
NExt ApplicationS of Quantum Computing

D6.8: State of the art of SAT and PSA
solvers in the light of quantum

computing

Document Properties

Contract Number 951821

Contractual Deadline 30/09/2022

Dissemination Level Public

Nature Report

Editors Mohamed Hibti, EDF R&D
Ahmed Zaiou, EDF R&D and LaMSN, LIPN

Authors Mohamed Hibti, EDF R&D
Ahmed Zaiou, EDF R&D and LaMSN, LIPN
Younès Bennani, LaMSN, LIPN
Basarab Matei, LaMSN, LIPN

Reviewers Vicente Moret Bonillo , UDC
Gonzalo Ferro, CESGA

Date September 30, 2022

Keywords SAT solvers, benchmark, quantum SAT, quantum PSA

Status Reviewed

Release V 1.2

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

History of Changes

Version Date Author, Organization Description of Changes

1.0 12/09/2022 Hibti M., Zaiou A., Ben-
nani Y. and Matei B. (EDF
R&D, LIPN)

First Draft, Deliveravble 6.8, WP-6, Task 6.8

1.1 12/09/2022 Hibti M., Zaiou A., Ben-
nani Y. and Matei B. (EDF
R&D, LIPN)

First Draft, Deliveravble 6.8, WP-6, Task 6.8

1.2 12/09/2022 Hibti M., Zaiou A., Ben-
nani Y. and Matei B. (EDF
R&D, LIPN)

First Draft, Deliveravble 6.8, WP-6, Task 6.8

© NEASQC Consortium Partners. All rights reserved. Page 2 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Table of Contents

1. Executive Summary 5

2. Introduction 6

3. SAT solvers 8
3.1. DPLL . 8
3.2. CDCL . 9
3.3. VSIDS . 9
3.4. CaDiCaL . 9
3.5. LRB . 10
3.6. MAPLE . 10
3.7. Lstech MAPLE . 10
3.8. KISSAT (C) . 10
3.9. KISSAT GB . 11
3.10. KISSAT MAB . 11
3.11. KISSAT CRVR GB . 11
3.12. KISSAT CMS EXP VGBL . 11
3.13. CaDiCaL Hack Gb . 11
3.14. Relaxed Backtracking with Rephasing . 11

3.14.1. Relaxed Conflict-Driven Clause Learning (CDCL) Approach 11
3.14.2. Probability Based Phase Saving . 12

4. SAT benchmarks 13
4.1. Benchmarks . 13
4.2. Evaluation criteria . 13
4.3. Computing platform . 13
4.4. Computational experiments . 13
4.5. Discussion . 16

5. SAT competition recent results 17
5.1. Session 2019 . 17
5.2. Session 2020 . 17
5.3. Session 2021 . 18
5.4. Instances Sizes . 19

6. Quantum SAT 21
6.1. QuantumWalks . 21

6.1.1. Speedup of Backtracking Algorithms . 21
6.1.2. Quantum tunneling and quantumwalks as algorithmic resources to solve hard K-SAT

instances . 21
6.1.3. Quantum query algorithms . 21

6.2. HHL based Algorithms . 22
6.2.1. Quantum Algorithms for Boolean Equation Solving . 22
6.2.2. An HHL-Based Algorithm for Computing Hitting Probabilities of QuantumWalks . . 23

6.3. Adiabatic algorithms . 23
6.3.1. Adiabatic quantum computing for random satisfiability problems 23
6.3.2. An algorithm based on an explicit modeling of Boolean mapping using Hatfield’s

rules or Fourier expansion . 24
6.3.3. Quantum Annealing . 25

6.4. Chaotic dynamics and quantum algorithms . 26
6.5. Ground state quantum computer . 26
6.6. A Parallel Quantum Algorithm for the Satisfiability Problem 27
6.7. Cooperative search algorithm . 27
6.8. Divide and Quantum with DPLL . 28
6.9. Hybrid divide and conquer method . 28

© NEASQC Consortium Partners. All rights reserved. Page 3 of 66

7. Quantum Fault tree analysis 30
7.1. Boolean reduction . 30

7.1.1. Direct implementation of logical gates . 30
7.1.2. Direct implementation and circuit optimization . 31
7.1.3. Reversible pebbling games and memory management 31
7.1.4. ZX-Calculus and circuit optimization . 32
7.1.5. Evaluating Patterns . 38

7.2. A Counting algorithm . 38
7.2.1. Quantum Fourier transform . 38
7.2.2. Quantum phase estimation . 39
7.2.3. Grover search . 40
7.2.4. Quantum Counting . 41

7.3. A quantum algorithm for s-t network vertex separation . 42
7.3.1. Oracle of movement . 43
7.3.2. Algorithm description . 45
7.3.3. Complexity Analysis . 46
7.3.4. Test of the algorithm . 46

7.4. Quadratic Unconstrained Binary Optimisation . 49

8. Quantum Benchmarks 50
8.1. Theatre . 50
8.2. SmallTree . 50
8.3. BSCU . 51
8.4. LIFT . 52
8.5. Other faults tree . 52
8.6. Results . 53
8.7. Discussion . 53
8.8. Conclusion . 54

List of Acronyms 55

List of Figures 56

List of Tables 58

Bibliography 59

A. Appendix 64
A.1. Implication Graph . 64

A.1.1. Trail . 64
A.1.2. Implication Graph . 64

A.2. CNF format of the fult trees used in the benchmark . 65

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

1.Executive Summary

The main objective of this report is to understand the main factors that may help to solve fault tree analysis
problems using quantum algorithms. It turns out that fault tree analysis can be considered an extended
variant of Boolean Satisfiability Problem (SAT) which has attracted for decades a lot of research efforts from
people and communities with a strong background on computer science and, particularly, in computational
complexity related disciplines.

Many solvers exist for SAT and an annual competition is organized every year to push forward the perfor-
mances of the algorithms to solve SAT instances.

In this report, an overview of last SAT competition winners is provided. Main review objectives were
getting an idea of the different strategies and heuristics for solving SAT problems, understanding where the
complexity of these algorithms is located and how non chronological search algorithms succeed to solve
complex and big instances. The ultimate goal is to see to what extent these strategies can be embedded to
enhance the design of hybrid quantum algorithms. Indeed, up to now the quantum algorithm that were
already designed to solve either SAT or Probabilistic Safety Assessment (PSA) are limited by the hardware
limitation regarding the number of available qubits and the decoherence time.

After a brief presentation of themain SAT-solvers, a synthesis of the experiments and results of the last SAT-
competitions is presented, with an indication of the minimal and maximal sizes of the different instances
thatwere solved. This confirms that these instances, can be generally at least as big as the industrial instances
one can find in the reliability problems (or fault tree analysis) for complex industrial systems. Regarding the
instances’s complexity, we should note that the nature of the industrial instances has many particularities
that one take can consider for simplification. Indeed, aside from redundancies (which may be the most
complexity related aspect), there are many symmetries and modules that could be simplified for better
performances.

Different quantum algorithms are presented to deal with SAT, they fall in different classes of quantum
algorithms:

• Quantum walks,

• Harrow-Hassidim-Lloyd (HHL) based algorithms,

• Adiabatic algorithms,

• Chaotic dynamics,

• Ground state quantum computer algorithms,

• Parallel quantum algorithm,

• Cooperative search algorithm,

• Divide and Quantum.

For the PSA problem, in addition to many of the SAT algorithms that can be also used, we present other
more specific algorithms

• Direct implementation with reversible game pebbling or ZX directed optimization,

• a vertex separator quantum algorithm,

• quantum unconstrained binary optimization

• a counting/grover algorithm

We present some tests on different small instances of fault trees and show that scaling remains an important
question and therefore requires a focus on efficient hybrid approaches that combine performant classical
solvers with a relevant use of quantum superposition when it matters.

© NEASQC Consortium Partners. All rights reserved. Page 5 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

2.Introduction

In the static framework of PSA (Probabilistic Safety Assessment) problems, where the problem is a reliability
one stated in terms of Boolean logic, there is no consideration of the dynamics of the systems and the kinetic
elements even if some of these aspects are considered at the early phase of elaboration of the success criteria 1.

The problem is then to evaluate a system, as a "sequence or consequencemaster fault tree", which is a Boolean
formula for which we want to obtain all the cut sets (combinations of failures that make the formulae True).
The set of cutsets is “quantified” to have a probability or a frequency of obtaining the realization of the
Boolean formula. This correspond to the realization of the master fault tree top gate.

Quantified to have a probability or a frequency of obtaining the realization of the Boolean formulas that
correspond to the event. To find it, we have to find all possible solutions that realize a Boolean formula,
which is close to the Boolean Satisfiability Problem (SAT)[Cook, 1971]. SAT is NP-complete and is very
much studied in the computer science field. This report aims to evaluate the contribution of the state of the
art of recently proposed algorithms and heuristics to the efficiency of the solvers and to compare them with
each other. The main question studied is whether the new heuristics do, indeed, improve the efficiency of
solvers on a wide range of Benchmarks. Another objective is to understand the strengths and weaknesses
of these heuristics.

The annual SAT competition2 is a good observation platform for the most effective SAT solvers. In recent
years, Conflict-Driven Clause Learning (CDCL) algorithms attracted more attention. These algorithms were
originally based on Backtrack Search Algorithms à la DPLL (for Davis–Putnam–Logemann–Loveland).

In DPLL, at each step of the algorithm, a variable and a propositional value are selected for branching
purposes. With each branching step, two values can be assigned to a variable, either 0 or 1 and their effects
propagated. Whenever a conflict (dead end) is reached, backtracking is executed (undoing branching steps
until an unflipped branch is reached). When both values have been assigned to the selected variable at
a branching step, backtracking will undo this branching step. If for the first branching step both values
have been considered, and backtracking undoes this first branching step, then the Conjunctive Normal
Form (CNF) formula can be declared unsatisfiable ([Marques-Silva et al., 2021]).

The backtracking process in DPLL is called Chronogical Backtracking. The problem with chronological
backtracking is that many of the withdrawn choices may have nothing to do with why the dead end
(conflict) is a dead end. Thus, chronological backtracking can be inefficient. In real problems, it can be
impractical ([Udovičić, 2006]).

As its name indicates, CDCL considers a conflict-driven learning, and thus unlike chronological backtrack-
ing, faulty plan is to withdraw the choices on which the dead end depends [Udovičić, 2006]. Moreover, it
involves many other techniques [Marques-Silva et al., 2021].

• Exploiting structure of the conflicts during clause learning and learning new clauses from
conflicts during backtrack search which allows pruning large portions of the search space
[Marques Silva and Sakallah, 1996].

• Using lazy data structures for the representation of formulae, and using branching heuristics that
receive feedback from backtrack search [Moskewicz et al., 2001].

• Periodically restarting backtrack search and introducing randomization in the branching variable
selection process [Gomes et al., 1998].

• Additional techniques include deletion policies for learnt clauses [Goldberg and Novikov, 2002], the
actual implementation of lazy data structures [Ryan, 2004], the organization of unit propagation
[Lewis et al., 2005], among others.

In [Kochemazov et al., 2020] Kochemazov S. proposed a state of the art onmodern SATCDCL solvers, which
are programmatic implementations of Boolean satisfiability algorithms. Essentially, they are tools intended
to be used in practice to solve difficult problems, which cannot be solved easily with existing approaches.
1The success criteria are conditions that when met are sufficient for the success of a system, instrumentation and control mission
or human action in a specific context regarding the dynamic of some accident sequence triggered by an initiator. Generally, the
success criteria are elaborated regarding the "worst case" situation which is considered as an envelope of all the potential scenarios.

2http://www.satcompetition.org/

© NEASQC Consortium Partners. All rights reserved. Page 6 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

The progress of SAT CDCL solvers is mainly achieved through annual SAT competitions where the winners
are considered with great interest. These competitions use benchmark sets composed of instances from
various application domains to test new heuristics and implementations of the SAT algorithms.

In [Kochemazov et al., 2020], Kochemazov focused on several promising heuristics proposed in recent years.
A summary and description of the heuristics studied are presented below.

• LCM: Learnt Clause Minimization the heuristic proposed in [a. M. Luo, 2017], which is aimed at
improving the quality of learnt clauses by applying to them a special procedure that makes it possible
to remove the redundant literals from a clause.

• DISTANCE: the distance heuristic [Chang et al., 2018] approach initializes the values of the branch-
ing heuristic by directing the search at the beginning. It is relatively expensive, so in most imple-
mentations the heuristic works for at most 100 000 conflicts.

• CB: Chronological Backtracking is described in [Nadel and Ryvchin, 2018] implements an attempt
to make a partial return to the roots of SAT solving, in particular, to the DPLL algorithm. It allows
the solver in certain conditions to ignore the non-chronological backtracking, which became one of
the trademarks of CDCL solvers, in favor of a chronological one.

• DL: Duplicate Learnts heuristic [Kochemazov et al., 2020] attempts to use simple data mining
methods to discover the learnt clauses that are repeatedly derived during the search and store them
permanently.

• SLS: theStochasticLocalSearch component augmentedwithRephasing technique has been appearing
in the growing number of solvers. While the idea of combining CDCL and SLS is far from novel, the
implementation of the SLS component in Relaxed_LCMDCBDL_newTech [Zhang and Cai, 2020]
has several specific features that have not been used before.

In addition to this classical SAT benchmarks, we do some tests with quantum algorithms to solve the
extended version of SAT proposed in NEASQC Deliverable D6.4 ([Rennela et al., 2021]). The problem of
finding all the prime implicants is close to the SAT problem, in the sense that we are searching not only
a satisfiable assignment, but all the assignments. In practice, the event combinations of low probabil-
ity/frequency (lower than some threshold) are neglected and that is another pruning possibility of parts of
the search tree.

Therefore, the fundamental difference, is that, for industrial cases, the Boolean formulae representing the
master fault trees for which prime implicants are searched are not only satisfiable but may have a huge
number of solutions.

The question then is to each extent these SAT algorithms may be of interest to the original PSA problem.

The straightforward procedure to use SAT algorithms to solve the PSA problem by recursively adding a
negated form of the solution is not efficient nor practical.

The rest of is document is organized as follows. In section 3, we present a number of SAT solvers that
have shown good performances in the recent SAT competitions. Section 4 is dedicated to present the
results of such solvers on the considered instances while in section 5, we present the results of the last SAT
competitions. In section 6, we present a state of the art of quantum algorithms to solve SAT. We finally
present a number of quantum algorithms to solve fault trees in section 7 and present the benchmarks of
these algorithms in section 8.

© NEASQC Consortium Partners. All rights reserved. Page 7 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

3.SAT solvers

This chapter is dedicated to the presentation of the main SAT solvers, Figure 1, that showed the best perfor-
mances in recent SAT competitions ([Balyo et al., 2017], [Heule et al., 2019] [Bal, 2020], [Froleyks et al., 2021]
and [Kochemazov, 2021]) and the associated heuristics. In figure 1, a map show the relation between these
heuristics.

KISSAT (C)

KISSAT GB KISSAT MAB

VSIDS
 Heuristic

Glucose
 solver

Lingeling
 solver

CryptoMiniSat
 solverMAPLE

LRB
 Heuristic

lstech MAPLE

Maple
 LCM Dist

 (RLNT-noSLS
 -noDL-noCB)

MapleLCM
 DistChrono

 BT
 (RLNT-

 noSLS-noDL)

Maple LCM
 DistChronoBT

 DL-v3

CDCL
Conflict-Driven
 Clause Learning

CaDiCaL
 Radical

 Conflict-Driven
 Clause Learning

RLNT
 Relaxed LCM

 DCBDL newTech

RLNT
 Relaxed LCM

 DCBDL newTech

RLNT
 CB disabled

RLNT
 LCM disabled

RLNT
 SLS disabled

RLNT
 DL disabled

RLNT
 DIST disabled

RLNT
 DIST and DL
 are disabled

Figure 1: Map of the main sat solvers cited in this report

3.1. DPLL

The basic backtracking algorithm (see Figure 2) runs by choosing a literal, assigning a truth value to it,
simplifying the formula and then recursively checking if the simplified formula is satisfiable; if this is the
case, the original formula is satisfiable; otherwise, the same recursive check is done assuming the opposite
truth value.

In Davis, Putnam, Logemann and Loveland’s algorithm (DPLL) (see figure 2), if a clause contains only a
single unassigned literal, this clause can only be satisfied by assigning the necessary value to make this
literal true. By removing every clause containing a unit clause’s literal and discarding the complement of a
unit clause’s literal from every clause containing that complement, the algorithm leads to cascades of units
eliminations, thus avoiding a large part of the naive search space.

Moreover, if a propositional variable occurs with only one polarity in the formula, it is called pure. Assign
it to True or False do not have any impact on the other clauses and cannot constrain the search space
anymore. It can then be deleted. This is Pure literal elimination .

© NEASQC Consortium Partners. All rights reserved. Page 8 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 2: Original backtracking algorithm

3.2. CDCL

CDCLconsiders a conflict-driven learning, andunlike chronological backtracking, faulty plan is towithdraw
the choices on which the dead end depends [Udovičić, 2006]. Moreover, it involves many other techniques
[Marques-Silva et al., 2021]. It works as follows1:

1. Decision state: Select a variable and assign True or False and remember the assignment.

2. Apply Boolean constraint propagation (unit propagation2).

3. Build the implication graph3

4. If there is any conflict

a) Find the cut in the implication graph that led to the conflict

b) Derive a new clause which is the negation of the assignments that led to the conflict

c) Non-chronologically backtrack ("back jump") to the appropriate decision level, where the first-
assigned variable involved in the conflict was assigned

5. Otherwise, continue from step 1 until all variable values are assigned.

A comprehensive example of these steps of CDCL by Tommi Junttila can be found in https://users.
aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/cdcl.html.

3.3. VSIDS

Variable State Independent Decaying Sum (VSIDS) refer to a family of branching heuristics widely used in
modern SAT solvers that pick variables of Boolean formula following some non-chronological order during
the run of the search procedure. In VSIDS the following holds (cf. [Moskewicz et al., 2001]):

1. Each variable in each polarity has a counter, initialized to 0.

2. When a clause is added to the database, the counter associated with each literal in the clause is incremented.

3. The(unassigned) variable and polarity with the highest counter is chosen at each decision.

4. Ties are broken randomly by default, although this is configurable

5. Periodically, all the counters are divided by a constant.

A list of the unassigned variables sorted by counter value is stored during Boolean Constraint Propagation
(BCP) and conflict analysis (using an Standard Template Library (STL) set) so that a quick decision can be
made by choosing the highest counter variable. The strategy tend to satisfy (recent) conflict clauses and
has a particular impact on hard instances that generate many conflicts[Moskewicz et al., 2001]. It is also
characterized by its low overhead since the statistics are updated only when a conflict is encountered.

3.4. CaDiCaL

The name of the solver has its roots in “radical(ly)” and “CDCL” ([Marques-Silva et al., 2021] cited
in [Biere., 2019]). The main search loop of Radical CDCL Solver (CaDiCaL) combines in-processing
1wikipedia
2Unit propagation can be naturally associatedwith an implication graph that captures all possible ways of deriving all implied literals
from decision literals [Beanie et al., 2003], which is then used for clause learning.

3See appendix A.1

© NEASQC Consortium Partners. All rights reserved. Page 9 of 66

https://users.aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/cdcl.html
https://users.aalto.fi/~tjunttil/2020-DP-AUT/notes-sat/cdcl.html
https://en.wikipedia.org/wiki/Conflict-driven_clause_learning

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

[Järvisalo et al., 2012] and CDCL [Marques-Silva et al., 2021] search. The in-processing part consists of three
individually scheduled in-processing methods: probing, subsumption, and (bounded) variable elimination
(CDCL is described in section 3.2).

