack-
age (tables 1 through 8) and the “qrbs” package (tables 9 through 14).

© NEASQC Consortium Partners. All rights reserved. Page 7 of 28



D6.9 QRBS software specications (1.1- Final)

3.2.1. Knowledge representation

Component
Name Buildable
Type Interface
Description Interface for knowledge elements that can be built into quantum circuits.

Methods
Name build
Description Builds the correspondent quantum circuit.
Inputs None
Outputs A quantum circuit (QRoutine).

Table 1: Software specication of Buildable interface

Component
Name LeftHandSide
Type Abstract class
Description Abstract class for elements that can be part of the left hand side of a rule. This class is used to model

the Composite design pattern, acting as the Component interface.
Methods

Name build
Description Builds the correspondent quantum circuit.
Inputs None
Outputs A quantum circuit (QRoutine).

Table 2: Software specication of LeftHandSide abstract class

Component
Name Fact
Type Class
Description A Fact is the smallest unit of knowledge that can be represented. This class is used to model the

Composite design pattern, acting as the Leaf class.
Attributes

Name attribute
Type String
Description Attribute that the fact is representing.
Name value
Type String
Description Value of the attribute that the fact is representing.
Name imprecision
Type Float, optional
Description Imprecision of the fact; the certainty of the attribute having said value (0 if not specied).

Methods
Name build
Description Builds the correspondent quantum circuit.
Inputs None
Outputs A quantum circuit (QRoutine).

Table 3: Software specication of Fact class

© NEASQC Consortium Partners. All rights reserved. Page 8 of 28



D6.9 QRBS software specications (1.1- Final)

Component
Name AndOperator
Type Class
Description An AndOperator relates the statements of its children with an AND relationship. This class is used

to model the Composite design pattern, acting as (one of) the Composite class.
Attributes

Name leftChild
Type LeftHandSide
Description One of the children which is relating.
Name rightChild
Type LeftHandSide
Description One of the children which is relating.

Methods
Name build
Description Builds the correspondent quantum circuit.
Inputs None
Outputs A quantum circuit (QRoutine).

Table 4: Software specication of AndOperator class

Component
Name OrOperator
Type Class
Description An OrOperator relates the statements of its children with an OR relationship. This class is used to

model the Composite design pattern, acting as (one of) the Composite class.
Attributes

Name leftChild
Type LeftHandSide
Description One of the children which is relating.
Name rightChild
Type LeftHandSide
Description One of the children which is relating.

Methods
Name build
Description Builds the correspondent quantum circuit.
Inputs None
Outputs A quantum circuit (QRoutine).

Table 5: Software specication of OrOperator class

© NEASQC Consortium Partners. All rights reserved. Page 9 of 28



D6.9 QRBS software specications (1.1- Final)

Component
Name NotOperator
Type Class
Description A NotOperator negates the statement of its child. This class is used to model the Composite design

pattern, acting as (one of) the Composite class.
Attributes

Name child
Type LeftHandSide
Description Child whose statement is negating.

Methods
Name build
Description Builds the correspondent quantum circuit.
Inputs None
Outputs A quantum circuit (QRoutine).

Table 6: Software specication of NotOperator class

Component
Name Rule
Type Class
Description A Rule which establishes a relationship (to some level of uncertainty) between a left hand side

element and a right hand side, which in this context is a Fact.
Attributes

Name leftHandSide
Type LeftHandSide
Description Left hand side element of the rule (also known as precedent).
Name rightHandSide
Type Fact
Description Right hand side element of the rule (also known as consecuent).
Name uncertainty
Type Float, optional
Description Uncertainty of the relationship between precedent and consecuent (0 if not specied).

Methods
Name build
Description Builds the correspondent quantum circuit.
Inputs None
Outputs A quantum circuit (QRoutine).

Table 7: Software specication of Rule class

Component
Name KnowledgeIsland
Type Class
Description A Knowledge Island is a set of rules that conform the inferential reasoning towards a hypothesis.

Attributes
Name rules
Type List<Rule>
Description Set of rules that conform the knowledge island.

Methods
Name build
Description Builds the correspondent quantum circuit.
Inputs None
Outputs A quantum circuit (QRoutine).