3.5. LRB

Assume we are faced repeatedly with a choice among n different actions. Each choice leads to a monetary
reward chosen from a hidden stationary probability distribution that depends on the selected action. The
Multi-Armed Bandit (MAB) problem is to maximize the cumulative reward after some period combining
greedy4 and exploratory5 choices. An approach to solve it is to use a technique called exponential recency
weighted average (ERWA) to estimate a moving average incrementally giving more weight to the more
recent outcomes.

Learning Rate Branching heuristic (LRB) is based on ERWA and is designed to maximize the Learning
Rate (LR) of the solver. Branching is then considered as an optimization problem, where the degree of
contribution from an assigned variable to the progress of the solver must be maximized. The degree in
question is considered as the propension of a variable to generate learnt clauses. A more formal definition
can be found in [Liang et al., 2016].

3.6. MAPLE

The Maple series of SAT solvers is a family of conflict-driven clause-learning SAT solvers outfitted with
machine learning-based heuristics.

Maple (Maple) uses LRB heuristic, a departure from the VSIDS branching heuristic that has been the status
quo for many years of SAT solving6.

LRB is based on the idea that online variable selection in SAT solvers is viewed as an optimization problem,
where the learning rate (LR) must be maximized (LR being a numerical characterization of a variable’s
propensity to generate learnt clauses) [Liang et al., 2016].

3.7. Lstech MAPLE

Local Search TechMaple is an improved version of Relaxed LCMDCBDLnewTech (lstech MAPLE) based on
RelaxedLCMDCBDLNewTech (RNLT). Where in the last, the relaxedmethod is applied to the backtracking
process for protecting promising partial assignment, here where the CDCL process meets some conditions,
the algorithm will enter a non-backtracking stage until it gets a full assignment α. Once it gets α, a local
search SAT solver is called immediately [Zhang et al., 2021].

The differences between Local Search Tech (LSTech) and Relaxed Conflict-Driven Clause Learning (Relaxed)
lie in the non-backtracking stage entrance conditions and the local search process entrance conditions.
Inspired by the updating method of target phase, LSTech enters the non-backtracking phase to construct
a full assignment each time the CDCL process reaches a higher trail. And LSTech enters the local search
process according to the number of restarts, rather than after each non-backtracking stage.

3.8. KISSAT (C)

The Kissat SAT solver is a condensed and improved reimplementation of CaDiCaL in C. It has improved
data structures, better scheduling of inprocessing, optimized algorithms and implementation. (KISSAT)
solver is a condensed and improved reimplementation of CaDiCaL in C. It has improved data structures,
better scheduling of inprocessing, optimized algorithms and implementation7.

4A choice based of the past rewards distribution and that exploit what we know up to then.
5An exploratory choice which consists on betting on new choices, and thus getting more information of feedback.
6https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/
7http://fmv.jku.at/kissat/

© NEASQC Consortium Partners. All rights reserved. Page 10 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

In its last version of 2021, KISSAT uses target phases during focused mode and usually works better for
satisfiable instances [Biere Armin and Heisinger, 2021].

3.9. KISSAT GB

This solver implements the Glue Bumping (GB) method on top of KISSAT. KISSAT employs two branching
heuristics: VSIDS and Variable Move to Front Variable Move to Front Strategy (VMTF). In Kissat with Glue
Bumping strategy (KISSAT GB), the GB scheme is kept active only when VSIDS is active.

3.10. KISSAT MAB

Based on KISSAT, with Multi-Armed Bandit (MAB) framework which combines VSIDS and the Conflict-
History Based (CHB) branching heuristics by adaptively choosing a relevant heuristic at each restart using
the Upper Confidence Bound (UCB) strategy.

3.11. KISSAT CRVR GB

The solver Kissat with CRVR andGB (KISSAT CRVR GB) implements the GB and Common Reason decision
Variable score Reduction (CRVR) method on top of KISSAT SAT. In KISSAT CRVR GB, the GB and CRVR
schemes are kept active only when VSIDS is active.

3.12. KISSAT CMS EXP VGBL

The solver GB method on top of LRB, and replace VSIDS with expVSIDS. (CMS EXP VGBL): The baseline
CryptoMiniSat solver (CryptoMiniSat) 5.8.0 employs a combination of three branching heuristics: LRB,
VSIDS and VMTF. This system extends this baseline by implementing the GB method on top of LRB, and
by replacing VSIDS with VSDIS with expScore (expVSIDS).

3.13. CaDiCaL Hack Gb

GB on the top of CaDiCaL1.4.0 when VSIDS is active in the baseline system (CaDiCaL Hack GB) imple-
ments the GB method on the top of CaDiCaL1.4.0, only when VSIDS is active in the baseline system.
CaDiCaL Hack GB is submitted to the CaDiCaL hack track of the SAT competition-2021.

3.14. Relaxed Backtracking with Rephasing

One of the best SAT solvers is Relaxed LCMDCBDL newTech we will name it rlnt, which is based on two
main processes. Relaxed CDCL and probabilistic based phase saving.

3.14.1. Relaxed CDCL Approach

The idea is to relax the backtracking process for protecting promising partial assignment, where a promising
assignment is defined according to its consistency (no conflict) and length. When the CDCL process reaches
a node with some conditions, the algorithm enters a non-backtracking phase until it gets a full assignment
β.

Then Local search process is called to seek for a model near β.

If the local search fails to find a model within certain limits, then the algorithm goes back to the normal
CDCL search from the node where it was interrupted.

For a given CNF with V variables, |V | denotes the number of variables. And for a partial assignment α
in CDCL process without conflicts, |α | is the number of assigned variables in α, then we name the max
number of |α | in CDCL history as max trail. Here we control the entrance of local search process by p , q and

© NEASQC Consortium Partners. All rights reserved. Page 11 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

c, where p , q presents |α |/|V | and |α |/max trail. And c presents the in-processing times between two local
search processes.

3.14.2. Probability Based Phase Saving

Phase saving is a technique that saves the assignment of variables when traceback and uses the assignment
when variables are selected as decision variables. Like the rephase technique in CaDiCaL [Biere., 2019], this
approach uses vectors to save different phases, the difference is that it uses probability to select which phase
to use after each restart.

© NEASQC Consortium Partners. All rights reserved. Page 12 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

4.SAT benchmarks

4.1. Benchmarks

To accurately assess the performance of CDCL SAT solvers it is necessary to use a diverse set of benchmarks
that come from different applications. The benchmark sets used in SAT Competitions appear to satisfy this
criterion, thus in this report, they were used in the experiments. In particular, the test instances from the
main tracks of SAT Competitions 20161 and 20202, and also SAT Race 20193 were used. They are freely
available from the corresponding websites. In total there were 1300 instances.

4.2. Evaluation criteria

Remind, that when a SAT solver is launched with a fixed time limit on some SAT instance, there are three
possible outcomes.

1. It can find a satisfying assignment, meaning that a SAT instance is satisfiable.

2. It can prove that there are no satisfying assignments and thus the input formula is unsatisfiable.

3. If the solver terminates due to the time limit, then the status of the instance is unknown.

Overall, taking into account the fact that a formula can have many satisfying assignments, it may seem that
satisfiable instances are significantly easier to tackle for a SAT solver, compared to unsatisfiable instances,
for which it is required to construct a specific proof. Empirical observations show that it is indeed true but to
a limited extent. Both hard and simple cases of satisfiable and unsatisfiable instances are often encountered
in practice.

In the experiments, each considered solver was launched once on each instance from the benchmark set.
The outcome of the launch, together with the runtime of a solver was recorded. The statistics presented
below include the count of solved instances, divided into counts for solved satisfiable and unsatisfiable ones.
Similar to the SAT competitions, these numbers are accompanied by the PAR-2 score (Penalized Average
Runtime with factor 2) which is computed as follows. First, a sum of terms is computed, where for each
instance from the benchmark set the term is formed as a runtime of a solver if it solved this instance, or as 2
times the time limit if the solver did not. Then this sum is divided by the number of terms. Given the two
solvers that solved the equal number of instances, the one with the lower value of PAR-2 is faster on average.

4.3. Computing platform

Following the standard SAT Competition procedure, all solvers were launched with a time limit of 5000
seconds. As a computing platform the PCswith 16-coreAMDRyzen 3950xCPUs and 32GbRAMwere used,
operating under Ubuntu 20.10. The solvers were launched in 16 simultaneous threads without restrictions
on memory usage.

4.4. Computational experiments

The results of the experiments are summarized in Table 1. The so-called cactus plots, that present the
performance of the solvers on satisfiable instances (satis) and unsatisfiable instances (unsatis), are showed
in Figures 3 and 4. The plotline for each solver displays the runtimes of this solver over all benchmarks,
ordered in ascending order. It means that on the cactus plot, the further the plotline is to the right the larger
number of instances were successfully tackled by the corresponding solver within the time limit, and the
closer the line is to the bottom the smaller is the average runtime of a solver over all benchmarks.

1https://baldur.iti.kit.edu/sat-competition-2016/index.php?cat=downloads
2https://satcompetition.github.io/2020/downloads.html
3http://sat-race-2019.ciirc.cvut.cz/index.php?cat=downloads

© NEASQC Consortium Partners. All rights reserved. Page 13 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Solver Solution Count
Ranking

Numbers
of solved
satisfiable
benchmarks

Numbers of
solved unsatisfi-
able benchmarks

Penalized
average
runtime

RLNT-noDL-noDIST 726 405 321 4841.34
RLNT-noDIST 721 400 321 4875.14
RLNT-noDL 721 403 318 4883.67
RLNT 715 399 316 4904.70
RLNT-noCB 697 378 319 5024.10
RLNT-noSLS-noDL 694 344 350 5179.37
RLNT-noLCM 684 387 297 5116.70
MapleLCMDistChronoBT-DL-
v3

682 331 351 5252.24

RLNT-noSLS-noDL-noCB 682 337 345 5270.08
RLNT-noSLS 671 331 340 5300
RLNT-noSLS-noDL-noCB-
noDIST-noLCM

670 340 330 5341.44

MapleLCMDistChronoBT 665 312 353 5413.83
MapleLCMDist 658 303 355 5483.10

Table 1: The results of computational evaluation of different solvers on the joint set of benchmarks from SAT
Competitions 2016 and 2020 and SAT Race 2019 (1300 tests in total).

Figure 3: Cactus plot for considered solvers over satis

© NEASQC Consortium Partners. All rights reserved. Page 14 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 4: Cactus plot for considered solvers over unsatis

© NEASQC Consortium Partners. All rights reserved. Page 15 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

4.5. Discussion

From the results in Table 1, and those presented in Figures 3 and 4, several observations can be made.
Firstly, on the benchmark set used at least, the heuristics do not produce equal gain. In the first three rows
of the table, we see that dropping certain heuristics increases the performance of the solver. Specifically, it
appeared that disabling DL or DIST allows RLNT to solve a larger number of satisfying and unsatisfying
instances. Additionally, deactivating them together is even more beneficial. Therefore, it is necessary to
re-evaluate the combination of heuristics for each solver if the goal is to obtain the best possible performance.
That means that when incorporating a new heuristic into a solver, it is best to study how it fits into the
overall array. However, this makes it much more difficult to make direct and fair comparisons.

From Figure 3, the SLS heuristic appears to give the solver the ability to cope with at least 50 more satisfiable
test instances than the competition for the set of benchmarks considered, which is quite amazing. It is
the SLS heuristic that is responsible for the large gap between the two groups of lines in Figure 3. From
Table 1, we can see that dropping SLS results in a significant gain (about 30) in the number of resolved
unsatisfiable instances, which is, however, dwarfed by the decrease in the number of resolved satisfiable
trials. The second-best heuristic seems to be LCM which mainly targets unsatisfiable instances. The CB
heuristic, which helps the solver a lot with satisfiable instances, is in third position. Another observation is
that the overall architecture of SAT solvers has indeed improved slightly in recent years, since, for example,
RLNT-noSLS-noDL shows better performance compared to MapleLCMDistChronoBT which uses the same
set of heuristics.

Comparing the graphs in Figures 3 and 4, we can conclude that since 2017, solvers have begun to concentrate
on satisfiable instances, often at the expense of unsatisfiable instances. In particular, the 2017MapleLCMDist
solver successfully solved the largest number of unsatisfiable instances and the smallest number of satisfiable
instances among all solvers tested. However, this change in focus is accompanied by an overall improvement
that results in a decrease in the average execution times of the solvers.

© NEASQC Consortium Partners. All rights reserved. Page 16 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

5.SAT competition recent results

In this section we present the different results of the recent successive session since 2019, with a focus on
sequential SAT solvers and their evaluation on structured, non-random benchmarks coming from various
application areas. In this competition, solvers needed to output certificates for both the satisfiable and the
unsatisfiable instances.

5.1. Session 2019

In the SAT Race 2019, 55 solvers participatedwith 200 benchmarks, in addition to 200 instances (not solvable
by MiniSAT in 600 seconds) from prior competitive events.

In this competition the top 3 solvers of the Main Track SAT were.

1. CaDiCaLsat (3176.29)
CaDiCaLdefault (3322.23) by Armin Biere2.

2. MapleLCMDistChronoBT-DLv2.1 (3436.32)
MapleLCMDistChronoBT-DLv2.2 (3441.61)
MapleLCMDiscChronoBT-DLv3 (3448.87) by Stepan Kochemazov, Oleg Zaikin, Victor Kondratiev,
and Alexander Semenov

3. SmallSATdefault (3505.78) by Jingchao Chen

5.2. Session 2020

For the main sequential track 50 solvers were competing on the basis of 400 benchmarks, a combination of
“application” and “crafted”. In the competition the solvers are required to solve instances within a limit of
5,000 sec, where 40,000 sec is the limit for proof checking Solvers run on a single core. Moreover, UNSAT
proof logging is required.

In this competition the top 3 solvers of the Main Track SAT are ([Bal, 2020]):

1. Relaxed LCMDCBDL newTech by Xindi Zhang and Shaowei Cai.

2. Kissat-sc2020-sat (PAR-2: 3128, 146 solved) by Armin Biere (https://github.com/arminbiere/kissat)

3. Cryptominisat-ccnr-lsids (PAR-2: 3263, 144 solved)
Cryptominisat-ccnr (PAR-2: 3317, 145 solved) by Mate Soos, Shaowei Cai, Jo Devriendt, Stephan
Gocht, Arĳit Shaw, and Kuldeep Meel.

Figure 5 shows the top 10 winners of the main track competition for solving SAT instances, while Figure 6
shows the performance of the top 10 solvers in the main track unsatisfiable instances.

© NEASQC Consortium Partners. All rights reserved. Page 17 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 5: Top 10 Main track (src [Froleyks et al., 2021])

Figure 6: Top 10 Main track (src [Froleyks et al., 2021])

5.3. Session 2021

The Top 3 solvers of the Main Track SAT are:

1. Kissat MAB (PAR-2: 2222, 148 solved) by Mohamed Sami Cherif, Djamal Habet and Cyril Terrioux

2. lstech maple (PAR-2: 2358, 144 solved) by Xindi Zhang, Shaowei Cai, and Zhihan Chen

3. kissat gb (PAR-2: 2430, 143 solved) by Md Solimul Chowdhury, Martin Muller and Jia-Huai You

Figure 7 shows the top 10 winners of the main track competition for solving SAT instances, while Figure 8
shows the performance of the top 10 solvers in the main track unsatisfiable instances.

© NEASQC Consortium Partners. All rights reserved. Page 18 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 7: Top 10 Main track (solved SAT instances according to CPU time) (src [Froleyks et al., 2021])

Figure 8: Top 10 Main track (solved unsatisfiable instances according to CPU time) (src [Froleyks et al., 2021])

5.4. Instances Sizes

We should note that the instances solved in these competitions are from small to huge intances. In the table
2, we present the minimal and maximal size of each competition data set. This is just to keep in mind the
scalability issues we will see in section 6.

Table 2: Table of the max and min sizes of the instances and their connections
Year Min of variables Max of variables Min of connections Max of connections
2019 97 9582411 97 103690720
2020 54 8043699 54 129333040
2021 44 3416996 44 67009046

© NEASQC Consortium Partners. All rights reserved. Page 19 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

In Figure 9, we see the number of connections for the different sets of instances, while in Figure 10, we show
the number of variables of the different datasets.

Figure 9: Number of connections of different sets of instances

Figure 10: Number of variables of different sets of instances

© NEASQC Consortium Partners. All rights reserved. Page 20 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

6. Quantum SAT

In this section, we give an overview of the main quantum algorithms for SAT, mainly quantumwalks based
algorithms (cf. section 6.1), HHL based algorithms (cf. 6.2), adiabatic comutation based models (cf. 6.3),
chaotic dynamics based algorihms (cf. 6.4) and groud state quantum computing (cf. 6.5).

6.1. Quantum Walks

Many algorithms were tried using quantumwalks to solve SAT problem. In this section, we will give a very
brief overviewof a short list of them ([Montanaro, 2019], [Campos et al., 2021], [Martiel and Remaud, 2020]).
In [Montanaro, 2019], there is a more complete list of works using quantumwalks to speed up backtracking
algorithms.

6.1.1. Speedup of Backtracking Algorithms

A constraint satisfaction problem (Constraint Satisfaction Problem (CSP)) P is defined by a set C �

{C1 , . . . , Cm} of constraints over a set of variables X � {X1 , . . . ,Xn} having their values in a domain
D.1 The problem is to find an assignement of the variables Xi to satisfy the constraints Ci . Therefore,
SAT can be considered of such a problem where the constraints are the different predicates composing the
Boolean formulae and the domain is the set 0, 1. In [Montanaro, 2019], SAT is considered as a CSP problem.
Backtracking algorithms have proven their performance on such problems, and in [Montanaro, 2019] it is
shown that these algorithms run substancially faster than their classical counterparts using quantumwalks
in trees.

Indeed, given a backtracking algorithm A, for any 0 < δ < 1, there is a quantum algorithm which, given
T (an upper bound on the number of vertices in the tree explored by A), makes O(Tn3/2lo g(n)lo g(1/δ))
evaluations of each of P and h (the heuristic considered in the backtracking algorithm2), and outputs x such
that P(x) is true, or “not found” if no such x exists (cf. [Montanaro, 2019]).

The algorithm uses pol y(n) space, O(1) auxiliary operations per use of P and h, and fails with probability
at most δ.

In section 5, we have seen different performance achievement of the heuristics used to solve SAT using
backtracking algorithms. The question is how these heuristics may behave in the quantum framework. It
turns out that such comparison was carried out by Campbell et al. in [Campbell et al., 2019], in the case
of k-SAT3, this speedup can solve an instance by the quantum algorithm in one day, while the classical
algorithm, run on a standard computer, would require more than 105 days.

6.1.2. Quantum tunneling and quantum walks as algorithmic resources to solve hard K-SAT instances

K-SAT is a special case of SATwhere instances are inCNFofdisjunctions of k literals. In [Campos et al., 2021],
a quantum heuristic algorithm based on quantumwalks and quantum tunneling is proposed to solve it. The
algorithm uses a Hamiltonian constructed to solve K-SAT instances. The evolution of this Hamiltonian is
done through a quantum walk where each iteration consists in the evolution of an evolving state following
a hypercube graph. The idea of following a hypercube graph is to reduce the Hamming distance between
the evolving state and a satisfying assignment of the K-SAT instance.