Table 8: Software specication of KnowledgeIsland class

© NEASQC Consortium Partners. All rights reserved. Page 10 of 28



D6.9 QRBS software specications (1.1- Final)

3.2.2. QRBS

Component
Name WorkingMemory
Type Class
Description A Working Memory is an element of a Rule-Based System that manages its facts, keeping trace of

their state.
Attributes

Name facts
Type List<Fact>
Description List of facts asserted into the system.

Methods
Name assert fact
Description Asserts a fact into the memory.
Inputs fact (Fact) - The fact to be asserted.
Outputs The asserted fact (Fact).
Name retract fact
Description Retracts a fact from the memory.
Inputs fact (Fact) - The fact to be retracted.
Outputs None

Table 9: Software specication of WorkingMemory class

Component
Name InferenceEngine
Type Class
Description An Inference Engine is an element of a Rule-Based System that manages its rules and knowledge

islands, providing the tools to evaluate them in order.
Attributes

Name rules
Type List<Rule>
Description List of rules established for the system.
Name islands
Type List<KnowledgeIsland>
Description List of knowledge islands established for the system.

Methods
Name assert rule
Description Asserts a rule into the engine.
Inputs rule (Rule) - The rule to be asserted.
Outputs The asserted rule (Rule).
Name retract rule
Description Retracts a rule from the engine.
Inputs rule (Rule) - The rule to be retracted.
Outputs None

Name assert island
Description Asserts a knowledge island into the engine.
Inputs island (KnowledgeIsland) - The knowledge island to be asserted.
Outputs The asserted knowledge island (KnowledgeIsland).
Name retract island
Description Retracts a knowledge island from the engine.
Inputs island (KnowledgeIsland) - The knowledge island to be retracted.
Outputs None

Table 10: Software specication of InferenceEngine class

© NEASQC Consortium Partners. All rights reserved. Page 11 of 28



D6.9 QRBS software specications (1.1- Final)

Component
Name QRBS
Type Class
Description A Quantum Rule-Based System (QRBS) is a Rule-Based System implemented in a quantum com-

puter, taking advantage of some of its capabilities, like quantum superposition, to represent certain
aspects such as imprecision and uncertainty.

Attributes
Name memory
Type WorkingMemory
Description The Working Memory of the system.
Name engine
Type InferenceEngine
Description The Inference Engine of the system.

Methods
Name assert fact
Description Creates a fact and asserts it into the system.
Inputs attribute (String) – The attribute of the fact.

value (Float) – The value of the fact.
imprecision (Float, optional) – The imprecision of the rule.

Outputs The asserted fact (Fact).
Name retract fact
Description Retracts a fact from the system.
Inputs fact (Fact) - The fact to be retracted.
Outputs None

Name assert rule
Description Creates a rule and asserts it into the system.
Inputs lefthandside (LeftHandSide) – The left hand side of the rule.

righthandside (Fact) – The right hand side of the rule.
uncertainty (Float, optional) – The uncertainty of the rule.

Outputs The asserted rule (Rule).
Name retract rule
Description Retracts a rule from the system.
Inputs rule (Rule) - The rule to be retracted.
Outputs None

Name assert island
Description Creates a knowledge island and asserts it into the system.
Inputs rules (List<Rule>) – The rules of the knowledge island.
Outputs The asserted knowledge island (KnowledgeIsland).
Name retract island
Description Retracts a knowledge island from the system.
Inputs island (KnowledgeIsland) - The knowledge island to be retracted.
Outputs None

Table 11: Software specication of QRBS class

© NEASQC Consortium Partners. All rights reserved. Page 12 of 28



D6.9 QRBS software specications (1.1- Final)

Component
Name QRBSHandler
Type Static class
Description This class provides several methods to handle operations related to Quantum Rule-Based Systems

and its conversion into a quantum circuit in order to be evaluated and executed.
Methods

Name evaluate
Description Evaluates whether a QRBS can be executed on a QPU.
Inputs qrbs (QRBS) – The QRBS to be evaluated.

qpu (QPU) – The QPU in which the QRBS must be evaluated.
Outputs The result of the evaluation: either a boolean set to true or an exception will be raised corresponding

to the reason for the unsuccessful evaluation.
Name execute
Description Executes the QRBS on the QPU.
Inputs qrbs (QRBS) – The QRBS to be evaluated.

qpu (QPU) – The QPU in which the QRBS must be evaluated.
Outputs The result of the execution: an object with several data regarding the execution, such as the pa-

rameters of the execution (e.g. number of shots), the time it lasted and the values obtained for the
hypotheses of the rules/knowledge islands. Also the working memory will be updated according to
the execution of the different rules.

Table 12: Software specication of QRBSHandler static class

Component
Name QPU
Type Interface or abstract class
Description This class denes the structure to implement Quantum Processing Units (QPU).

Methods
Name evaluate
Description Evaluates whether a circuit can be executed on a QPU.
Inputs circuit (Circuit) – The circuit to be evaluated.
Outputs The result of the evaluation as requested by the QRBSHandler.
Name execute
Description Abstract method. Executes the given quantum circuit on the QPU.
Inputs circuit (Circuit) – The quantum circuit to be executed.
Outputs The result of the execution as requested by the QRBSHandler.

Table 13: Software specication of a QPU element

Component
Name MyQlmQPU
Type Class
Description This class provides the myQLM implementation of a Quantum Processing Unit (QPU). myQLM

will be the reference implementation for the QPU interface, but the system will exible enough to
include other backends dynamically.

Methods
Name evaluate
Description Evaluates whether a circuit can be executed on a QPU.
Inputs circuit (Circuit) – The circuit to be evaluated.
Outputs The result of the evaluation as requested by the QRBSHandler.
Name execute
Description Executes the given quantum circuit on the myQLM backend.
Inputs circuit (Circuit) – The quantum circuit to be executed.
Outputs The result of the execution as requested by the QRBSHandler.

Table 14: Reference implementation of a QPU element

© NEASQC Consortium Partners. All rights reserved. Page 13 of 28



D6.9 QRBS software specications (1.1- Final)

3.3. Dynamic design

The next step in the process is to perform a dynamic design in which we show how all the classes described in the
static design interact with each other. This dynamic design is illustrated in Figure 2 via a sequence diagram, as we
previously mentioned. In this diagram we can see the different interactions that occur between the different objects
when a QRBS is popularized with the different elements that form it (facts, rules and knowledge islands) and how to
subsequently evaluate and execute the QRBS.

Figure 2: Sequence diagram of the system

Apart from this sequence diagram we also decided to present, for each use case, a small snippet of pseudocode
(choosing a syntax very similar to the nal Python implementation that we will obtain later) showing the typical
operations described in that particular use case (e.g. create, modify and delete).

© NEASQC Consortium Partners. All rights reserved. Page 14 of 28



D6.9 QRBS software specications (1.1- Final)

3.3.1. UC-01: Declarative knowledge management

The management of declarative knowledge (facts) consists in asserting, modifying and/or retracting facts from the
working memory.

# Crea t e QRBS
qrbs = QRBS()

# A s s e r t f a c t
fact = qrbs.assert fact(’is it raining’, ’yes’)

# Modi fy f a c t
fact.attribute = ’is it cloudy’

# R e t r a c t f a c t
qrbs.retract fact(fact)

3.3.2. UC-02: Procedural knowledge management

The management of procedural knowledge (rules) consists in creating, asserting, modifying and/or retracting rules
from the inference engine.

# Crea t e QRBS
qrbs = QRBS()

# Crea t e Le f tHandS ide
fact rain = qrbs.assert fact(’is it raining’, ’yes’)
fact cold = qrbs.assert fact(’is it cold’, ’yes’)
left hand side = AndOperator(fact rain , fact cold)

# Crea t e R igh tHandS ide ( Fac t )
right hand side = qrbs.assert fact(’days since storm’, 1)

# A s s e r t r u l e
rule = qrbs.assert rule(left hand side , right hand side)

# Modi fy r u l e
rule.leftHandSide = OrOperator(NotOperator(fact rain), fact cold)

# R e t r a c t r u l e
qrbs.retract rule(rule)

© NEASQC Consortium Partners. All rights reserved. Page 15 of 28



D6.9 QRBS software specications (1.1- Final)

3.3.3. UC-03: Knowledge islands management

Rules are organized in knowledge islands that can be asserted, modied and/or retracted as a whole from the inference
engine.