6.1.3. Quantum query algorithms

TheNAND is knownas auniversal classical gate andanyboolean formulae canbewritter usingonlyNANDgates.
In [Ambainis et al., 2007], Ambainis et al. showed that evaluating a NAND formula of size N could be done in

1It can be a specific domain for each variable D � {D1 , . . . ,Dn}.
2In backtracking algorithms, there are many different heuristics that are used to explore the search graph in different ways. This is
related to the strategy of choosing the next node to branch on a partial assignment.

3In the most optimistic regime where measurement time is of 0.5 ns, 2-qubit gate time is of 0.3 ns, cycle time of 2 ns and a gate error
rate of 10−5 [Campbell et al., 2019].

© NEASQC Consortium Partners. All rights reserved. Page 21 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

time N
1
2+o(1) which is close to

√
N on a Quantum Computer using a query model4. In their algorithm, they

used a search algorithm in top of a quantum walk, which is a clear improvment of the previous approaches
for this problem (cf. [Farhi and Gutmann, 1997], [Høyer et al., 2003], [Buhrman et al., 1998], ...). A history
of these approaches can be found in [Ambainis et al., 2007].

Jeffery S. et Kimmel S. have obtained similar results through s-t connectivity (cf. [Jeffery and Kimmel, 2017]).
The evaluation of a Boolean formula is reduced to the problem of deciding in a graph if there is a path
between a source s and a target t for which there is an algorithm with O(

√
(N)) complexity.

Andrew M. Childs et al. also found a similar result (cf. [Childs et al., 2009]) using the concept of random
walk and a model of queries to an oracle (the term oracle designates a kind of algorithm portion in the form
of a black box).

In this section we give a short description of [Ambainis, 2010].

We therefore assume a tree built only with NAND gates and whose leaves are xi variables. We consider a
model of requests to oracle. The entries x1 , . . . , xN are accessible via requests in O to a black box.

To define O, we represent the base states as |i , z〉where i ∈ 0, 1, . . . ,N . The transformation query Ox (where
x � (x1 , . . . , xN)) transforms |0, z〉 into |0, z〉 and for i , 0 in (−1)xi |i , z〉.
The algorithm consists of a succession of queries Ox and of arbitrary transformations not dependent on xi ,
and its goal is to calculate the value of the tree using the fewest queries possible.

6.2. HHL based Algorithms

Harrow-Hassidim-Lloyd (HHL) quantum algorithm can solve Linear System Problems (LSP) with ex-
ponential speed-up over “classical computing” approaches under certain conditions (sparsity and well-
conditionning). Indeed, for a linear system A |x〉 � |b〉, A has to be sparse and well conditionned. A N × N
matrix A is called d-sparse if it has at most d non-zero entries in any row and column. We call it sparse if d
scales in pol y(lo gN). It is called well-conditioned if its condition number5 scales in pol y(lo gN), where the
condition number of a matrix is the ratio of the largest to the smallest singular value, and undefined when
the smallest singular value of A is 0 (i.e., when A is not invertible)[Childs et al., 2017]. In [Guan et al., 2021],
it is noted that, in practice, systems of linear equations with a polylogarithmic condition number are quite
rare and highlighted the result of Ambainis relaxing this condition to obtain at least a polynomial speedup.

In this section, we present two approaches that use HHL to solve SAT.

6.2.1. Quantum Algorithms for Boolean Equation Solving

In [Chen and Gao, 2022], an algorithm was proposed to solve Boolean equations through solving the
Macaulay linear system using a modified version of the HHL algorithm and to obtain the Boolean so-
lutions based on the properties of quantum solution state.

It is shown that for a set F � f1 , ..., fr of Boolean polynomials in variables X � x1 , . . . , xn and for ε ∈ (0, 1),
there is a quantum algorithm which decides whether F � 0 has a solution and computes one if F � 0 does
have solutions, with probability at least 1 − ε and runtime complexity of Õ((n3.5 + T3.5)κ2lo g1/ε), where Õ
suppresses more slowly-growing logarithm terms and κ is the condition number of the Boolean polynomial
system F , and T the total sparseness of F (i.e. T �

∑r
i�1 # fi , and # fi the number of terms in fi).

The algorithm in question passes through three main steps: computing pseudo-solutions of the system via
the HHL algorithm, and then compute Boolean solutions from the pseudo-Boolean solutions with high
4While in gate model of Quantum Computing, we have a set of qubits, an ordered set of gates applied to induvidual or multiple
qubits and a number of measurements on some qubits, the Quantum query model adds the access to a black box (oracle), that
queries some function that we want to learn about.

5The condition number associated with the linear equation Ax � b gives a bound on how inaccurate the solution x will be after
approximation. Conditioning is a property of the matrix and represent the rate at which the solution x will change with respect to
a change in b.

© NEASQC Consortium Partners. All rights reserved. Page 22 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

probability. The problem of solving Boolean equation system is reduced to the computation of Boolean
solutions of a 6-sparse polynomial system over C.

6.2.2. An HHL-Based Algorithm for Computing Hitting Probabilities of Quantum Walks

HHL algorithm is used in [Guan et al., 2021], to compute hitting probabilities of quantum walks into
absorbing boundaries. This is done via a reduction of the problem of computing hitting probabilities to a
problem of inverting a matrix, for which HHL is proven to be efficient even with an exponential speedup
under some conditions as it is shown in the introduction of section 6.2.

6.3. Adiabatic algorithms

Adiabatic Quantum Computation (AQC) is an universal model of computation that uses quantummechan-
ical processes operating under adiabatic conditions6 [Grant and Humble, 2020]. It is universal in the sense
that any computation in the gate model can be recasted in the AQC model, and it is based on the fact that a
quantum system will stay near its instantaneous ground state if the Hamiltonian that governs its evolution
varies slowly enough [Farhi et al., 2001].

AQC involves ground state quantum computation.

VanDamet al. in [Van Dam et al., 2001] showed lower bounds for solving instances from someNP-Complete
problems including SAT with formulae in CNF with each clause containing up to 3 literals (3-SAT) which
is a good indication for the incapacity of the approach to solve efficiently 3-SAT and more generally SAT
instances. We however present some algorithms that deal with this approach for the sake of generality.
Recall that the main problem, we are dealing with, is Fault Tree Analysis (FTA) where, in practice, there are
always not only one but so many solutions7.

In this section, we present algorithms that use AQC to solve SAT.

6.3.1. Adiabatic quantum computing for random satisfiability problems

The evolution of a quantum system in time follows the Schrödinger equation

i
d
dt
|ψ(t)〉 � H(t) |ψ(t)〉

where |ψ(t)〉 is the state vector and H(t) the hamiltonian operator. The idea of an algorithm is to specify an
initial state |ψ(0)〉 and a Hamiltonian such that at some time T the state |ψ(T)〉 encodes the solution we are
looking for. In the adiabatic case [Farhi et al., 2001], the Hamiltonian evolves slowly enough to get a gound
state |ψg(t)〉 that is close to the ground state |ψg(0)〉 of the operator at t � 0.

Therefore, we choose the Hamiltonian in such a way that the ground state at time t � 0 is known and the
ground state |ψg(T)〉 encodes the solution. Meanwhile, the Hamiltonian H(t) interpolate between H(0) and
H(T) (cf. [Farhi et al., 2001])

H(t) � (1 − 1
T
)H(0) + t

T
H(T)

Then starting from the well known ground state H(0) the evolution leads to a final state which is close to
|ψg(T)〉.

In [Hogg, 2003], the algorithm continuously evolves the state of the quantum computer using

H(f) � (1 − f)H(0) + f H(c)

6Where the energy transfer to the surroundings is done only as work.
7These solutions represent the combinations of the elementary failures that cause the global failure of the system. There are always
many!

© NEASQC Consortium Partners. All rights reserved. Page 23 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

a Hamiltonian with minimal-cost assignments as ground states is introduced

Hc
r,s � c(s)δr,s

for assignments r and s, the cost c(s) being the number of clauses s do not satisfy, and δr,s is 1 if r � s and 0
otherwise.

This Hamiltonian introduces a phase factor in the amplitude of assignment s depending on its associated
cost c(s) [Hogg, 2003]. For H(0), they introduce for each variable i a non-negative weight wi with

∑
i

wi � ω.

H0
r,s �

ω/2 if r � s ,
−ω/2 if r and s differ only on variable i ,
O otherwise

and suggest it use the Walsh-Hadamard Transform (WHT) W with Wr,s � 2−2/n(−1)r.s8.
For small instances, the algorithm performs in a number of the steps which is growing as a cube of the
number of variables and gives solution probabilities close to 1. But it is not clear if a scaling of such algorithm
is possible since the minimum energy gaps of most instances are large. Moreover, the resulting search costs
are much higher than for other methods.

6.3.2. An algorithm based on an explicit modeling of Boolean mapping using Hatfield’s rules or Fourier
expansion

In [Bourreau et al., 2022], an adiabatic quantumalgorithm is proposed to solve SATwhere, each SAT formula
is modeled with a Hamiltonian. For each clause a Hamiltonian connected with controlled-unitary operator
that computes the function value in a qubit register. Boolean functions are modeled by a linear combination
of Pauli Z operators via Hadfield’s construction rules (cf. [Hadfield, 2021]), thus providing an explicit
manner to define a problem mapping for Boolean functions. The following table represents the equivalent
of each boolean operator with a combination of Pauli Z:

f (x) H f

x 1
2 I − 1

2 Z
x̄ 1

2 I + 1
2 Z

x1 ⊕ x2
1
2 I − 1

2 Z1Z2
k⊕

j�1
x j

1
2 I − 1

2 Z1Z2 . . . Zk

x1 ∧ x2
1
4 I − 1

2 Z1 + Z2 − Z1Z2
k∧

j�1
x j

1
2k

∏
j(I − Z j)

x1 ∨ x2
3
4 I − 1

4 Z1 + Z2 + Z1Z2
k∨

j�1
x j I − 1

2k

∏
j(I + Z j)

x1x2
3
4 I − 1

4 Z1 + Z2 − Z1Z2

The Zi operator is defined as
Zi � I ⊗ ... ⊗ I ⊗ Z ⊗ I ⊗ ... ⊗ I

ith position

An experimentation of this approach was performed by Bourreau et al. with different values of T which
leads to solutions with 94% of the distribution (with Qiskit [et al. ANIS, 2021] and MyQLM), and also
experiments(on the 27 qubits IBM ibmq_montreal9).
8r and s are treated as vector of bits to count the variables assigned to 1 in both assignments.
9ibmq_montreal is composed of 27 qubits and has an average CNOT error about 1.2 10−2 and an average readout error about 1.8 10−2

with gates time about 426 ns.

© NEASQC Consortium Partners. All rights reserved. Page 24 of 66

https://myqlm.github.io/index.html

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Percentage T=10 Percentage T=100 Percentage T=1000
|111〉 12.7% 16.7% 16.6%
|100〉 11.8% 17.3% 15.8%
|101〉 62.8% 50.5% 51.8%
|001〉 11.6% 15.5% 15.8%

Table 3: Experiment of the adiabatic algorithm by Bourreau et al. with 3 simulation times in [Bourreau et al., 2022]

The results of Table 3 prove the capacity of the ibmq_montreal to solve this 4-clauses and 3 variables SAT
problem.

Number of shots percentage
|111〉 383 18.7%
|100〉 411 20.1%
|101〉 459 22.4%
|001〉 314 15.3%
|010〉 113 5.5%
|000〉 107 5.2%
|110〉 107 5.2%
|011〉 154 7.5%

Table 4: Experiment of the adiabatic algorithm by Bourreau et al. with T=20 and 2048 shots in
[Bourreau et al., 2022]

6.3.3. Quantum Annealing

Quantum annealing (QA) is an optimization process, on special10 quantum devices, for finding the global
minimum of a given objective function over a given set of candidate solutions, by a process using quantum
fluctuations (or temporary random change in the amount of energy in a point in space, as prescribed by
Werner Heisenberg’s uncertainty principle). The idea is to start from a quantum-mechanical superposition
of all possible states (candidate states with equal weights), that continue to change realizing a quantum
parallelism, which causes quantum tunneling between states. If the evolution of this system is slow enough,
the system stays close to the ground state of the instantaneous Hamiltonian.

Quantum annealing is used for instance for combinatorial optimization problems where it is difficult to find
some global minima (e.g. Traveling Salesman Problem (TSP), Traffic Flow Optimization (TFO), SAT, ...).
The main process can be resumed by the following steps [Krüger and Mauerer, 2020]:

• Reduction to a Quadratic Unconstrained Binary Optimization (QUBO)

• Hardware embedding

• Hardware programming

• Execution

• Post-processing

In [Krüger and Mauerer, 2020], two reduction approaches were considered to reduce SAT with formulae in
CNF with each clause containing up to 3 literals (k-SAT); one is Choi’s standard reduction (cf. [Choi, 2011])
and the other, Krüger-Mauerer Blackbone reduction that showed different performances.

min[®x](−
∑
li j

wli j +
∑

li j ,li j′∈Ci

δli j li j′ +
∑

li j� ¯li′ j

δli j li′ j) Choi

10Quantum computer technology that is based on quantum mechanics and qubits, but with characteristics and performance levels
intermediate between traditional supercomputers and general-purpose gate-based quantum computers. D-Wave is the main
commercial player in this category [Ezratty, 2021].

© NEASQC Consortium Partners. All rights reserved. Page 25 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

q(®x) � ω(
∑

li j ,li j′

li j li j′ +
∑

li j�x j

−li j x j +
∑

li j,x j

−li j + li j x j) Krüger-Mauerer

See a good discussion in [Krüger and Mauerer, 2020], on the quality of the reduction in question, regarding
the solution quality but also its scalability. There is an influence of the embeddingmethod on the probability
of finding correct satisfying assignments for randomly generated 3-SAT instances with varying ratios α of
clauses to variables. The tests were performed using a dataset containing 250 random 3-SAT instances with
42 clauses each with samples sizes from 5 to 100.

In section 7.4, there is an approach to solve FTA by doing a similar reduction. It could be interesting to see
to what extent the conclusions of [Krüger and Mauerer, 2020] can help better solving FTA.

6.4. Chaotic dynamics and quantum algorithms

In [Ohya and Volovich, 2003], a combination of quantum computer with a chaotic dynamics amplifier is
proposed to solve a formulation of SAT. This quantum chaos computer is a new model of computation
going beyond usual scheme of quantum computation. The amplification considered here is claimed to occur
in a polynomial time.

The SAT problem can be regarded as determining whether a formula in Product Of Sums (POS) form is
satisfiable. The following analytical formulation of SAT problem is useful. We define a family of Boolean
polynomials fA, where A is a set

A � S1 , ..., SN N, T1 , ..., TN

where Si , Ti ⊆ {1, ..., n} and fA is defined as

fa(x1 , . . . , xn) �
n∏

i�1
(1 +

N∏
a∈Si

(1 − xa))
N∏

b∈Ti

(xb)

The SAT problem now is to determine whether there exists a value of x � (x1 , . . . , xn) such that fA(x) � 1.

The quantum version of the function f (x) :� f A(x) is given by the unitary operator U f |x, y〉 � |x, y + f (x)〉.
We assume that the unitarymatrix U f can be build in the polynomial time. Now let’s use the usual quantum
algorithm:

(i) By using the Fourier transform produce from |0, 0〉 the superposition

|x〉 :� 1√
2n

∑
x

|x , 0〉 .

(ii) Use the unitary matrix U f to calculate f (x):

|v f 〉 � U f |x〉 �
1√
2n

∑
x

|x , f (x)〉 .

After applying the projector P � I ⊗ |1〉 〈1| to the state |v f 〉, the result f (x)may occur with a probability of
‖ P |v f 〉 ‖2� r/2n where r is the number of roots of the equation f (x) � 111.

6.5. Ground state quantum computer

Ground state quantum computing is an approach that circumvents the problem of decoherence
[Mizel et al., 2001], and works with only quantum mechanical ground states without the need of a time-
dependent control of a system. Indeed, the qubits do not change in time; they are fixed in their ground states. The

11For the reliability problem, where we look for all the solutions of f (x), we know that r is high enough.

© NEASQC Consortium Partners. All rights reserved. Page 26 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

steps in the computation correspond, not to evolution between time points, but rather to development of the ground
state between connected parts of the Hilbert space.

In [Mao, 2005], a new quantum algorithm is proposed to solve SAT by taking advantage of non-unitary
transformation in ground state quantum computer. The energy gap scale of the ground state quantum
computer is analyzed for 3-bit Exact Cover problems. Under some conditions, the algorithm solves SAT in
a polynomial time whenever a specific criterion holds. Indeed, there is a ratio S j/S j+1, with S j being the
number of solutions when the jth clause is applied, and S j+1 the number of solutions when the (j + 1)th

clause is applied, that conditions the success of the algorithm.

Remark. There is an important difference to note between simulation and ground state energy computation.
Simulation aims to predict the behavior of a system while the objective of ground state energy computation
is to optimize a global property of a system.

6.6. A Parallel Quantum Algorithm for the Satisfiability Problem

In [Liu et al., 2008], a classical parallel quantum algorithm for the satisfiability problem is proposed, and it
is based on a combination of a counting algorithm to get the number of solutions of a formulae, and Long
algorithm to find solutions. Indeed, Long algorithm is used instead of Grover algorithm for its successful
rate of always 100%.

Similar to the Grover algorithm, each iteration in the Long algorithm consists of four steps:

(i) apply the oracle O to the whole n1 + n2 argument register and on condition the item satisfies the oracle,
rotate the phase of the item by angle φ;

(ii) apply the Hadamard transform to register 2;

(iii) Perform a phase rotation φ on |00 . . . 0〉 state;
(iv) apply the Hadamard transform on the n 2 argument register.

After J1 iteration of the Long algorithm, make a multiple-qubit controlled NOT gate on the auxiliary qubit
so that the auxiliary qubit changes from 0 to 1 when the oracle is satisfied.

6.7. Cooperative search algorithm

In [Cheng and Tao, 2007], an interesting approach, called Cooperative Quantum Search (CQS), is proposed
to deal with 3-SAT problems. Cooperative Quantum Search (CQS) combines the evolutionary algorithm
framework with a Grover search algorithm.

The idea is to use combined registers of quantum and classical variables to limit the action of the
quantum search algorithm to few quantum variables by the use of what Cheng and Tao call auxiliaries
[Cheng and Tao, 2007]. Auxiliaries are dedicated to classically prepare candidate assignments to search a
solution of the complete formula using a Grover search algorithm.

The process of selection of candidate assignments is done within Evolutionary Algorithms (EA) framework
with different strategies Genetic Huill-Climbing Algorithms for Satisfiability (GenSAT) and a modified
versionofGenSATalgorithm (GSAT),while the selectionprocess of the variables to be consideredquantumly
is driven by the appearance number of the variables. Indeed, it is demonstrated in [Cheng and Tao, 2007]
that selecting the variables having smaller appearance as qubit-variables has higher success probability on
finding a solution than selecting the variables having larger appearance. 12 The Figure 11 shows the general
circuit of the algorithm.

In this work, different strategies were followed to prepare the auxiliaries. The experimentation showed that
the CQS algorithm with GenSAT has the best performance in terms of query complexity. Moreover, the
optimal configuration (the best number of quantum bits regarding the number of classical variables) for the
CQS algorithm is suggested by mathematical analysis.

12If two variables are equal in appearance, selecting the one which has larger value of |positive appearance–negative appearance| as
qubit-variable will have higher success probability on finding a solution.[Cheng and Tao, 2007].

© NEASQC Consortium Partners. All rights reserved. Page 27 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 11: Quantum circuit with combined quantum and
classical bits. The classical bits are picked at random

following one of the GenSAT strategies and the quantum
bit selection driven by the appearance number.

6.8. Divide and Quantum with DPLL

While in [Cheng and Tao, 2007], scaling is allowed by the use of auxiliaries, by introducing combination of
classical and quantum bits. In [Zhang et al., 2020], a divide and quantum approach in the head of DPLL is
proposed to solve 3-SAT. The method divide a CNF into small parts and solve them separately by utilizing
the structure of the DPLL algorithm (cf. section 3.1). Indeed, there is a conditioning that is done following
a selection process like that involved in the cooperative approach [Cheng and Tao, 2007] (see section 6.7).
But, here instead of choosing the variables dedicated to be considered quantumly, all the variables are
considered as such, but the formulae are reduced by the conditioning into small fragments that can be
quantumly solved separately.

The procedure used is to span the search tree and, starting from some level, solve the resulting Boolean
formulae using Grover. Of course, pruning is performed when applicable to remove useless branches. The
global solutions are built using the partial ones and the prior assignments to the node of the restricted
formula.

In [Zhang et al., 2020], there is an estimation of the optimal13 number of variables m that should be solved
in the restricted formula (using Grover Algorithm) given an initial one of n variables:

m �
2
3 n + 2 +

1
3 lo g2π

2 (6.1)

6.9. Hybrid divide and conquer method

As pointed out inNeasqc D6.4 report (cf. [Rennela et al., 2021]), the hybrid divide-and-conquermethodwas
used in [Dunjko et al., 2018b], [Ge and Dunjko, 2020] and [Dunjko et al., 2018a] to solve solve 3-satisfiability
problems using a de-randomized version of the algorithm of Schöning, and for an algorithm for finding
Hamilton cycles in degree-3 graphs. In [Rennela et al., 2021], the focus was to identify criteria when speed-
ups, in the sense of provable asymptotic run-times of the (hybrid) algorithms, are possible in the framework
of tree search algorithms.

As in section 6.8 (cf. [Cheng and Tao, 2007]), this work demonstrates speed-ups for the tree search subrou-
tines of Paturi, Pudlák, Saks, and Zane Algorithm (PPSZ) – which is the core of the fastest exact Boolean
satisfiability solver – for certain classes of formulae ([Hertli, 2011]).

In addition, this work highlighted the conditions of speed-ups and discussed query and space complexity
of the hybrid algorithms in question. Indeed, Rennela et al. ([Rennela et al., 2021] Theorem 5.1) precised
the factors that should hold to ensure clean polynomial speed-ups:

13To minimize the sum of the number of nodes of the spanned tree and the number of iterations that grows according to the number
of qubits.
If this number is f (m), then

f (m) � π
4 2

m
2 + 2n−m

whose derivative equals 0 at m of equation 6.1 (cf. [Zhang et al., 2020]).

© NEASQC Consortium Partners. All rights reserved. Page 28 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

• The space complexity must yield a tree search decomposition where many of the subtrees which will
be delegated to the quantum computer are large enough for a substantial advantage to be even in
principle possible,

• and the quantum algorithm must actually realize such a polynomial advantage.

• The time complexities of the subroutines realizing one query in both classical and quantum routines
are polynomial.

© NEASQC Consortium Partners. All rights reserved. Page 29 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

7.Quantum Fault tree analysis

By static approach, it is meant PSA framework where the problem is a reliability one stated in terms of
Boolean logic. There is no consideration of the dynamics of the systems and the kinetic elements even if
some of these aspects are considered at the early phase of elaboration of the success criteria1.

The problem is then to evaluate a system, a "sequence or consequence master fault tree", which is a Boolean
formula for which we want to obtain all the cutsets (combinations of failures that make the formula true).
The sumof products2 obtained (the list of cutsets or prime implicants) is then quantified to have a probability
or a frequency of obtaining the realization of the Boolean formula which correspond to the realization of
the master fault tree top gate.

Different classes of quantum algorithms were identified for the resolution of this problem. Recall that it is
a generalization of a well-known SAT problem. Where we look for an assignment that satisfies a Boolean
formula, while for the PSA case all the assignments have to be considered.

In the classical case, two main approaches are generally considered. The first is based onMOCUS like algo-
rithms [J. B. Fussell and Marshall, 1974] (e.g [Relcon AB., 2003], [SAIC and EPRI, 1989], [Rauzy A., 2012])
and involves a number of approximation routines (for filtering cutsets with frequencies under some
threshold, dealing with success events, . . .). The second is based mainly on (Z)BDD construction
([Arboost Technologies, 2004], [EPRI, 2008], [Jung, 2009]).

In the quantum case, there are different approaches that were identified. The first is a direct implementation
of Boolean gates to simulate a Boolean formula (Master fault tree) and then compute the probability of the
top gate (section 7.1.1). The second is a combination of Grover search procedure in addition to a counting
algorithm for specifying the number of steps in the rotation phase (section 7.1.3). Finally, another algorithm
to calculate the minimum cut sets by tracing the fault trees back to the sequences and systems that were
used to generate the master fault tree. The problem is then reduced to a problem of vertex separation in an
s-t network [Balas and Souza, 2005] (section 7.3).

7.1. Boolean reduction

7.1.1. Direct implementation of logical gates

The very simple way to solve the reliability problem using a quantum circuit is to encode logical Boolean
formulae using a rewriting of logical connector using quantum gates.

Given a fault tree or a Boolean formula f (x1 , ..., xn)where xi are binary variables, the problem is to find the
probability P(f (x1 , .., xn) � true), which is the sum of products of all the assignments that make f (x1 , .., xn)
true.

If we consider the following example, Figure 7.1.1:

Figure 12: Example of a Boolean formula

we can write the gates AND and OR using the following transcription in the form of a quantum gate (see
Figure13).
1The success criteria are conditions that whenmet are sufficient for the success of a system/I&Cmission or human action in a specific
context regarding the dynamic of some accident sequence triggered by an initiator. Generally, the success criteria are elaborated
regarding the "worst case" situation which is considered as an envelope of all the possible scenarios.

2The list of cut sets is called a sum of products in the sense that we have a big OR on a set of cut sets. A cutset is a combination of
events which can be seen as a product of events when evaluating the probabilities.

© NEASQC Consortium Partners. All rights reserved. Page 30 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 13: Quantum circuit for the AND and OR logic gates

We canwrite a circuit that solves the formula using a number of qubits corresponding to the initial variables
of the fault tree and a number of working qubits to store intermediate results of the logical connectors. The
quantum circuit 14, represents the fault tree .

Figure 14: The quantum circuit for the fault tree 7.1.1

The problem in this approach is the number of additional gates and qubits that have to be added at each
logical gate.

7.1.2. Direct implementation and circuit optimization

The problem of the direct approach is that one has to consider replacing all the logical gates with their
quantum counterpart. This turns out to be quite expensive in terms of additional gates and working qubits.
We should note that the problem of optimizing quantum circuit can be handled in many ways. We can cite
two approaches of interest, one is to consider reversible pebbling games strategies (cf. [Meuli et al., 2019b])
which is based on finding optimal uncomputing strategies that allow to clean up the circuit. Recall that
quantum computing is reversible and thus one has to clean up (reset the qubits to their initial values)
the input qubits using different strategies. The other is to consider ZX-Calculus ([Munson et al., 2019],
[Duncan et al., 2020] and [van de Wetering, 2020]).

7.1.3. Reversible pebbling games and memory management

In the example proposed in [Meuli et al., 2019b], a quantum algorithm should do the following transforma-
tion:

|x1〉 |x2〉 |x3〉 |x4〉 |0〉 |0〉 → |x1〉 |x2〉 |x3〉 |x4〉 |y1〉 |y2〉 (7.1)

where

© NEASQC Consortium Partners. All rights reserved. Page 31 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

z1 � A(x2 , x3) z2 � C(z1 , x3) z3 � B(x3 , x4) (7.2)
z4 � D(z3 , x3) y1 � E(z2 , z4) y2 � F(x1 , z1) (7.3)

withA, B, C,D , E, F being somegeneric 2-input Booleanoperations and z1 , z2 , z3 , z4 the intermediate results.

The transformation (7.1) could be represented by the directed acyclic graph (DAG) shown in Figure 15.

Figure 15: Transformation in the form of a DAG ([Meuli et al., 2019b])

Thequestion is to knowwhich is thebest strategy todesign anoptimal circuit toperformsuch transformation.
There are two main parameters that can’ t be reduced at the same time: the depth of the circuit and the
number of necessary qubits.

Different strategies can be followed for uncomputing (cf. [Meuli et al., 2019b]). Bennett’s strategy
[Bennett, 1989] (Figure 16), which consists of computing all the operations in a bottom-up order, and
then uncomputing the intermediate results in the reverse order, so that all the nodes have their inputs
available. In this strategy, there is a reduction of the number of gates while the number of ancillary qubits
is maximized.

Figure 16: Bennett strategy (cf. [Meuli et al., 2019a])

Another strategy is based on space-optimization by reordering the gates without any modification of the
global operator (the order here is about the time when some gate is applied on the qubit line, cf. Figure 17).

Another strategy is based on space-optimization by increasing the number of gates (cf. Figure 18).

The problem of finding an optimal computing strategy is shown equivalent to the problem of reversible
pebbling game. The latter is encoded as a SAT instance. The algorithm proposed in [Meuli et al., 2019a]
consists of considering k pebbles and then trying if a pebbling strategy is possible with k pebbles3. If not, k
is increased until reaching the optimal unpebbling strategy.

7.1.4. ZX-Calculus and circuit optimization

The ZX-calculus [Duncan et al., 2020] is a graphical language for reasoning about linear maps between
qubits. The graphical objects of this language, called ZX-diagrams, consist of a set of generators or spiders
3A SAT solver is used in this step.

© NEASQC Consortium Partners. All rights reserved. Page 32 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 17: space-optimization by reordering the gates (cf. [Meuli et al., 2019a])

Figure 18: space-optimization by increasing the number of gates (cf. [Meuli et al., 2019a])

that represent specific tensors. The topology of these graphic objects can be transformed according to some
rules ([Duncan et al., 2020] or [Backens et al., 2017]) without changing the linear maps that they represent.
ZX-diagrams can be seen as a generalization of quantum circuit and have been successfully used to op-
timize quantum circuits reducing their depth and avoiding useless quantum gates ([Munson et al., 2019],
[Duncan et al., 2020] and [van de Wetering, 2020]).

In [Munson et al., 2019], ZX-calculus is used to optimize circuits that contain phase gadgets, which are
families of multi-quantum gates, that occur naturally in many interesting quantum circuits. Indeed, this is
done using pattern replacement which consists of recognizing a subcircuit of specific form and replacing it
with an equivalent one (e.g. merging adjacent rotation gates acting on the same basis, cancelling operation-
inverse pairs, and applying commutation rules). In addition to the fact that any sequence of single-qubit
operations may be fused into a single unitary, for which an Euler decomposition can be computed4.

1. Some simplification rules

Spider-fusion This rule corresponds to the fact that the Z-spider (resp X-spider) represents an or-
thonormal basis, the computational basis. When two Z-spiders (X-spiders) touch, then can fuse
together, and their phases add.

Figure 19: Z-Spider Fusion Figure 20: X-spider Fusion

Identity removal A phaseless arity 2 Z- or X-spider is equal to the identity. This rule states that the
Bell-state is the same whether expressed in the computational basis (|0〉 , |1〉) or the Hadamard-
transformed basis ({|+〉, |−〉}) (See Figure 21).

4The idea is to use the Euler decomposition for the operator obtained as a product of the sequence. Each unitary operator on a single
qubit can be written as U � Rz(α)Ry(β)Rz(γ), where α, β, and γ are the Euler angles (see Z-Y decomposition for single qubit
Theorem 4.1 [Nielsen and Chuang, 2011]).

© NEASQC Consortium Partners. All rights reserved. Page 33 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 21: Identity removal

Pivoting This property is equivalent to the possibility to express (one of) the Pauli matrices in terms
of the Hadamard ones ([Duncan and Perdrix, 2014]). It is a local transformation of graphs. Given
a graph G with an edge uv, G ∧ uv, the graph obtained by pivoting according to uv, consists in
exchanging the two vertices u and v and in complementing the tripartite subgraph formed by
(i) the common neighbors of u and v; (ii) the exclusive neighbours of u; and (iii) the exclusive
neighbors of v (See Figure 22).

Figure 22: Pivoting ([Duncan and Perdrix, 2014])

Local complementation Let G be a graph and let u be a vertex of G. The local complementation of G
according to u, written as G?u, is a graph which has the same vertices as G, but all the neighbors
v , w of u are connected in G ? u if and only if they are not connected in G. All other edges are
unchanged (cf. [Duncan et al., 2020]) (See Figure 23).

Figure 23: Local complementation (cf. [Duncan et al., 2020]).

2. Example with Boolean formula

The objective with the ZX-calculus here is the reduction of the T-count of a given circuit, that is of
the number of T-gates it uses, these beeing costly to implement (see below for a definition of these
gates). We designed a program to generate circuits corresponding to boolean formulae. These circuits
can be used to obtain minimal cut sets which is the most complex task in resolving master fault trees.
The remaining quantification can be done a posteriori as a sum of products. For this, we can either
use the well-known classical approximation algorithms based on Sylvestre-Poincaré [Knuth D. E.,]
or the Min Cut Upper Bound [Jung, 2015] when appropriate or even other approaches like rewriting
cut sets in the form of binary decision diagrams [R., 1986] and then use Shannon decomposition
[Bäckström and Ying, 2008].

The circuits we obtain are then transformed into qasm format to deal with pyzx transformations.
Other more detailed tests are needed in this direction to deal with a variety of structure functions
for boolean master trees. Note that this experiment is not optimal in the sense that the Ry(t) is not
implemented in the p yzx library, but it was replaced with SRx(t)SZ.

In the following example, we show how this is used to optimize a circuit corresponding to a Boolean
formula.

Consider a boolean formula of the following form.

f � ((a ∧ b) ∨ (c ∧ d)) ∧ ((t ∨ f) ∧ (a ∨ b)) (7.4)

Clifford gates are the elements of the Clifford group, a set of mathematical transformations which
effect permutations of the Pauli operators. The notion was introduced by Daniel Gottesman and is
named after the mathematician William Kingdon Clifford. (cf. wikipedia entry Clifford gates).

© NEASQC Consortium Partners. All rights reserved. Page 34 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 24: Direct implementation of the boolean formula 7.4

I �
[
1 0
0 1

]
, X �

[
0 1
1 0

]
, Y �

[
0 −i
i 0

]
, and Z �

[
1 0
0 −1

]
T is an additional gate that makes the Cli f f ord + T set universal.

T �

[
1 0
0 e i π4

]
The circuit can be transformed in a ZX-diagram of the form of Figure (25) in ZH notation (cf.
[Backens and Kissinger, 2019]). If we first convert the circuit to basic gates (i.e. Clifford + T), it
can be seen as a pure ZX-diagram as in Figure 26. This transformation was done using the pyzx
library ([Kissinger and van de Wetering, 2020]).

We consider the Boolean formula in 7.4, the corresponding zx-diagram is as follows:

Figure 25: The zx-diagram of the boolean formula 7.4

By default, the CCZ gates are drawn in ZH notation [Backens and Kissinger, 2018]. A conversion to
a pure ZX-diagram can be obtained by converting the circuit to basic (i.e. Cli f f ord + T) gates (as
showed in Figure 26):

The circuit is composed of 13 qubits with 20 gates.

• 56 is the T-count

• 12 Cliffords among which

• 12 2-qubit gates (12 CNOT, 0 other) and

• 0 Hadamard gates.

© NEASQC Consortium Partners. All rights reserved. Page 35 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 26: The pure zx-diagram after the transformation

There are 8 gates of a different type, and we can write it in terms of basic gates to get more accurate
Cli f f ord + T statistics:

Indedd it is composed of 13 qubits with 132 basic Clifford+T gates.

• 56 is the T-count

• 76 Cliffords among which

• 60 2-qubit gates (60 CNOT, 0 other) and

• 16 Hadamard gates.

3. Optimizing ZX-diagrams

PyZX contains many functions for optimizing circuits and ZX-diagrams.

This above circuit has a T-count 56.

The most basic simplification routine for ZX-graphs is interiorc li f f ords imp which uses the simpli-
fication rules based on spider-fusion, identity removal, pivoting and local complementation until
they cannot be applied anymore. There may be many iterations.

spider_simp: 24. 17. 13. 7. 4. 1. 6 iterations

id_simp: 14. 1 iterations

spider_simp: 6. 1. 2 iterations

pivot_simp: 4. 1 iterations

Figure 27: The zx-diagram after the iteration above

The optimized one has a T-count of 54 (See Figure 28).

Now the optimized T-count is 46.

The next step is to turn this graph back into a circuit, Figure 29.

Many other optimisation routines can be used, for instance to reduce the amount of Hadamard gates
or to transform adjacent CNOT gates into SWAPs. These routines may depend heavily on the circuit
and its structure.

© NEASQC Consortium Partners. All rights reserved. Page 36 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 28: Optimisation intermediate step

Figure 29: Optimized zx-diagram step

Figure 30 shows the obtained circuit from the optimization proccess.

Figure 30: Complete Circuit

We have seen that there is a reduction of the T-count of the circuit. It may be of interest to do this
exercise on a bench of examples from real life problems including instances of medium size with a
high redundancy level5.

5In terms of computational complexity this is representative of the most difficult instances we can encounter in rel life PSA models.

© NEASQC Consortium Partners. All rights reserved. Page 37 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

7.1.5. Evaluating Patterns

In this section we consider evaluating Boolean fault trees with special forms that can be obtained through
different rewriting techniques or using an expert system for generating real-life system fault trees. We hope
that using some logical pattern may help to reduce the need of additional quantum gates.

There are many questions:

1. How can we use the techniques of reverse game pebbling (section 7.1.4) and ZX-Calculus (section
7.1.3) to optimize corresponding circuits to Boolean formula in a direct optimization?

2. What method could be relevant for the problem at hand?

3. Are these methods equivalent ? Reverse game pebbling techniques may have impacts on both depth
and gates number, while ZX-calculus seems elegant and could be much more efficient in reducing the
gates number.

4. On the other side, regarding Boolean formulae or fault tree structure, the question is about which
form of patterns we may find suitable for such circuits. The objective is then to generate fault trees
following adequate patterns.

7.2. A Counting algorithm

In [Siciliano, 2018], it was shown that given an AND-OR Boolean formula, one can find all the assignments
that satisfy it in O(

√
N), with N being the number of solutions. However, there is a precise number of

queries to obtain the solution with optimal precision which is not known a priori.

A solution is to use Quantum counting algorithm (cf. [Brassard et al., 2000]) which is a quantum algorithm
for efficiently counting the number of solutions for a given search problem.

It is based on the quantum phase estimation algorithm and on Grover’s search algorithm. These two
algorithms have been proved to provide a significant speedup over classical algorithms (exponential for
quantum phase estimation and quadratic for Grover search).

In this section we present a joint work with ATOS [Hereramarti, 2020].

7.2.1. Quantum Fourier transform

Fourier transform has been very powerful in many areas of science; in addition to be an elegant tool, it often
transformed a difficult problem into an easier one.