# Crea t e QRBS
qrbs = QRBS()

# Crea t e r u l e s
fact rain = qrbs.assert fact(’is it raining’, ’yes’)
fact cold = qrbs.assert fact(’is it cold’, ’yes’)

left hand side 1 = AndOperator(fact rain , fact cold)
right hand side 1 = qrbs.assert fact(’days since storm’, ’0’)
rule 1 = qrbs.assert rule(left hand side 1 , right hand side 1)

left hand side 2 = OrOperator(NotOperator(fact rain), fact cold)
right hand side 2 = qrbs.assert fact(’days since storm’, 1)
rule 2 = qrbs.assert rule(left hand side 2 , right hand side 2)

# A s s e r t knowledge i s l a n d
island = qrbs.assert island([rule1, rule2])

# Modi fy knowledge i s l a n d
island.rules = [rule2]

# R e t r a c t knowledge i s l a n d
qrbs.retract island(island)

3.3.4. UC-04: Uncertainty management

Uncertainty management consists in allowing the addition of imprecision to facts (declarative knowledge) and uncer-
tainty to rules (procedural knowledge).

# Crea t e QRBS
qrbs = QRBS()

# Crea t e e l emen t s
fact rain = qrbs.assert fact(’is it raining’, ’yes’)
fact cold = qrbs.assert fact(’is it cold’, ’yes’)

left hand side = AndOperator(fact rain , fact cold)
right hand side = qrbs.assert fact(’days since storm’, ’1’)

rule = qrbs.assert rule(left hand side , right hand side)

# Add imp r e c i s i o n
fact rain.imprecision = 0.3
fact cold.imprecision = 0.8

# Add u n c e r t a i n t y
rule.uncertainty = 0.5

© NEASQC Consortium Partners. All rights reserved. Page 16 of 28



D6.9 QRBS software specications (1.1- Final)

3.3.5. UC-05: QRBS management

In the QRBS management, the user must have the ability to create the QRBS, initialize the QRBS with facts and rules
(that may be affected by imprecision and uncertainty, respectively), modify these facts and rules and, nally, delete
the whole QRBS.

# Crea t e QRBS
qrbs = QRBS()

# Popu la t e QRBS
fact rain = qrbs.assert fact(’is it raining’, ’yes’)
fact cold = qrbs.assert fact(’is it cold’, ’yes’)

left hand side 1 = AndOperator(fact rain , fact cold)
right hand side 1 = qrbs.assert fact(’days since storm’, ’0’)
rule 1 = qrbs.assert rule(left hand side 1 , right hand side 1)

left hand side 2 = OrOperator(NotOperator(fact rain), fact cold)
right hand side 2 = qrbs.assert fact(’days since storm’, ’1’)
rule 2 = qrbs.assert rule(left hand side 2 , right hand side 2)

island = qrbs.assert island([rule1, rule2])

# Modi fy knowledge i s l a n d
island.rules = [rule1]

# Modi fy r u l e
rule1.leftHandSide = OrOperator(NotOperator(fact rain), fact cold)

# Modi fy f a c t
fact rain.attribute = ’is it cloudy’

# Modi fy u n c e r t a i n t y
fact cold.imprecision = 0.8
rule1.uncertainty = 0.5

# De l e t e QRBS
del qrbs

3.3.6. UC-06: QRBS evaluation

The evaluation provides the user information of the system regarding a specic QPU, to ensure proper execution.

# Crea t e QRBS
qrbs = QRBS()

# Popu la t e QRBS
# For t h e sake o f v i s i b i l i t y we assume t h e QRBS i s popu l a t e d

# Crea t e a QPU imp l emen t a t i o n
myQlmQPU = MyQlmQPU()

# Eva l ua t e QRBS
result = QRBSHanlder.evaluate(qrbs, myQlmQPU)

© NEASQC Consortium Partners. All rights reserved. Page 17 of 28



D6.9 QRBS software specications (1.1- Final)

3.3.7. UC-07: QRBS execution

The execution of a system on a specic QPU returns several values obtained after said execution, such as the corre-
sponding measurements and characteristics or duration of the execution.

# Crea t e QRBS
qrbs = QRBS()

# Popu la t e QRBS
# For t h e sake o f v i s i b i l i t y we assume t h e QRBS i s popu l a t e d

# Crea t e a QPU imp l emen t a t i o n
myQlmQPU = MyQlmQPU()

# Execu t e QRBS
result = QRBSHanlder.execute(qrbs, myQlmQPU)

© NEASQC Consortium Partners. All rights reserved. Page 18 of 28



D6.9 QRBS software specications (1.1- Final)

4. Testing

4.1. Traceability with use cases

One important part of a software development is the ability to trace requirement artifacts through the different stages of
software development. Understanding traceability as “The degree to which a relationship can be established between
two or more products of the development process, especially products having a predecessor-successor or master-
subordinate relationship to one another.”