Similarly, to its classical version, the quantum Fourier transform acts on a quantum state
∑N−1

i�0 xi |i〉 and
maps it to the quantum state

∑N−1
i�0 yi |i〉 where

yk �
1√
N

N−1∑
j�1

x jω
j
N k

which is the discrete Fourier transform of the amplitude xk . This transformation is unitary and can be
implemented as the dynamics for a quantum computer (cf. [Nielsen and Chuang, 2011] p. 217). Moreover,
it maps the computing basis states |k〉k∈Zd

to another basis as follows:

|wk〉 � F |k〉 �
1√
d

d−1∑
l�0

e2πikl/d |l〉

The new basis |wk〉k∈Zd
is called the quantum Fourier basis.

© NEASQC Consortium Partners. All rights reserved. Page 38 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

7.2.2. Quantum phase estimation

Quantum phase estimation is a one of the important routines of quantum computing as it is convened
in many quantum computing algorithms (e.g. state separation [Zhao et al., 2019], accelerating variational
quantum eigen solver [Wang et al., 2019], tensor principal component analysis [Hastings, 2020], . . . etc).

Given a unitary operator U with |ψ〉 an eigenvector and e2πiθ its corresponding eigenvalue (U |ψ〉 �

e2πiθ |ψ〉), since θ is not known a priori, the quantum phase estimation algorithm will serve to estimate it.

The quantum phase estimation procedure uses two registers. The first register contains t qubits6 initially in
the state |0〉 we call this the counting register. The second register will serve to store the eigenvector.

In the computational basis, we store numbers in binary form using the states |0〉 and |1〉, but in the Fourier
Transform basis, we store numbers using different rotations around the Z-axis. This is used by the quantum
phase estimation algorithm to write the phase of U (in the Fourier basis) to the t qubits in the counting
register, then again using the inverse quantum Fourier transform to go back in the computational basis to
be measured.

Recall that to represent a number in binary form we use the following scheme:

a0 × 20
+ a1 × 21

+ a2 × 22
+ a3 × 23

+ a4 × 24
+ ... + an × 2n

Where coefficients a0 , a1 , a2 are bits and, the power i corresponding to a bit ai is called its weight.

For instance, we can encode 5 as in Figure 31.

Figure 31: 5 as a binary string

There is another way of coding numbers using "phases". For instance, we can encode 5 as in figure 32.

Figure 32: 5 as a phase superposition

Indeed, to count a number, x between 0 and 2t, we rotate this qubit by x2t around the z-axis. For the next
qubit we rotate by 2x2t, then 4x2t for the third qubit.

Therefore, in the Fourier basis, the topmost qubit completes one full rotation when counting between 0 and
2t.

When we use a qubit to control the U-gate, the qubit will turn (due to kickback) proportionally to the phase
e2iπθ. We can use successive CU-gates to repeat this rotation an appropriate number of times until we have
encoded the phase θ as a number between 0 and 2t in the Fourier basis.

Then we use QFT† to convert this into the computational basis before measurement (Cf. Figure 33).

6The choice of t depends on the number of digits of accuracy we wish to have in our estimate for θ, and with what probability we
wish the phase estimation procedure to be successful (cf. [Nielsen and Chuang, 2011]).

© NEASQC Consortium Partners. All rights reserved. Page 39 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 33: Quantum Phase Estimation Circuit (src Qiskit documentation)

7.2.3. Grover search

Grover’s algorithm allows searching an element in a set of unstructured data. In Figure 34 it is considered
to begin the algorithm in the starting state |α〉 and the objective is reaching the final state |β〉.

Figure 34: Geometrical representation of the effect of Grover search. The state |β〉 is assumed to be the solution of a
given problem.

Each step of the algorithm consists in 2 rotations, which practically is implemented byworking on the state’s
amplitudes. In particular, the aim is the maximization of the “good” state’s amplitude. The method, gen-
eralized in [Brassard et al., 2000] and called quantum amplitude amplification, maximizes such amplitude,
first a rotation around the initial state is done by a given angle θ

2 and then a second rotation, that will be
performed by the so called Grover operator which will rotate around the new state |ψ〉 by a full angle θ as
can be seen in Figure 34. The key parameter here is the angle of rotation θ: it is needed it to be the largest in
order to reach with the smallest number of operations the final state but without exceeding it. The problem
is indeed that an excessive rotation would lead the amplitude to decrease, thus decreasing the probability
of having a good result.

If we consider |α〉 as the superposition of vectors that are not solutions of the problemwe deal with, and |β〉
the superposition of the vectors that are solutions of our problem. A Grover iteration is the space spanned
by |α〉 and |β〉 is a rotation of an angle θ (cf. Figure 34). This rotation can be described as a matrix with
eigenvalues e iθ and e i(2π−θ).

Definition 1. The Quantum Oracle is a black box used to estimate a function using qubits. It allows transforming a

© NEASQC Consortium Partners. All rights reserved. Page 40 of 66

https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html#overview

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

system from a quantum state |x〉 to a state | f (x)〉, by the evolution of quantum states.

O |x〉 � | f (x)〉

As in the case of quantum phase estimation, Grover search is based on the possibility of building oracles
to implement the U2x (or at least polynomial time subroutines to solve some yes/no questions). There are
many ways to implement the oracle effects [Nielsen and Chuang, 2011]. In the Quantum Learning Machine
of Atos QLM the "phase oracle" that changes the vector signs is considered.

The relationship between the angle θ and the number of solutions M is determined by the formula
sin2(θ/2) � M/N . (N being the number of all potential candidates).

7.2.4. Quantum Counting

Once the number of solutions M given, the Grover algorithm can be successful in finding all the solutions
of the PSA/reliability problem.

The corresponding circuit could be as in Figure 35 (cf. [Hereramarti, 2020]).

Figure 35: Grover algorithm to find all the solutions of the PSA/reliability problem

An experimentation using a truth tables as oracles on some instances (BSU, LIFT and THREE_MOTOR from the
OPEN PSA website) showed interesting results. It particularly pointed out the fact that for instance while
Grover algorithm needed 50 iterations to maximize the probability of finding the solutions, the classical
approach needed 8000 evaluations (for more details see [Hereramarti, 2020]).

To go further we need to find an efficient way to implement the oracle without any prior knowledge of truth
tables.

Two main alternatives were identified in [Hereramarti, 2020]:

• Define the oracle as a Boolean function instead of a truth table.

• Study the noise effects, and in particular the compromise between the number of bits in the binary
precision and the error introduced by the increase of the noisy gates number.

Some solutions could be provided by the QLMmachine in a near future.

© NEASQC Consortium Partners. All rights reserved. Page 41 of 66

https://github.com/open-psa/mef-examples
https://github.com/open-psa/mef-examples

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

7.3. A quantum algorithm for s-t network vertex separation

All the calculations made within the framework of the PSA come from the model’s event trees repre-
senting accident sequence diagrams. These diagrams represent all the possible scenarios initiated by
an initiating event. These scenarios are generally represented in the so-called Master Faut Tree. In
[Jeffery and Kimmel, 2017] we can see that some Boolean formulae can be solved for satisfiability (SAT
problem) using a reduction to a problem of deciding in a graph if there is a path between a source s and a
target t for which there is an algorithm with O(

√
(N)) complexity.

The approach we adopt here is to consider upstreammodeling, it is to say the structure of the scenarios that
wewill represent as a graphwhere the failure or success of the system is represented by graphs representing
the topology of the systems that are used in the different parades (cf. [Hibti, 2013]).

For example, in the small pumping system in Figure 36, it can be represented in the form shown in Figure
37.

Figure 36: Small pumping system

If we consider the traditional failure modes for the components in question, the problem of getting cut sets
corresponding to the undesired event Top (that represents the failure to feed the node S_1) can be solved
by identifying the set of paths that can join two specific nodes origin and destination in a special graph
representing different macro-components of the system in question. The failure of the feed S1 is detected
by finding directly all the combinations of events in the graph that can stop the flux to S1 or by finding the
inputs (cuts) that can realize the Boolean formula of the master fault tree of the system:

f � BACHE ∨ ((V1M ∧ POMPE1 ∧ CLA1) ∨ (V2M ∧ POMPE2 ∧ CLA2))

For simplification reasons, we consider that there is no electrical or cooling supply of the different compo-
nents. Moreover, we do not consider Common Cause Failures (CCF).

The generic cut-sets represent all the sets of edges or vertices that if removedmay lead to cut the corresponding
graph in tow disconnected sub-graphs with the sink (s) in the first and target (t) in the second.

Indeed, the generic cut-sets are:

• the failure of the tank BACHE

• the failure of the macro component C1 and the macro component C2

Therefore, the minimal cut-sets can be obtained as the set of all products B × F1 × F2 where B is the tank
failure, F1 is the set of failure modes of the components of C1 and F2 is any failure mode of the components
of C2.

The problem is then reduced to a problem of finding cut-sets in an s-t graph.

© NEASQC Consortium Partners. All rights reserved. Page 42 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 37: Representation in the form of a graph

Wepropose an algorithm based on amovement strategywhere it usesmovement oracles to build a quantum
superposition containing all these minimal cuts (see the section 7.3.4 for more details).

The first question that comes up here is how can we represent all the vertex sets with quantum qubits?
On the other hand, for a graph of n vertices, we will find 2n different subsets of these vertices. In the
quantum setting, with n qubits, we can represent 2n possible states. In both cases with n elements we have
2n possibilities, so we represent the subsets by the quantum states of these n qubits. To do this, we use for
each vertex of the graph a qubit, and each state of these qubits represents a subset of the vertices.

7.3.1. Oracle of movement

Consider the graph of Figure 38.

s

u

v

w

x

t

Figure 38: Directed graph

The movement of a vertex is given by the set of the successors starting from the vertex of the movement.
The movement of a vertex v is defined by this general formula:

Mov(v) � Succ(v)

with Succ(v) represents the set of the successors of the vertex v.

If we have a set of vertices S and we need to make a movement by one vertex v of these vertices, we will
simply replace the vertex v by its successors in the set S to obtain the result of the movement MovS(v). The
movement of a vertex v ∈ S is defined by this general formula:

MovS(v) � {S \ v} ∪ Succ(v)

As a first example, based on the graph in Figure 38 and assume that the starting set S contains just the
source vertex s, S � {s}. The movement of s it is the replacement of the vertex s by their successors {u , v}
in the starting set S, therefore:

MovS(s) � Succ(s) � {u , v}
We consider another example using the same graph in Figure 38 we take the current set S � {u , v}, in order
to obtain the movement of u ∈ S we simply replace u by its successors set {v , w}. So the new set after the

© NEASQC Consortium Partners. All rights reserved. Page 43 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

movement is :
Mov{u ,v}(u) � {{u , v} \ u} ∪ Succ(u) � {v} ∪ {v , w} � {v , w}

In the quantum context, to apply these movements we use oracles of movements. Which takes the current
subset as an input quantum state and provides the movement subset in the output.

For some fixed vertex v and some subset of vertices S, such as v ∈ S, firstly, we represent the subset S with
the quantum state |ψS〉. To apply the movement of v we give the quantum state |ψS〉 to the oracle as an
input, and in the output of the oracle we will find a quantum state representing the subset (S \ v) ∪ Succ(v).
More precisely, let us consider the current set of vertices defined as the union of two subsets S � S1 ∪ S2,
this union can be represented by the following quantum superposition |ψS〉 � α1 |S1〉 + α2 |S2〉 where the
state |S1〉 represent the subset S1 and the state |S2〉 represent the subset S2. We consider some fixed vertex
w ∈ S1 and define the movement of w ∈ S as follows:

|ψout〉 �
α1√

2
|S1〉 + α2 |S2〉 +

α1√
2
|S3〉 ,

which combines the two input subsets S1, S2, and the new subset of the movement S3. And, S3 is defined
as follows:

S3 � MovS1(w) � {S1 \ w} ∪ Succ(w)
If the vertex of the movement is not in the input subset, w < S1 ∪ S2, the oracle will not change the input
superposition.

In order to write the general formula of an oracle of movement O, let us consider the input quantum state
|ψS〉 which represents some subset of vertices S.

To provide the output quantum state of the movement |ψ′S〉, we use this general formula :

|ψ′S〉 � O |ψS〉 and |ψ′S〉 �
∑
e∈S

αe f (e) |e〉

where

f (e) �

1 if e is the start state
1 if e is the movement state
0 otherwise

And {
αe � 0 if f (e) � 0∑

e αe � 1

The general circuit of oracles is as follows in Figure 39:

Figure 39: General circuit of oracles

To represent an oracle with a simple quantum circuit, we should add two more control qubits |c0〉 and |c1〉.
The first control qubit |c0〉 is used to check if the vertex of the movement exists in the input set. The qubit
|c0〉 will be in state |1〉, if the qubit corresponding to the vertex of the movement is in state |1〉, and in |0〉 if
© NEASQC Consortium Partners. All rights reserved. Page 44 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

not. For this, we use the C-X gate with the qubit corresponding to the vertex of the movement as a control
and the qubit |c0〉 as a target.

If the vertex is in the input set, we add another set to the set of cuts. Or, we can say if the qubit of the vertex
is in the state |1〉 we add a new state to the input superposition. To do this, we use the C-H gate with the
qubit |c0〉 as a control and the target qubit is the qubit of the vertex of the movement. After that, we use a
C-X gate to apply the movement on the new set.

To add all the successors of the movement vertex to the new set, we use the sub-circuit in the Figure 40
which allows inverting the qubit of the successor in the state |1〉 if it is in the state |0〉 and to do nothing if it
is in the state |1〉.

Figure 40: Sub-circuit of movement from vi to v j , this sub-circuit has three qubits as an input: |c1〉 for the control.
|vi〉 represent the vertex of the movement and |v j〉 represent the successor vertex.

7.3.2. Algorithm description

Let G � (V, E) be a directed graph, where V is the set of vertices such as |V | � n and E the set of edges, the
source of the graph is the vertex S and the sink is the vertex T. The first step of the algorithm, is preparing
the necessary number of qubits to represent all possible subset of vertices of the graph. The size of the set
V is n, so we use n quits.

At the beginning all the n qubits are initialised in the state |0〉, so the quantum state it initialised to
|ψ〉 � |0 . . . 0〉. With the first qubit corresponding to the source vertex S, the second qubit for the second
vertex, until the last qubit for the last vertex (the sink vertex T). There are only zeros in the state |ψ〉, which
means all the vertices are absent in the cut represented by |ψ〉.

|ψ〉 � |tvn . . . v1s〉 � |00 . . . 00〉 ⇐⇒ ψ � {}

Therefore, to start with a set ψ containing only the input vertex S, we apply the not gate X on the first qubit,
which gives us |ψ〉 � |0 . . . 01〉 as a result, with the qubit |s〉 is in the state |1〉.

In the second step, for each vertex, we have an oracle of movement, so we call all these oracles of movement.

The first oracle corresponding to the movement of the vertex S to its successors:

|ψ1〉 � O1 |ψ〉 � α1 |ψ〉 + α2 |Movψ(S)〉
|ψ1〉 � α1 |ψ〉 + α2 |Succ(S)〉

After this iteration, the oracle O1 adds to the superposition the state |Succ(S)〉 which represent the first cut
of the graph.

After that, we apply all the remaining oracles:

|ψ f in〉 � OnOn−1 . . .O2 |ψ〉
Each one of these oracles adds a number of states to the superposition, which means its adds a number of
cuts to the set of cuts represented by the superposition.

© NEASQC Consortium Partners. All rights reserved. Page 45 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

|ψ f in〉 � α1 |cut1〉 + · · · + αk |cutk〉

After the n oracles, in the output superposition |ψ f in〉 �
∑

i αi |Mincuti〉, we find all the possible cuts
represented by the states |Mincuti〉. Finally, we use a simple classical filter to eliminate non-minimal cuts.

Algorithm 1: All the possible minimal cuts
Input : Graph G � (V, E), with n � |V | is the number of vertices of the graph, source vertex S, sink vertex

T
Output: Min-cuts Cs
Start:
Initialized n qubits,

|ψ0〉 � |0, . . . , 0〉
Apply the not gate X in the first qubit which represents the source S

|ψ1〉 � |0, . . . , 0, 1〉
Make the movement of S we apply the oracle Os

|ψ2〉 � Os |ψ1〉
for each v ∈ V and v != S and T is not a successor of v do

|ψi+1〉 � Ov |ψi〉

Cs �measured |ψn−1〉 and eliminate non-minimal cuts.
return Cs

Algorithm 1 represents the steps to generate the quantum circuit to find all the possible minimal cuts.

7.3.3. Complexity Analysis

Suppose we have a graph G � (V, E), with V the set of vertices and E the set of edges such as |V | � n and
|E | � m. In the classical case Kloks and Kratsch propose in [Ton and Dieter, 1998] an algorithm to list all
these minimal cuts with a polynomial complexity for each found cut. In the quantum case, our algorithm
is able to find all these minimal cuts with linear complexity. It uses n qubits to represent all the possible
states of the graph and 2 auxiliary qubits for control. To build the n oracles of movement we need n gates
C-H, 2n − 2C-X gates , m + 2 X gates and 2mCC-X gates.

7.3.4. Test of the algorithm

In this section, we present a test case of our algorithm. Let us take the directed graph G � (V, E) represented
in the Figure 41.

S

v1

v2 v3

v4

v5 v6

v7

T

Figure 41: Oriented Graph of 9 nodes

In this graph,wewant to find all theminimal cuts that can stop the flux between the source S and the terminal
T. The graph has n � 9 vertices, which leads us to use 9 qubits to represent all possible combinations of
these vertices.

© NEASQC Consortium Partners. All rights reserved. Page 46 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

The source S is represented by the first qubit |v0〉 and each vertex vi , i � 1, . . . , 7 is associated to the qubit
|vi〉 , i � 1, . . . , 7 and the terminal T is associated to the last qubit |v8〉.

Each state |Ci〉 of the superposition |v8v7v6v5v4v3v2v1v0〉 �
∑29−1

i�0 αi |Ci〉 represents a combination of the
vertices, we say that the vertex vi belongs to a combination of vertices Ci if the corresponding qubit |vi〉 of
the state |Ci〉 is in the state |1〉. For example, C � {v1 , v2} is represented by |000000110〉.
To begin with the source of the graph we start with the state |ψ0〉 � |000000001〉.
Now let’s suppose that all the successors of the source S � v0 are broken down, then there isn’t any way
to go to the next vertices of the graph, so the combination of the successors of the vertex S � v0 is a cut,
moreover, if one of these successors is in good condition, we will find a way to go to the next vertices.
Consequently, the combination of successors of S � v0 is a minimal cut.

Then, to find this first minimal cut, we apply the first oracle of themovement on the source S to its successors
v1 and v2. That is, we take |ψ0〉 as an input andwe apply themovement to go to the state |ψ1〉 � |000000110〉.
Figure 42 represents the movement, oracle of the movement and the results of the movement of S.

S

v1

v2 v3

v4

v5 v6

v7

T

(a) (b) (c)

Figure 42: The movement of S towards the two successors v1 and v2 represented in (a) can be performed by the oracle
(b). (c) The result of the execution gives the state |000000110〉 which represents the first cut {v1 , v2}.

Here |ψ0〉 is X a cut, so we use only the not gate to transform this state to |ψ1〉.
Now, suppose that one of the successors v1 and v2 is in a good state (is not broken), then there is a way to go
to the following vertices. For example, if vertex v1 is not broken, sowe can find away to the terminal through
the successors of v1. If the successors of v1 are broken, we can’t find a path to the terminal. Therefore, the
combination C2 � Succ(v1) ∪ C1 \ {v1} is a cut, and if one element of C2 is not broken, we find a path to
the terminal, so C2 is a minimal cut. Then, if we apply the movement of v1 in the state |ψ1〉, we find a new
minimal cut containing the successors of v1 and the vertex v2.

(a) (b)

Figure 43: (a) The second oracle starts after the first barrier in the circuit. (b) The result of the execution gives two
states: |000000110〉 represents the input and |010100100〉 represents the new cut after the movement. Note that the

second oracle in (a) uses the Hadamard gate to add the new state into the superposition.

Here, the oracle uses the Hadamard gate to keep the first cut and add the new state corresponding to the
new cut. Figure 43 shows the circuit of the second oracle and the results of the movement.

© NEASQC Consortium Partners. All rights reserved. Page 47 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

In step k, the Ok oracle is applied to the output superposition of the step k − 1, which adds new states to
|ψk〉, if the qubit vk is in the state |1〉 for each state of the superposition |ψk−1〉.
The circuit for graph in Figure 41 is presented in Figure 44 and the results of the execution of this circuit is
presented in Figure 45.

Figure 44: The circuit reserves 11 qubits: 9 to represent all possible failure states, 2 for the control. And also it uses 7
oracles of movements separated by vertical separators. Each oracle represents the movement of a vertex. At the end of

the circuit, we measure the 9 qubits to find the superposition that represents all the minimal cuts.

(a) (b)

Figure 45: The histograms represent the superposition of output |ψ f inal〉. (a) The result of the execution in the IBM
Qasm simulator. (b) The result of the execution in the IBM Q 16 Melbourne

Finally, we eliminate the non-minimal cuts. For that, for each (i , j) eliminate the cut C j if Ci ⊂ C j .

To check the results we visualized each state of the superposition in figure 45 in an independent graph in
figure 46, with red color if the vertex qubit in the state |1〉 (present in the minimal cut) and black if it is in
the state |0〉.

© NEASQC Consortium Partners. All rights reserved. Page 48 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 46: Illustration of the results on the graph

7.4. Quadratic Unconstrained Binary Optimisation

Quadratic Unconstrained Binary Optimization is an optimization problem that aims to find a binary vector

x that is minimal with respect to a quadratic polynomial fQ(x) �
n∑

i�1

i∑
j�1

qi j xi x j over binary variables xi ∈ B

(B � {0, 1}) for i ∈ [n] and coefficients qi j ∈ R 7.

In [Smelyanskiy et al., 2012], an encoding of fault tree evaluation intoQUBO is done by encoding the relation
of the logical gates in the following manner in Table 5:

Gate Ising encoding
2-input AND gate HAND(y , x1 , x2) � y + x1 + x2 + x1x2 − 2yx1 − 2yx2
2-input OR gate HOR(y , x1 , x2) � 3y + x1x2 − 2yx1 − 2yx2.
Gates with 3 or more inputs HOR(y , x1 , x2 , x3) � HOR(y , z , x3)

where z with encoding HOR(z , x1 , x2)
3-input majority gate HMAJ(y , x1 , x2 , x3) � 3y − 2y(x1 + x2 + x3) + x1x2 + x1x3 + x2x3

Table 5: An encoding of fault tree evaluation into QUBO

The complete cost function, that will be translated to a problem Hamiltonian that encode ab optimization
problem (to implement on Ising graph) may be written in the following form [Smelyanskiy et al., 2012]:

H f ault−tree � A
M∑
j�1

H j
gate + B(1 − z0) +

∑
i∈B

wi zi

where the first sum is over all gates, using an appropriate expression (e.g. HAND , HOR, or HMAJ) with
appropriate events zi substituted for y , x1 , ..., xk .

For unweighed minimum cut we set wi � 1 for all basic events while choosing A > 3N and B > 3MA
ensures that in the global minimum z0�1 and all gate constraints are satisfied [Smelyanskiy et al., 2012].

7[n] � j ∈ N; 1 ≤ j ≤ n

© NEASQC Consortium Partners. All rights reserved. Page 49 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

8.Quantum Benchmarks

In this section, we evaluate the approaches proposed in NEASQC Deliverable 6.4 and in Section 6.7 of
present document. We performed several tests on small problems based on the number of qubits available
to us at the time. To perform these tests, we used four small fault trees: Theatre (5 nodes), SmallTree (7
nodes), BSCU (15 nodes) and LIFT(27 nodes) and in addition to that 7 faults tree of more than 27 nodes. The
fault trees are represented in the following after that we show the test results and the comparative results
between the two approaches, the section will be ended by a discussion.

8.1. Theatre

In this part, we represent a Theater fault tree, which contains 5 nodes and which are linked together as
showed in Figure 47:

Figure 47: Fault tree

With :

• Tree = Theatre

• Mission 1 = Mains fail

• Mission 2 = Generator fail

• Mission 3 =Relay fail

• Mission 4 = Generator

8.2. SmallTree

In this part, we represent a SmallTree, which contains 7 nodes and which are linked together as showed in
Figure 48:

© NEASQC Consortium Partners. All rights reserved. Page 50 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 48: Small Fault tree

8.3. BSCU

In this part, we represent BSCU fault tree, which contains 15 nodes and which are linked together as
reference to Figure 49:

Figure 49: Fault tree BSCU

With :

• Mission 1 = Validity Moniter Failure

• Mission 2 = Switch Stuck In Position 2

• Mission 3 = System 2 Electronic Faillure

• Mission 4 = Loss Of System 2 Power Supply

• Mission 5 = System 1 Electronic Faillure

• Mission 6 = Loss Of System 1 Power Supply

• Mission 7 = Switch Stuck In position 1

© NEASQC Consortium Partners. All rights reserved. Page 51 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

• Mission 8 = Switch Stuck In Inter./mediate Position

• Mission 9 = Loss Of System 2

• Mission 10 = Loss Of system 1

• Mission 11 = Fails In Position 2 And System 2 fails

• Mission 12 = System 1 and 2 Do not operate

• Mission 13 = Switch fails in position 1 and System 1 fails

• Mission 14 = Switch Faillure

• Tree = Loss of brking commands

8.4. LIFT

In this part, we represent LIFT fault tree, which contains 27 nodes andwhich are linked together as reference
to Figure 50:

Figure 50: Fault tree LIFT

8.5. Other faults tree

In the table 6, we illustrate 7 faults tree of various sizes:

© NEASQC Consortium Partners. All rights reserved. Page 52 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Fault Tree Number of nodes Number of clauses
FaultTree-0 27 30
FaultTree-1 30 31
FaultTree-2 31 30
FaultTree-3 31 31
FaultTree-4 32 32
FaultTree-5 32 33
FaultTree-6 33 34
FaultTree-7 33 34

Table 6: 7 Faults tree

8.6. Results

In this section, we compare the results obtained by the approach proposed in NEASQC Deliverable D6.4
[Rennela et al., 2021] and the “cooperative” approach proposed in section 6.7 according to the number of
qubits used and if the problem is solved or not.

The CNF form of the fault trees FaultTree − i can be found in appendix A.2.

Fault Tree Number of nodes Number of used qubits D6.6 approach Cooperative approach
Theatre 5 7 Solved Solved

SmallTree 7 10 Solved Solved
BSCU 15 20 Not Solved Solved
LIFT 27 20 Not Solved Solved

FaultTree-0 27 20 Not Solved Solved
FaultTree-1 30 20 Not Solved Solved
FaultTree-2 31 20 Not Solved Solved
FaultTree-3 31 20 Not Solved Solved
FaultTree-4 32 20 Not Solved Solved
FaultTree-5 32 20 Not Solved Solved
FaultTree-6 33 20 Not Solved Solved
FaultTree-7 33 20 Not Solved Solved

Table 7: Quantum Results

8.7. Discussion

In Table 7, we can see that in the quantum case, we cannot solve large fault trees, and this goes back to the
number of qubits available today in quantum computers.

Almost like all use cases of quantum computing, the problem of the number of qubits are still a major
problem to find a solution of our benchmark problem, we have encountered this problem even in the work
that we have done in the paper [Zaiou et al., 2022a]. In the latter, we have proposed a quantum approach to
search for minimal cuts in a directed graph, where we usemovement oracles in it andwe find these minimal
cuts with a linear number of qubits and oracles. Even though we do a classical filter at the end to eliminate
cuts that maybe are not minimal but are in general cuts.

Until today, we are not able to solve real cases or real fault trees in the field of PSAwith quantum approaches.
To make this feasible, or in order to find a solution of our problem, several approaches are envisioned: of
course the first one is to have a quantum computer with an interesting number of qubits, which is the case
that is not yet envisaged for the next few years; the second one is to divide the large fault trees on several
small trees and to process them in a separate way and to merge the results in order to find the global results
at the end.

For the first solution, it is in the hands of the researchers working on the hardwere, but for the second
question, it depends on the skills that we can have, so the question here is how can we cut these large fault
trees? and what method can we use to do this task?

© NEASQC Consortium Partners. All rights reserved. Page 53 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

To answer these two questions, we proposed to use the unsupervised machine learning algorithms, and
for avoiding high splitting complexity, we proposed the two quantum approaches [Zaiou et al., 2021] and
[Zaiou et al., 2022b]: in the first [Zaiou et al., 2021], we improved the quantum version of the unsupervised
learning algorithm Balanced K-means, this algorithm allows to split a database (which can be a graph or a
fault tree or any database represented in a given space) on k clusters where the size of the clusters is the
same N/k, we chose this approach simply to have divided the fault tree on several small trees (clusters) of
the same size N/K, N being the size of the data set, to have well specified the number of components in
each small tree according to the number of qubits available in the quantum computer that we use; for the
second paper [Zaiou et al., 2022b]: we proposed the quantum version of the Convex Non-negative Matrix
Factorization algorithm, to find a first clustering apart from the matrix that represents the tree and to find
a representative matrix of the data with a reduced dimension to make easier the steps for the algorithm of
the paper [Zaiou et al., 2021].

With these two approaches, we can split the large fault trees into several small trees able to be processed
according to the number of qubits available today in quantum computers, but the question that remains
open until today, is how can we make a reverse work of this splitting to scale up the results?

8.8. Conclusion

In this document,we presented an overview of the main winners of the annual SAT competition; we
compared them in termsof runtime and to seewhich solvers are able to solve a largenumber of instances. The
benchmarks proposed in the different SAT competitions include several big instances that are comparable
to the big industrial instances we may find in the PSA problem.

Our aim was to see to which extent these algorithms can be extended to deal with the PSA problem first
classically and then using quantum algorithms. Our attempts to solve industrial instances using variants
of some algorithms (for instance Minicard1 [Liang et al., 2016], HTT-BDD 2[Toda and Soh, 2016]) that deal
with the search of all solutions were not successful (which is not reported in this document).

We also have made benchmarks on some small fault trees in the PSA field to test quantum algorithms. By
comparing these results, we can see that in the quantum case, we have very limited class of problems to
solve with today algorithms (The algorithm proposed in NEASQCDeliverable 6.4 [Rennela et al., 2021] and
the cooperation algorithm proposed in [Cheng and Tao, 2007]).

The problem of finding all the prime implicants is close to the SAT problem, in the sense that we are
searching not only a satisfiable assignment, but all the assignments. In practice, the event combinations of
lowprobability/frequency (lower than some threshold) are neglected and that is another pruning possibility
of parts of the search tree.

With current hardware, scaling remains an important question and therefore requires a focus on efficient
hybrid approaches that combine performant classical solvers with a relevant use of quantum superposition
when it matters.

1https://github.com/liffiton/minicard
2http://www.sd.is.uec.ac.jp/toda/htcbdd.html

© NEASQC Consortium Partners. All rights reserved. Page 54 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

List of Acronyms

3-SAT SAT with formulae in CNF with each clause containing up to 3 literals 23
AQC Adiabatic Quantum Computation . 23
CaDiCaL Radical CDCL Solver . 9
BCP Boolean Constraint Propagation . 9
CaDiCaL Hack GB GB on the top of CaDiCaL1.4.0 when VSIDS is active in the baseline system . . . 11
CDCL Conflict-Driven Clause Learning . 3
CHB Conflict-History Based . 11
CMS EXP VGBL GB method on top of LRB, and replace VSIDS with expVSIDS. 11
CNF Conjunctive Normal Form . 6
CQS Cooperative Quantum Search . 27
CRVR Common Reason decision Variable score Reduction . 11
CryptoMiniSat CryptoMiniSat solver . 11
CSP Constraint Satisfaction Problem . 21
DPLL Davis, Putnam, Logemann and Loveland’s algorithm . 8
EA Evolutionary Algorithms . 27
ERWA exponential recency weighted average . 10
MAB Multi-Armed Bandit . 10
expVSIDS VSDIS with expScore . 11
FTA Fault Tree Analysis . 23
TFO Traffic Flow Optimization . 25
GB Glue Bumping . 11
GenSAT Genetic Huill-Climbing Algorithms for Satisfiability . 27
GSAT GenSAT algorithm . 27
HHL Harrow-Hassidim-Lloyd . 5
k-SAT SAT with formulae in CNF with each clause containing up to 3 literals 25
KISSAT The Kissat SAT solver is a condensed and improved reimplementation of CaDiCaL in C. It has

improved data structures, better scheduling of inprocessing, optimized algorithms and
implementation. 10

KISSAT GB Kissat with Glue Bumping strategy . 11
KISSAT CRVR GB Kissat with CRVR and GB . 11
LRB Learning Rate Branching heuristic . 10
LR Learning Rate . 10
LSP Linear System Problems . 22
lstech MAPLE Local Search Tech Maple is an improved version of Relaxed LCM DCBDL newTech . 10
LSTech Local Search Tech . 10
MAB Multi-Armed Bandit . 10
Maple Maple . 10
PSA Probabilistic Safety Assessment . 5
POS Product Of Sums . 26
PPSZ Paturi, Pudlák, Saks, and Zane Algorithm . 28
QA Quantum annealing . 25
QUBO Quadratic Unconstrained Binary Optimization . 25
Relaxed Relaxed Conflict-Driven Clause Learning . 10
RNLT Relaxed LCMDCBDL NewTech . 10
SAT Boolean Satisfiability Problem . 5
STL Standard Template Library . 9
TSP Traveling Salesman Problem . 25
UCB Upper Confidence Bound . 11
VSIDS Variable State Independent Decaying Sum . 9
VMTF Variable Move to Front Strategy . 11
WHT Walsh-Hadamard Transform . 24

© NEASQC Consortium Partners. All rights reserved. Page 55 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

List of Figures

Figure 1.: Map of the main sat solvers cited in this report . 8
Figure 2.: Original backtracking algorithm . 9

Figure 3.: Cactus plot for considered solvers over satis . 14
Figure 4.: Cactus plot for considered solvers over unsatis . 15

Figure 5.: Top 10 Main track (src [Froleyks et al., 2021]) . 18
Figure 6.: Top 10 Main track (src [Froleyks et al., 2021]) . 18
Figure 7.: Top 10 Main track (solved SAT instances according to CPU time) (src

[Froleyks et al., 2021]) . 19
Figure 8.: Top 10 Main track (solved unsatisfiable instances according to CPU time) (src

[Froleyks et al., 2021]) . 19
Figure 9.: Number of connections of different sets of instances 20
Figure 10.: Number of variables of different sets of instances . 20

Figure 11.: Quantum circuit with combined quantum and classical bits. The classical bits are
picked at random following one of the GenSAT strategies and the quantum bit selec-
tion driven by the appearance number. 28

Figure 12.: Example of a Boolean formula . 30
Figure 13.: Quantum circuit for the AND and OR logic gates . 31
Figure 14.: The quantum circuit for the fault tree 7.1.1 . 31
Figure 15.: Transformation in the form of a DAG ([Meuli et al., 2019b]) 32
Figure 16.: Bennett strategy (cf. [Meuli et al., 2019a]) . 32
Figure 17.: space-optimization by reordering the gates (cf. [Meuli et al., 2019a]) 33
Figure 18.: space-optimization by increasing the number of gates (cf. [Meuli et al., 2019a]) 33
Figure 19.: Z-Spider Fusion . 33
Figure 20.: X-spider Fusion . 33
Figure 21.: Identity removal . 34
Figure 22.: Pivoting ([Duncan and Perdrix, 2014]) . 34
Figure 23.: Local complementation (cf. [Duncan et al., 2020]). 34
Figure 24.: Direct implementation of the boolean formula 7.4 . 35
Figure 25.: The zx-diagram of the boolean formula 7.4 . 35
Figure 26.: The pure zx-diagram after the transformation . 36
Figure 27.: The zx-diagram after the iteration above . 36
Figure 28.: Optimisation intermediate step . 37
Figure 29.: Optimized zx-diagram step . 37
Figure 30.: Complete Circuit . 37
Figure 31.: 5 as a binary string . 39
Figure 32.: 5 as a phase superposition . 39
Figure 33.: Quantum Phase Estimation Circuit (src Qiskit documentation) 40
Figure 34.: Geometrical representation of the effect of Grover search. The state |β〉 is assumed to

be the solution of a given problem. 40
Figure 35.: Grover algorithm to find all the solutions of the PSA/reliability problem 41
Figure 36.: Tikz . 42
Figure 37.: Representation in the form of a graph . 43
Figure 38.: Directed graph . 43
Figure 39.: General circuit of oracles . 44
Figure 40.: Sub-circuit of movement from vi to v j , this sub-circuit has three qubits as an input:

|c1〉 for the control. |vi〉 represent the vertex of the movement and |v j〉 represent the
successor vertex. 45

Figure 41.: Oriented Graph of 9 nodes . 46
Figure 42.: The movement of S towards the two successors v1 and v2 represented in (a) can be

performed by the oracle (b). (c) The result of the execution gives the state |000000110〉
which represents the first cut {v1 , v2}. 47

© NEASQC Consortium Partners. All rights reserved. Page 56 of 66

https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html#overview

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Figure 43.: (a) The second oracle starts after the first barrier in the circuit. (b) The result of
the execution gives two states: |000000110〉 represents the input and |010100100〉
represents the new cut after the movement. Note that the second oracle in (a) uses
the Hadamard gate to add the new state into the superposition. 47

Figure 44.: The circuit reserves 11 qubits: 9 to represent all possible failure states, 2 for the
control. And also it uses 7 oracles of movements separated by vertical separators.
Each oracle represents themovement of a vertex. At the end of the circuit, wemeasure
the 9 qubits to find the superposition that represents all the minimal cuts. 48

Figure 45.: The histograms represent the superposition of output |ψ f inal〉. (a) The result of the
execution in the IBM Qasm simulator. (b) The result of the execution in the IBM Q
16 Melbourne . 48

Figure 46.: Illustration of the results on the graph . 49

Figure 47.: Fault tree . 50
Figure 48.: Small Fault tree . 51
Figure 49.: Fault tree BSCU . 51
Figure 50.: Fault tree LIFT . 52

© NEASQC Consortium Partners. All rights reserved. Page 57 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

List of Tables

Table 1.: The results of computational evaluation of different solvers on the joint set of bench-
marks from SAT Competitions 2016 and 2020 and SAT Race 2019 (1300 tests in total). . 14

Table 2.: Table of the max and min sizes of the instances and their connections 19

Table 3.: Experiment of the adiabatic algorithm by Bourreau et al. with 3 simulation times in
[Bourreau et al., 2022] . 25

Table 4.: Experiment of the adiabatic algorithm by Bourreau et al. with T=20 and 2048 shots in
[Bourreau et al., 2022] . 25

Table 5.: An encoding of fault tree evaluation into QUBO . 49

Table 6.: 7 Faults tree . 53
Table 7.: Quantum Results . 53

© NEASQC Consortium Partners. All rights reserved. Page 58 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

Bibliography

[Bal, 2020] (2020). SATCOMPETITION 2020 Solver and BenchmarkDescriptions. Department of Computer
Science, University of Helsinki.