In the previous deliverable we established a traceability hierarchy (see (Moret-Bonillo et al., 2021), Figure 1, page
8) that starts in user needs and traces to features, uses cases and supplementary specication and, nally, test cases.
This connection allows us to make a reverse traceability and to check that, by successfully fullling these tests, we are
fullling use cases that can be traced to user features and needs.

The traceability between use cases and tests was nally included in a table that relates each use case to several test
cases (see (Moret-Bonillo et al., 2021), Table 15, page 24). Each test case represents a possible scenario within that
particular use case. As an example, we have included in this deliverable the use case UC-01 (Table 15) that shows how
to manage declarative knowledge. The three identied scenarios (creation of a fact, deletion of a fact and modication
of a fact) were traced to three test cases (see Table 16).

Use case ID UC-01
Name Declarative knowledge management
Description User must be able to create, initialize and handle facts.
Actor User
Basic ow 1. User selects to create a fact

2. User provides the attribute and the value of the fact.
3. User adds the fact (asserts) to the working memory.

Alternative ows 1a. User selects to delete a fact
1. User selects the fact to be deleted.
2. The fact is deleted (retracted) from the working memory.

1b. User selects to modify a fact
1. User selects the fact to be modied
2. User modies the attribute or the value of the fact.
3. The fact is updated in the working memory.

Scenarios 1. Creation of a fact: Basic ow
2. Deletion of a fact: Basic ow, alternative 1a
3. Modication of a fact: Basic ow, alternative 1b

Additional information

Table 15: Specication of use case UC-01

Test case ID Scenario number Test case ID Test case name
UC-01 1 T-01-1 Creation of a fact
UC-01 2 T-01-2 Deletion of a fact
UC-01 3 T-01-3 Modication of a fact

Table 16: Test cases for use case UC-01

The work in this deliverable is to trace this test cases to specic classes in our test suite, and also with specic methods
that runs the specic actions related with that tests.

© NEASQC Consortium Partners. All rights reserved. Page 19 of 28



D6.9 QRBS software specications (1.1- Final)

4.2. Tests

Following the strategy dened in the previous section we managed to identify the following test classes and test
methods in our software specication (see Table 17).

Test case ID Test method Test class
T-01-1 test fact creation TestFact
T-01-2 test fact deletion TestFact
T-01-3 test fact modification TestFact

T-02-1 test rule creation TestRule
T-02-2 test rule deletion TestRule
T-02-3 test rule modification TestRule

T-03-1 test island creation TestKnowledgeIsland
T-03-2 test island deletion TestKnowledgeIsland
T-03-3 test island modification TestKnowledgeIsland
T-03-4 test island creation error TestKnowledgeIsland

T-04-1 test imprecision TestUncertainty
T-04-2 test uncertainty TestUncertainty
T-04-3 test imprecision uncertainty TestUncertainty

T-05-1 test qrbs creation TestQRBS
T-05-2 test qrbs deletion TestQRBS
T-05-3 test qrbs modification TestQRBS

T-06-1 test positive evaluation TestEvaluation
T-06-2 test negative evaluation TestEvaluation

T-07-1 test successful default TestExecution
T-07-2 test failed default evaluation TestExecution
T-07-3 test failed default execution TestExecution
T-07-4 test successful specified TestExecution
T-07-5 test failed specified evaluation TestExecution
T-07-6 test failed specified execution TestExecution

Table 17: Test suite

It is important to note that the tests we will include in the library will not be limited to the ones on Table 17. These are
the tests that connect us with the different scenarios of the use cases and, subsequently, with the features and user’s
needs. So we can say that these are the highest level tests, but that does not prevent other tests from being included to
test lower level aspects of the library.

© NEASQC Consortium Partners. All rights reserved. Page 20 of 28



D6.9 QRBS software specications (1.1- Final)

5. Conclusions

In this deliverable we have made the software specication necessary for the implementation of a QRBS. This speci-
cation has been divided into two parts: the Static Model, which represents the program’s structure based on packages
and interrelated objects, and the Dynamic Model, which represents the program’s behavior based on communications
between objects.

We have used the Unied Modeling Language (UML) for the specication. Here it is important to emphasize that
UML is only a language, it is not a methodology. Therefore, UML is processed independently and its artifacts form
a common language that eases the communication between developers. In our case, we have followed an iterative
and incremental methodology, which has allowed us to obtain a robust overall design, while satisfying the use cases
established during the requirement analysis.