[a. M. Luo, 2017] a. M. Luo, M. (2017). An effective learnt clause minimization approach for CDCL SAT
solvers. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pages 7003–7011.

[Ambainis, 2010] Ambainis, A. (2010). New Developments in Quantum Algorithms. InMathematical Foun-
dations of Computer Science 2010, 35th International Symposium, {MFCS} 2010, Brno, Czech Republic, August
23-27, 2010. Proceedings, pages 1–11.

[Ambainis et al., 2007] Ambainis, A., Childs, A. M., Reichardt, B. W., Spalek, R., and Zhang, S. (2007). Any
AND-OR Formula of Size N can be Evaluated in time $Nˆ{1/2 + o(1)}$ on a Quantum Computer. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 363–372.

[Arboost Technologies, 2004] Arboost Technologies (2004). Aralia User Manual. Arboost.

[Backens and Kissinger, 2018] Backens, M. and Kissinger, A. (2018). ZH: A complete graphical calculus for
quantum computations involving classical non-linearity. arXiv preprint arXiv:1805.02175.

[Backens and Kissinger, 2019] Backens, M. and Kissinger, A. (2019). ZH: A complete graphical calculus for
quantum computations involving classical non-linearity. In Electronic Proceedings in Theoretical Computer
Science, EPTCS.

[Backens et al., 2017] Backens, M., Perdrix, S., and Wang, Q. (2017). A simplified stabilizer ZX-calculus. In
Electronic Proceedings in Theoretical Computer Science, EPTCS.

[Bäckström and Ying, 2008] Bäckström, O. and Ying, D. (2008). A presentation of the MCS BDD algorithm
in the risk spectrum software package. In 9th International Conference on Probabilistic Safety Assessment and
Management 2008, PSAM 2008.

[Balas and Souza, 2005] Balas, E. and Souza, C. D. (2005). The vertex separator problem: algorithms and
computations. Mathematical Programming.

[Balyo et al., 2017] Balyo, T., Heule, M. J. H., and Järvisalo, M. (2017). SAT COMPETITION 2017 Solver and
Benchmark Descriptions. Proceedings of SAT COMPETITION 2017.

[Beanie et al., 2003] Beanie, P., Kautz, H., and Sabharwal, A. (2003). Understanding the power of clause
learning. In ĲCAI International Joint Conference on Artificial Intelligence.

[Bennett, 1989] Bennett, C. H. (1989). Time/space trade-offs for reversible computation. SIAM Journal on
Computing.

[Biere., 2019] Biere., A. (2019). Cadical at the sat race. In SAT RACE 2019, page 8.

[Biere Armin and Heisinger, 2021] Biere Armin, F.M. andHeisinger, M. (2021). CADICAL, KISSAT , PARA-
COOBA Entering the SAT Competition 2021. In Balyo, T., Froleyks, N., Heule, M., Iser, M., Järvisalo, M.,
and Suda, M. e., editors, Proceedings of SAT Competition 2021 : Solver and Benchmark Descriptions, pages
10–12.

[Bourreau et al., 2022] Bourreau, E., Fleury, G., and Lacomme, P. (2022). Adiabatic based Algorithm for
SAT: a comprehensive algorithmic description.

[Brassard et al., 2000] Brassard, G., Höyer, P., Mosca, M., and Tapp, A. (2000). Quantum Amplitude Ampli-
fication and Estimation.

[Buhrman et al., 1998] Buhrman, H., Cleve, R., and Wigderson, A. (1998). Quantum vs. classical communi-
cation and computation. In Conference Proceedings of the Annual ACM Symposium on Theory of Computing.

[Campbell et al., 2019] Campbell, E., Khurana, A., andMontanaro, A. (2019). Applyingquantumalgorithms
to constraint satisfaction problems. Quantum.

[Campos et al., 2021] Campos, E., Venegas-Andraca, S. E., and Lanzagorta, M. (2021). Quantum tunneling
and quantum walks as algorithmic resources to solve hard K-SAT instances. Scientific Reports.

© NEASQC Consortium Partners. All rights reserved. Page 59 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

[Chang et al., 2018] Chang, W., Xu, Y., and Chen, S. (2018). A new rewarding mechanism for branching
heuristic in SAT solvers. International Journal of Computational Intelligence Systems.

[Chen and Gao, 2022] Chen, Y. A. and Gao, X. S. (2022). Quantum Algorithm for Boolean Equation Solving
and Quantum Algebraic Attack on Cryptosystems. Journal of Systems Science and Complexity.

[Cheng and Tao, 2007] Cheng, S. T. and Tao,M.H. (2007). Quantum cooperative search algorithm for 3-SAT.
Journal of Computer and System Sciences.

[Childs et al., 2017] Childs, A., Kothari, R., and Somma, R. (2017). Quantum Algorithm for Systems of
Linear Equations with Exponentially Improved Dependence on Precision. SIAM Journal on Computing,
46(6):1920–1950.

[Childs et al., 2009] Childs, A. M., Cleve, R., Jordan, S. P., and Yonge-Mallo, D. L. (2009). Discrete-Query
Quantum Algorithm for {NAND} Trees. Theory of Computing, 5(1):119–123.

[Choi, 2011] Choi, V. (2011). Different adiabatic quantum optimization algorithms for the NP-complete
exact cover and 3SAT problems. Quantum Information and Computation.

[Cook, 1971] Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the Annual
ACM Symposium on Theory of Computing.

[Duncan et al., 2020] Duncan, R., Kissinger, A., Perdrix, S., and van de Wetering, J. (2020). Graph-theoretic
Simplification of Quantum Circuits with the ZX-calculus. Quantum.

[Duncan and Perdrix, 2014] Duncan, R. and Perdrix, S. (2014). Pivoting makes the ZX-calculus complete for
real stabilizers. In Electronic Proceedings in Theoretical Computer Science, EPTCS.

[Dunjko et al., 2018a] Dunjko, V., Ge, Y., and Cirac, J. I. (2018a). Computational Speedups Using Small
Quantum Devices. Physical Review Letters.

[Dunjko et al., 2018b] Dunjko, Y., Ge, V., and J., I. C. (2018b). Computational Speedups Using Small Quan-
tum Devices. PHYSICAL REVIEW LETTERS, 121(250501).

[EPRI, 2008] EPRI (2008). FTREX User Manual Version 1.4.

[et al. ANIS, 2021] et al. ANIS, M. D. S. (2021). Qiskit: An Open-source Framework for Quantum Comput-
ing.

[Ezratty, 2021] Ezratty, O. (2021). Understanding Quantum Technologies.

[Farhi et al., 2001] Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., and Preda, D. (2001). A
quantum adiabatic evolution algorithm applied to random instances of anNP-complete problem. Science.

[Farhi and Gutmann, 1997] Farhi, E. and Gutmann, S. (1997). Quantum Computation and Decision Trees.
Physical Review A, 58.

[Froleyks et al., 2021] Froleyks, N., Heule, M., Iser, M., Järvisalo, M., and Suda, M. (2021). SAT Competition
2020. Artificial Intelligence, 301:103572.

[Ge and Dunjko, 2020] Ge, Y. and Dunjko, V. (2020). A hybrid algorithm framework for small quantum
computers with application to finding Hamiltonian cyclesball. Journal of Mathematical Physics.

[Goldberg and Novikov, 2002] Goldberg, E. and Novikov, Y. (2002). Berkmin: A fast and robust sat-solver.
Proceedings -Design, Automation and Test in Europe, DATE.

[Gomes et al., 1998] Gomes, C. P., Selman, B., and Kautz, H. (1998). Boosting combinatorial search through
randomization. In Proceedings of the National Conference on Artificial Intelligence.

[Grant and Humble, 2020] Grant, E. K. and Humble, T. S. (2020). Adiabatic Quantum Computing and
Quantum Annealing.

[Guan et al., 2021] Guan, J., Wang, Q., and Ying, M. (2021). AnHHL-based algorithm for computing hitting
probabilities of quantum walks. Quantum Information and Computation.

[Hadfield, 2021] Hadfield, S. (2021). On the Representation of Boolean and Real Functions as Hamiltonians
for Quantum Computing. ACM Transactions on Quantum Computing.

© NEASQC Consortium Partners. All rights reserved. Page 60 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

[Hastings, 2020] Hastings, M. B. (2020). Classical and quantum algorithms for tensor principal component
analysis. Quantum.

[Hereramarti, 2020] Hereramarti, D. (2020). Quantum Counting Pour Études Probabilistes de Sureté. Tech-
nical report, ATOS.

[Hertli, 2011] Hertli, T. (2011). 3-SAT faster and simpler - Unique-SAT bounds for PPSZ hold in general. In
Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS.

[Heule et al., 2019] Heule, M. J. H., Järvisalo, M., and Suda, M. (2019). SAT Competition 2018. Journal on
Satisfiability, Boolean Modeling and Computation.

[Hibti, 2013] Hibti, M. (2013). What if we revisit evaluation of PSA models with network algorithms ? Ans
psa 2013 international topical meeting on probabilistic safety assessment and analysis.

[Hogg, 2003] Hogg, T. (2003). Adiabatic quantum computing for random satisfiability problems. Physical
Review A - Atomic, Molecular, and Optical Physics.

[Høyer et al., 2003] Høyer, P., Mosca, M., andDeWolf, R. (2003). Quantum search on bounded-error inputs.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics).

[J. B. Fussell and Marshall, 1974] J. B. Fussell, E. B. H. and Marshall, N. H. (1974). {MOCUS} – A Computer
program To Obtain Minimal Sets From Fault Trees. Technical report, Aerojet Nuclear Corp.

[Järvisalo et al., 2012] Järvisalo, M., Heule, M. J., and Biere, A. (2012). Inprocessing rules. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

[Jeffery and Kimmel, 2017] Jeffery, S. and Kimmel, S. (2017). Quantum Algorithms for Graph Connectivity
and Formula Evaluation. CoRR, abs/1704.0.

[Jung, 2009] Jung, W. S. (2009). ZBDD algorithm features for an efficient Probabilistic Safety Assessment.
Nuclear Engineering and Design.

[Jung, 2015] Jung, W. S. (2015). A method to improve cutset probability calculation in probabilistic safety
assessment of nuclear power plants. Reliability Engineering and System Safety.

[Kissinger and van de Wetering, 2020] Kissinger, A. and van de Wetering, J. (2020). PyZX: Large scale
automated diagrammatic reasoning. In Electronic Proceedings in Theoretical Computer Science, EPTCS.

[Knuth D. E.,] Knuth D. E. The Art of Computer Programming, vol 4, Boolean Basics. Addison-Wesley.

[Kochemazov, 2021] Kochemazov, S. (2021). Analysis of comparative effectiveness of state-of-the-art heuris-
tics for CDCL SAT solvers. In CEUR Workshop Proceedings.

[Kochemazov et al., 2020] Kochemazov, S., Zaikin, O., Semenov, A., and Kondratiev, V. (2020). Speeding up
cdcl inference with duplicate learnt clauses. In Frontiers in Artificial Intelligence and Applications.

[Krüger and Mauerer, 2020] Krüger, T. andMauerer, W. (2020). Quantum Annealing-Based Software Com-
ponents: AnExperimentalCase StudywithSATSolving. InProceedings - 2020 IEEE/ACM42nd International
Conference on Software Engineering Workshops, ICSEW 2020.

[Lewis et al., 2005] Lewis, M. D. T., Schubert, T., and Becker, B. W. (2005). Speedup Techniques Utilized in
Modern SAT Solvers.

[Liang et al., 2016] Liang, J. H., Ganesh, V., Poupart, P., and Czarnecki, K. (2016). Learning rate based
branching heuristic for SAT solvers. In Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics).

[Liu et al., 2008] Liu, W. Z., Zhang, J. F., and Long, G. L. (2008). A parallel quantum algorithm for the
satisfiability problem. Communications in Theoretical Physics.

[Mao, 2005] Mao,W. (2005). Solving satisfiability problems by the ground-state quantumcomputer. Physical
Review A - Atomic, Molecular, and Optical Physics.

[Marques-Silva et al., 2021] Marques-Silva, J., Lynce, I., and Malik, S. (2021). Chapter 4: Conflict-driven
clause learning SAT solvers. In Frontiers in Artificial Intelligence and Applications.

© NEASQC Consortium Partners. All rights reserved. Page 61 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

[Marques Silva and Sakallah, 1996] Marques Silva, J. P. and Sakallah, K. A. (1996). GRASP - a new search
algorithm for satisfiability. In IEEE/ACM International Conference on Computer-Aided Design, Digest of
Technical Papers.

[Martiel and Remaud, 2020] Martiel, S. and Remaud, M. (2020). Practical Implementation of a Quantum
Backtracking Algorithm. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics).

[Meuli et al., 2019a] Meuli, G., Soeken, M., Roetteler, M., Bjorner, N., and DeMicheli, G. (2019a). Reversible
pebbling game for quantum memory management.

[Meuli et al., 2019b] Meuli, G., Soeken, M., Roetteler, M., Bjorner, N., Micheli, G. D., and De Micheli, G.
(2019b). Reversible Pebbling Game for QuantumMemoryManagement. In Proceedings of the 2019 Design,
Automation and Test in Europe Conference and Exhibition, DATE 2019.

[Mizel et al., 2001] Mizel, A., Mitchell, M. W., and Cohen, M. L. (2001). Energy barrier to decoherence.
Physical Review A, 63(4).

[Montanaro, 2019] Montanaro, A. (2019). Quantum-walk speedup of backtracking algorithms. Theory of
Computing.

[Moskewicz et al., 2001] Moskewicz, M.W., Madigan, C. F., Zhao, Y., Zhang, L., andMalik, S. (2001). Chaff:
Engineering an efficient SAT solver. In Proceedings - Design Automation Conference.

[Munson et al., 2019] Munson, A., Coecke, B., and Wang, Q. (2019). A note on AND-gates in ZX-calculus:
QBC-completeness and phase gadgets.

[Nadel and Ryvchin, 2018] Nadel, A. and Ryvchin, V. (2018). Chronological Backtracking. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

[Nielsen and Chuang, 2011] Nielsen, M. A. and Chuang, I. L. (2011). Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th edition.

[Ohya and Volovich, 2003] Ohya, M. and Volovich, I. V. (2003). New quantum algorithm for studying
NP-complete problems. Reports on Mathematical Physics.

[R., 1986] R., B. (1986). Graph Based Algorithms for Boolean Function Manipulation. IEEE transactions on
computers.

[Rauzy A., 2012] Rauzy A. (2012). An Open-PSA Fault Tree engine. PSAM/ESREL 2011.

[Relcon AB., 2003] Relcon AB. (2003). RiskSpectrum Professional, RSAT users Manual. Relcon AB.

[Rennela et al., 2021] Rennela, M., Brand, S., Laarman, A., and Dunjko, V. (2021). Divide & Quantum
Mathematical Foundation. Technical report, NEASQC Project.

[Ryan, 2004] Ryan, L. (2004). Efficient algorithms for clause-learning SAT solvers. Citeseer.

[SAIC and EPRI, 1989] SAIC and EPRI (1989). CAFTA user’s manual, version 2.0. EPRI (Series). The Institute.

[Siciliano, 2018] Siciliano, F. (2018). On the applications of quantum computing to probablistic safety
assessment. Technical report, EDF.

[Smelyanskiy et al., 2012] Smelyanskiy, V. N., Rieffel, E. G., Knysh, S. I., Williams, C. P., Johnson, M. W.,
Thom, M. C., Macready, W. G., and Pudenz, K. L. (2012). A Near-Term Quantum Computing Approach
for Hard Computational Problems in Space Exploration.

[Toda and Soh, 2016] Toda, T. and Soh, T. (2016). Implementing efficient all solutions SAT solvers. ACM
Journal of Experimental Algorithmics.

[Ton and Dieter, 1998] Ton, K. and Dieter, K. (1998). Listing All Minimal Separators of a Graph, SIAM J.
Comput., 27:605–613.

[Udovičić, 2006] Udovičić, M. (2006). Chronological and dependency-directed backtracking. In SISY 2006
- 4th Serbian-Hungarian Joint Symposium on Intelligent Systems.

[Van Dam et al., 2001] VanDam,W.,Mosca,M., andVazirani, U. (2001). Howpowerful is adiabatic quantum
computation? Annual Symposium on Foundations of Computer Science - Proceedings.

© NEASQC Consortium Partners. All rights reserved. Page 62 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

[van de Wetering, 2020] vandeWetering, J. (2020). ZX-calculus for theworkingquantumcomputer scientist.

[Wang et al., 2019] Wang, D., Higgott, O., and Brierley, S. (2019). Accelerated variational quantum eigen-
solver. Physical Review Letters.

[Zaiou et al., 2022a] Zaiou, A., Bennani, Y., Hibti, M., and Matei, B. (2022a). Quantum Approach for Vertex
Separator Problem in Directed Graphs. Encours.

[Zaiou et al., 2021] Zaiou, A., Bennani, Y., Matei, B., andHibti, M. (2021). BalancedK-means usingQuantum
annealing. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1–7. IEEE.

[Zaiou et al., 2022b] Zaiou, A., Matei, B., Bennani, Y., and Hibti, M. (2022b). Convex Non-negative Matrix
Factorization Through Quantum Annealing. arXiv preprint arXiv:2203.15634.

[Zhang et al., 2020] Zhang, R., Chen, J., and Zhao, H.-l. (2020). Procedure of Solving 3-SAT Problem by
Combining Quantum Search Algorithm and DPLL Algorithm.

[Zhang and Cai, 2020] Zhang, X. and Cai, S. (2020). 2020 Relaxed backtracking with rephasing. In Proc. of
SAT Competition 2020, pages VOL–B 15–16.

[Zhang et al., 2021] Zhang, X., Cai, S., and Chen, Z. (2021). Improving CDCL via Local Search. In Balyo,
T., Froleyks, N., Heule, M., Iser, M., Järvisalo, M., and Suda, M. e., editors, Proceedings of SAT Competition
2021 : Solver and Benchmark Descriptions, page 42.

[Zhao et al., 2019] Zhao, J., Wu, Y. C., Guo, G. C., andGuo, G. P. (2019). State preparation based on quantum
phase estimation.

© NEASQC Consortium Partners. All rights reserved. Page 63 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

A.Appendix

A.1. Implication Graph

A.1.1. Trail

During the resolution of a Boolean formula using CDCL we keep trails to remember why a variable has
certain value in the current partial truth assignment. A trail is a sequence of literals annotated either with a
special symbol (e.g. dec for decision) or with a clause in the current formula (including the original clauses
as well as the clauses learned so far).

The trail is maintained as follows:

• When the algorithm decides that the literal l should be true, the trail is appended with ldec

• When the algorithm uses unit propagation on a clause C � (l1 ∨ · · · ∨ lk ∨ l) to imply that l must be
true, then the trail is appended with lC

• When the algorithm backjumps, a number of annotated literals is removed from the back of the trail.

Trails can be seen as directed acyclic graphs called “implication graphs”.

A.1.2. Implication Graph

Consider a trail T. A corresponding implication graph GT is the directed acyclic graph (V, E), where the
vertex set is V � {l |lr ∈ T} and the edge set E has an edge (¬li , l) for each 1 ≤ i ≤ k with lC ∈ T,
C � (l1 ∨ · · · ∨ lk ∨ l).