We keep following the agile version of the Unied Process, that means that we are not only designing the software
but we are also prototyping the different ideas that came up during the design, which will be a part of the nal system.
This prototype helps to obtain a better comprehension of the system designed, avoiding coming up with errors on
later stages. This prototype is available on its respective NEASQC repository. We want to remark that it has not been
ofcially published yet, since we are still working on it, but we hope to announce its release as soon as possible.

On parallel, there has been work carried out on a separate library, which will provide additional functionality to the
one developed here, providing functionalities to parse QRBS dened on JSON les. We hope this library comes in
handy to the user of our package, so we will keep informing about its development.

© NEASQC Consortium Partners. All rights reserved. Page 21 of 28



D6.9 QRBS software specications (1.1- Final)

List of Acronyms

Term Denition
QRBS Quantum Rule-Based System
IDC Invasive Ductal Carcinoma
UML Uniform Modeling Language

Table 18: Acronyms and Abbreviations

© NEASQC Consortium Partners. All rights reserved. Page 22 of 28



D6.9 QRBS software specications (1.1- Final)

List of Figures

Figure 1.: Class diagram of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2.: Sequence diagram of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.: Breast invasive ductal carcinoma anamnesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 4.: Actions if breast inductive ductal carcinoma is possible . . . . . . . . . . . . . . . . . . . . . 26
Figure 5.: Staging variables for breast IDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 6.: Stages of breast IDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 7.: General outline for IDC treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

© NEASQC Consortium Partners. All rights reserved. Page 23 of 28



D6.9 QRBS software specications (1.1- Final)

List of Tables

Table 1.: Software specication of Buildable interface . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 2.: Software specication of LeftHandSide abstract class . . . . . . . . . . . . . . . . . . . . 8
Table 3.: Software specication of Fact class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 4.: Software specication of AndOperator class . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 5.: Software specication of OrOperator class . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 6.: Software specication of NotOperator class . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 7.: Software specication of Rule class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 8.: Software specication of KnowledgeIsland class . . . . . . . . . . . . . . . . . . . . . . 10
Table 9.: Software specication of WorkingMemory class . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 10.: Software specication of InferenceEngine class . . . . . . . . . . . . . . . . . . . . . . 11
Table 11.: Software specication of QRBS class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 12.: Software specication of QRBSHandler static class . . . . . . . . . . . . . . . . . . . . . . 13
Table 13.: Software specication of a QPU element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 14.: Reference implementation of a QPU element . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Table 15.: Specication of use case UC-01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 16.: Test cases for use case UC-01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 17.: Test suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 18.: Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

© NEASQC Consortium Partners. All rights reserved. Page 24 of 28



D6.9 QRBS software specications (1.1- Final)

Bibliography

Ambler, S. (2002). Agile modeling: Effective practices for extreme programming and the unied process. John Wiley
& Sons.

Bourque, P., & Fairley, R. E. (2014). Guide to the software engineering body of knowledge (SWEBOK©). IEEE Com-
puter Society Press.

Kruchten, P. (2004). The rational unied process: An introduction. Addison-Wesley.
Moret-Bonillo, V., Mosqueira-Rey, E., & Magaz-Romero, S. (2021). D6.5 Quantum Rule-Based System (QRBS)

Requirement Analysis. https://doi.org/10.5281/zenodo.5949157
Pressman, R. S. (2005). Software engineering: A practitioner’s approach. Palgrave macmillan.

© NEASQC Consortium Partners. All rights reserved. Page 25 of 28



D6.9 QRBS software specications (1.1- Final)

A. Appendix: Preliminary knowledge model for breast cancer (Invasive Ductal
Carcinoma - IDC) management

Figure 3: Breast invasive ductal carcinoma anamnesis

Figure 4: Actions if breast inductive ductal carcinoma is possible

© NEASQC Consortium Partners. All rights reserved. Page 26 of 28



D6.9 QRBS software specications (1.1- Final)

Figure 5: Staging variables for breast IDC

Figure 6: Stages of breast IDC

© NEASQC Consortium Partners. All rights reserved. Page 27 of 28



D6.9 QRBS software specications (1.1- Final)

Figure 7: General outline for IDC treatment

© NEASQC Consortium Partners. All rights reserved. Page 28 of 28