© NEASQC Consortium Partners. All rights reserved. Page 64 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

A.2. CNF format of the fult trees used in the benchmark

FaultTree − 0 : (¬v19 ∨ v3 ∨ ¬v1) ∧ (v17 ∨ v22 ∨ v7) ∧ (v30 ∨ ¬v18 ∨ ¬v28) ∧ (v24 ∨ v29 ∨ ¬v23)
∧ (¬v17 ∨ v19 ∨ ¬v18) ∧ (¬v10 ∨ ¬v3 ∨ ¬v22) ∧ (v20 ∨ v25 ∨ ¬v18) ∧ (¬v16 ∨ ¬v13 ∨ ¬v19)
∧ (¬v17 ∨ v7 ∨ ¬v23) ∧ (v23 ∨ ¬v1 ∨ ¬v4) ∧ (¬v7 ∨ ¬v30 ∨ ¬v10) ∧ (v20 ∨ ¬v18 ∨ v1)
∧ (¬v16 ∨ v12 ∨ ¬v26) ∧ (¬v16 ∨ ¬v14 ∨ ¬v11) ∧ (¬v28 ∨ v6 ∨ v12) ∧ (v14 ∨ ¬v5 ∨ v23)
∧ (v14 ∨ v12 ∨ ¬v25) ∧ (v21 ∨ ¬v5 ∨ v12) ∧ (v26 ∨ ¬v20 ∨ ¬v29) ∧ (v6 ∨ ¬v12 ∨ ¬v26)
∧ (¬v30 ∨ v27 ∨ ¬v1) ∧ (v17 ∨ ¬v25 ∨ ¬v10) ∧ (¬v6 ∨ v1 ∨ v22) ∧ (¬v12 ∨ ¬v19)
∧ (v23 ∨ v8 ∨ ¬v25) ∧ (¬v21 ∨ ¬v7 ∨ ¬v11) ∧ (v25 ∨ v10 ∨ v21) ∧ (¬v21 ∨ v6 ∨ ¬v4)
∧ (v30 ∨ v18) ∧ (v5 ∨ ¬v8 ∨ v23)

FaultTree − 1 : (¬v27 ∨ ¬v3 ∨ v6) ∧ (v31 ∨ v25 ∨ v30) ∧ (v3 ∨ v7 ∨ ¬v24) ∧ (v19 ∨ ¬v7 ∨ ¬v13)
∧ (v12 ∨ v3 ∨ ¬v7) ∧ (¬v3 ∨ ¬v18 ∨ v16) ∧ (¬v15 ∨ ¬v11 ∨ v5) ∧ (¬v22 ∨ ¬v1 ∨ v6)
∧ (¬v8 ∨ v21 ∨ v9) ∧ (¬v14 ∨ ¬v25 ∨ ¬v9) ∧ (¬v24 ∨ v7 ∨ v23) ∧ (v12 ∨ ¬v20 ∨ ¬v19)
∧ (v7 ∨ ¬v19 ∨ ¬v10) ∧ (v23 ∨ v22 ∨ v29) ∧ (¬v28 ∨ ¬v29 ∨ ¬v24) ∧ (v7 ∨ ¬v21)
∧ (v13 ∨ ¬v14 ∨ ¬v16) ∧ (v14 ∨ v11) ∧ (¬v8 ∨ ¬v27 ∨ ¬v12) ∧ (¬v21 ∨ ¬v30 ∨ ¬v13)
∧ (¬v10 ∨ v19 ∨ v26) ∧ (v16 ∨ ¬v14 ∨ ¬v23) ∧ (v11 ∨ v10 ∨ ¬v16) ∧ (v27 ∨ v6 ∨ v28)
∧ (v25 ∨ ¬v24 ∨ ¬v21) ∧ (v25 ∨ ¬v7) ∧ (v9 ∨ ¬v22 ∨ v5) ∧ (¬v4 ∨ v23 ∨ v18)
∧ (v26 ∨ ¬v17 ∨ ¬v11) ∧ (v6 ∨ ¬v26 ∨ v14)

FaultTree − 2 : (¬v17 ∨ ¬v6 ∨ v22) ∧ (¬v3 ∨ v11 ∨ v10) ∧ (v32 ∨ v11 ∨ ¬v9) ∧ (¬v23 ∨ ¬v13 ∨ v15)
∧ (v1 ∨ ¬v16 ∨ ¬v22) ∧ (v23 ∨ v22 ∨ ¬v16) ∧ (v16 ∨ ¬v21 ∨ ¬v10) ∧ (¬v17 ∨ v8 ∨ v12)
∧ (v11 ∨ v10 ∨ v9) ∧ (¬v9 ∨ v10 ∨ ¬v11) ∧ (¬v7 ∨ v21 ∨ v26) ∧ (¬v13 ∨ v14 ∨ v18)
∧ (v17 ∨ v8 ∨ v25) ∧ (v20 ∨ ¬v5 ∨ ¬v23) ∧ (¬v18 ∨ v27 ∨ ¬v2) ∧ (v32 ∨ ¬v6 ∨ v10)
∧ (¬v23 ∨ v19 ∨ ¬v17) ∧ (v22 ∨ v25 ∨ ¬v4) ∧ (v18 ∨ ¬v3 ∨ v16) ∧ (¬v1 ∨ ¬v6 ∨ ¬v32)
∧ (¬v1 ∨ ¬v22 ∨ ¬v6) ∧ (¬v3 ∨ ¬v30 ∨ v13) ∧ (¬v13 ∨ v26 ∨ ¬v25) ∧ (v4 ∨ ¬v31 ∨ ¬v30)
∧ (v8 ∨ v1 ∨ v26) ∧ (v8 ∨ v2 ∨ v1) ∧ (¬v15 ∨ ¬v19 ∨ ¬v7) ∧ (v17 ∨ ¬v18 ∨ ¬v2)
∧ (v1 ∨ v6 ∨ v32) ∧ (¬v13 ∨ ¬v15 ∨ ¬v26) ∧ (v12 ∨ ¬v24 ∨ ¬v3)

FaultTree − 3 : (v1 ∨ v13 ∨ ¬v33) ∧ (¬v32 ∨ v2 ∨ v9) ∧ (v22 ∨ v10 ∨ ¬v8) ∧ (v6 ∨ v7 ∨ ¬v22)
∧ (v27 ∨ v13 ∨ ¬v21) ∧ (¬v25 ∨ ¬v14 ∨ v5) ∧ (¬v27 ∨ ¬v18 ∨ v22) ∧ (v4 ∨ v8 ∨ ¬v18)
∧ (v12 ∨ ¬v8 ∨ v15) ∧ (¬v20 ∨ ¬v10 ∨ ¬v17) ∧ (v12 ∨ v3 ∨ v1) ∧ (v1 ∨ ¬v33 ∨ v6)
∧ (¬v13 ∨ ¬v17 ∨ ¬v4) ∧ (¬v19 ∨ v7 ∨ v9) ∧ (v5 ∨ v8 ∨ v9) ∧ (v16 ∨ v6 ∨ ¬v18)
∧ (v14 ∨ v28) ∧ (v11 ∨ v14 ∨ v22) ∧ (¬v7 ∨ ¬v27 ∨ v15) ∧ (¬v16 ∨ ¬v20 ∨ v30)
∧ (¬v6 ∨ v27 ∨ v4) ∧ (¬v24 ∨ v33 ∨ ¬v5) ∧ (¬v13 ∨ ¬v1 ∨ ¬v30) ∧ (¬v19 ∨ v6 ∨ ¬v7)
∧ (¬v21 ∨ v27) ∧ (¬v27 ∨ v6 ∨ ¬v29) ∧ (v19 ∨ v10) ∧ (v31 ∨ ¬v2 ∨ ¬v17)
∧ (v13 ∨ ¬v1 ∨ v20) ∧ (¬v15 ∨ v28 ∨ v13) ∧ (¬v15 ∨ ¬v12 ∨ ¬v3)

FaultTree − 4 : (v19 ∨ ¬v6 ∨ v8) ∧ (v11 ∨ ¬v23 ∨ v15) ∧ (v4 ∨ ¬v19 ∨ v17) ∧ (¬v29 ∨ v4 ∨ ¬v16)
∧ (¬v12 ∨ ¬v22 ∨ v14) ∧ (v6 ∨ ¬v21 ∨ ¬v25) ∧ (v23 ∨ v9 ∨ ¬v24) ∧ (¬v14 ∨ ¬v7 ∨ ¬v19)
∧ (¬v15 ∨ ¬v30 ∨ ¬v3) ∧ (¬v30 ∨ ¬v6 ∨ ¬v31) ∧ (¬v11 ∨ v9 ∨ v12) ∧ (¬v22 ∨ v8 ∨ ¬v31)
∧ (v18 ∨ v12 ∨ v21) ∧ (¬v6 ∨ ¬v17) ∧ (v25 ∨ ¬v5 ∨ ¬v17) ∧ (¬v17 ∨ ¬v21)
∧ (¬v31 ∨ v22 ∨ v15) ∧ (v9 ∨ v25 ∨ v20) ∧ (v1 ∨ ¬v4 ∨ v17) ∧ (v15 ∨ v6 ∨ ¬v24)
∧ (¬v27 ∨ v15 ∨ v14) ∧ (¬v12 ∨ v14 ∨ ¬v6) ∧ (v34 ∨ ¬v32 ∨ v9) ∧ (¬v26 ∨ v2 ∨ ¬v17)
∧ (¬v9 ∨ v34 ∨ v10) ∧ (¬v18 ∨ ¬v30) ∧ (v3 ∨ v13 ∨ ¬v8) ∧ (v22 ∨ ¬v12 ∨ v2)
∧ (v1 ∨ ¬v23 ∨ v25) ∧ (¬v2 ∨ v19 ∨ v29) ∧ (¬v7 ∨ ¬v34 ∨ v22) ∧ (v23 ∨ v6 ∨ v9)

© NEASQC Consortium Partners. All rights reserved. Page 65 of 66

D6.8 State of the art of SAT and PSA solvers in the light of quantum computing (V 1.2- In progress)

FaultTree − 5 : (¬v16 ∨ v8 ∨ ¬v20) ∧ (v35 ∨ ¬v6 ∨ ¬v30) ∧ (v8 ∨ v5 ∨ v22) ∧ (¬v27 ∨ v6 ∨ ¬v17)
∧ (v15 ∨ v20 ∨ ¬v25) ∧ (¬v11 ∨ v29 ∨ ¬v14) ∧ (v18 ∨ v3 ∨ ¬v25) ∧ (¬v30 ∨ ¬v28 ∨ v9)
∧ (¬v25 ∨ ¬v32 ∨ ¬v30) ∧ (v14 ∨ v7 ∨ v18) ∧ (¬v9 ∨ v14 ∨ v19) ∧ (¬v17 ∨ v25)
∧ (v11 ∨ ¬v28 ∨ ¬v23) ∧ (v1 ∨ ¬v16 ∨ ¬v33) ∧ (¬v15 ∨ v14 ∨ ¬v2) ∧ (v9 ∨ v17 ∨ v21)
∧ (¬v34 ∨ ¬v3 ∨ v16) ∧ (v26 ∨ ¬v22 ∨ v12) ∧ (¬v15 ∨ ¬v18 ∨ v25) ∧ (¬v34 ∨ ¬v11 ∨ ¬v35)
∧ (¬v4 ∨ ¬v21 ∨ v26) ∧ (¬v28 ∨ v13 ∨ ¬v8) ∧ (¬v21 ∨ v7) ∧ (v31 ∨ v21 ∨ v29)
∧ (¬v8 ∨ ¬v11 ∨ ¬v12) ∧ (v34 ∨ ¬v26 ∨ ¬v29) ∧ (v3 ∨ ¬v12 ∨ v25) ∧ (¬v18 ∨ ¬v6 ∨ v13)
∧ (¬v1 ∨ ¬v22) ∧ (¬v33 ∨ ¬v20 ∨ ¬v23) ∧ (¬v14 ∨ v20 ∨ v15) ∧ (¬v31 ∨ ¬v15 ∨ ¬v19)

FaultTree − 6 : (v18 ∨ ¬v7 ∨ ¬v11) ∧ (¬v15 ∨ v26 ∨ v13) ∧ (¬v9 ∨ v22 ∨ ¬v7) ∧ (v7 ∨ ¬v16 ∨ v12)
∧ (v21 ∨ ¬v6 ∨ ¬v18) ∧ (v36 ∨ ¬v17 ∨ ¬v24) ∧ (v10 ∨ ¬v29 ∨ v18) ∧ (v35 ∨ ¬v9)
∧ (v29 ∨ ¬v15) ∧ (¬v33 ∨ v31 ∨ ¬v12) ∧ (¬v25 ∨ v8 ∨ v12) ∧ (v36 ∨ ¬v8 ∨ ¬v31)
∧ (¬v25 ∨ ¬v1) ∧ (¬v14 ∨ ¬v17 ∨ v24) ∧ (v8 ∨ v36 ∨ v2) ∧ (¬v6 ∨ ¬v13 ∨ ¬v31)
∧ (v23 ∨ ¬v33 ∨ v18) ∧ (¬v33 ∨ ¬v27 ∨ v34) ∧ (¬v5 ∨ v29 ∨ ¬v16) ∧ (v3 ∨ ¬v15 ∨ ¬v24)
∧ (¬v6 ∨ ¬v8 ∨ v20) ∧ (v19 ∨ v16 ∨ v5) ∧ (v33 ∨ v30 ∨ ¬v6) ∧ (v2 ∨ ¬v23 ∨ ¬v7)
∧ (v2 ∨ ¬v36 ∨ v25) ∧ (v9 ∨ v27 ∨ v34) ∧ (v21 ∨ v22) ∧ (¬v22 ∨ v20 ∨ ¬v11)
∧ (¬v27 ∨ v26 ∨ v6) ∧ (¬v22 ∨ ¬v10 ∨ v5) ∧ (¬v34 ∨ v28 ∨ ¬v21) ∧ (¬v11 ∨ ¬v10 ∨ ¬v16)
∧ (v7 ∨ ¬v19 ∨ ¬v15)

FaultTree − 7 : (v20 ∨ ¬v5) ∧ (v7 ∨ v32 ∨ ¬v20) ∧ (v2 ∨ ¬v9 ∨ ¬v33) ∧ (v25 ∨ ¬v36)
∧ (¬v14 ∨ v17 ∨ ¬v28) ∧ (v9 ∨ ¬v22 ∨ v10) ∧ (¬v11 ∨ v3 ∨ v36) ∧ (v20 ∨ ¬v35 ∨ ¬v24)
∧ (v6 ∨ v20 ∨ ¬v23) ∧ (¬v30 ∨ ¬v14 ∨ v4) ∧ (¬v6 ∨ ¬v17 ∨ v33) ∧ (v11 ∨ v19 ∨ ¬v15)
∧ (v36 ∨ v8 ∨ ¬v16) ∧ (v10 ∨ v30 ∨ ¬v12) ∧ (¬v24 ∨ v30) ∧ (v34 ∨ ¬v14 ∨ ¬v33)
∧ (v15 ∨ ¬v17 ∨ ¬v7) ∧ (¬v17 ∨ ¬v25 ∨ v34) ∧ (v37 ∨ ¬v18 ∨ ¬v33) ∧ (v3 ∨ v5 ∨ ¬v12)
∧ (¬v14 ∨ ¬v30 ∨ v7) ∧ (¬v20 ∨ ¬v35 ∨ v9) ∧ (¬v3 ∨ v34 ∨ v2) ∧ (v5 ∨ v20 ∨ ¬v2)
∧ (v26 ∨ ¬v13 ∨ v14) ∧ (¬v16 ∨ ¬v35 ∨ v12) ∧ (v20 ∨ ¬v4 ∨ ¬v28) ∧ (v26 ∨ v17 ∨ ¬v27)
∧ (v34 ∨ ¬v32 ∨ ¬v31) ∧ (v13 ∨ ¬v11 ∨ v33) ∧ (¬v18 ∨ ¬v32 ∨ ¬v7) ∧ (¬v22 ∨ ¬v16 ∨ v34)
∧ (v34 ∨ v15 ∨ v32)

© NEASQC Consortium Partners. All rights reserved. Page 66 of 66

	1 Executive Summary
	2 Introduction
	3 SAT solvers
	3.1 DPLL
	3.2 CDCL
	3.3 VSIDS
	3.4 CaDiCaL
	3.5 LRB
	3.6 MAPLE
	3.7 Lstech MAPLE
	3.8 KISSAT (C)
	3.9 KISSAT GB
	3.10 KISSAT MAB
	3.11 KISSAT CRVR GB
	3.12 KISSAT CMS EXP VGBL
	3.13 CaDiCaL Hack Gb
	3.14 Relaxed Backtracking with Rephasing
	3.14.1 Relaxed cdcl Approach
	3.14.2 Probability Based Phase Saving

	4 SAT benchmarks
	4.1 Benchmarks
	4.2 Evaluation criteria
	4.3 Computing platform
	4.4 Computational experiments
	4.5 Discussion

	5 SAT competition recent results
	5.1 Session 2019
	5.2 Session 2020
	5.3 Session 2021
	5.4 Instances Sizes

	6 Quantum SAT
	6.1 Quantum Walks
	6.1.1 Speedup of Backtracking Algorithms
	6.1.2 Quantum tunneling and quantum walks as algorithmic resources to solve hard K-SAT instances
	6.1.3 Quantum query algorithms

	6.2 HHL based Algorithms
	6.2.1 Quantum Algorithms for Boolean Equation Solving
	6.2.2 An HHL-Based Algorithm for Computing Hitting Probabilities of Quantum Walks

	6.3 Adiabatic algorithms
	6.3.1 Adiabatic quantum computing for random satisfiability problems
	6.3.2 An algorithm based on an explicit modeling of Boolean mapping using Hatfield's rules or Fourier expansion
	6.3.3 Quantum Annealing

	6.4 Chaotic dynamics and quantum algorithms
	6.5 Ground state quantum computer
	6.6 A Parallel Quantum Algorithm for the Satisfiability Problem
	6.7 Cooperative search algorithm
	6.8 Divide and Quantum with DPLL
	6.9 Hybrid divide and conquer method

	7 Quantum Fault tree analysis
	7.1 Boolean reduction
	7.1.1 Direct implementation of logical gates
	7.1.2 Direct implementation and circuit optimization
	7.1.3 Reversible pebbling games and memory management
	7.1.4 ZX-Calculus and circuit optimization
	7.1.5 Evaluating Patterns

	7.2 A Counting algorithm
	7.2.1 Quantum Fourier transform
	7.2.2 Quantum phase estimation
	7.2.3 Grover search
	7.2.4 Quantum Counting

	7.3 A quantum algorithm for s-t network vertex separation
	7.3.1 Oracle of movement
	7.3.2 Algorithm description
	7.3.3 Complexity Analysis
	7.3.4 Test of the algorithm

	7.4 Quadratic Unconstrained Binary Optimisation

	8 Quantum Benchmarks
	8.1 Theatre
	8.2 SmallTree
	8.3 BSCU
	8.4 LIFT
	8.5 Other faults tree
	8.6 Results
	8.7 Discussion
	8.8 Conclusion

	List of Acronyms
	List of Figures
	List of Tables
	Bibliography
	A Appendix
	A.1 Implication Graph
	A.1.1 Trail
	A.1.2 Implication Graph

	A.2 CNF format of the fult trees used in the benchmark

