
NExt ApplicationS of Quantum Computing

D5.4: Evaluation of quantum algorithms for
pricing and computation of VaR

Document Properties

Contract Number 951821

Contractual Deadline 30-09-2022

Dissemination Level Public

Nature Report

Editors Alberto Manzano, UDC
Gonzalo Ferro, CESGA

Authors Gonzalo Ferro, CESGA
Alberto Manzano, UDC
Andrés Gómez, CESGA
Alvaro Leitao, UDC
Marı́a R. Nogueiras, HSBC
Carlos Vázquez, UDC

Reviewers Vedran Dunjko, ULEI
Emil Dimitrov, ICHEC

Date 23-09-2022

Keywords Quantum Finance, Amplitude Amplification and Estimation, Quantum
Accelerated Monte Carlo, Pricing, VaR

Status Final

Release 1.0

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

History of Changes

Release Date Author, Organisation Description of Changes

0.1 02/09/2022 Gonzalo Ferro (CESGA),
Alberto Manzano (UDC)

First full version

0.2 09/09/2022 Marı́a Nogueiras (HSBC),
Carlos Vázquez (UDC),
Andrés Gómez (CESGA),
Alberto Manzano (UDC),
Gonzalo Ferro (CESGA),
Álvaro Leitao (UDC)

Executive Summary, Conclusions, and minor cor-
rections

1.0 23/09/2022 Alberto Manzano (UDC),
Gonzalo Ferro (CESGA)

Minor corrections after internal review

© NEASQC Consortium Partners. All rights reserved. Page 2 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

Table of Contents

1. Executive Summary 4

2. Introduction 5
2.1. Classical Monte Carlo for derivatives pricing . 5

2.1.1. Simulation of SDEs . 6
2.1.2. Integration by Monte Carlo . 6

2.2. Quantum Accelerated Monte Carlo for derivatives pricing . 6
2.2.1. Standard encoding . 7
2.2.2. Amplitude estimation . 8

2.3. VaR/Expected shortfall . 10

3. Original contributions 12
3.1. New encoding protocol . 12
3.2. New amplitude estimation algorithm . 14

4. Conclusions 16

List of Acronyms 17

List of Figures 18

List of Tables 19

Bibliography 20

A. Financial Application library 21
A.1. Data Loading package . 21
A.2. Amplitude Amplification package . 22
A.3. Phase Estimation package . 22

A.3.1. classical qpe module . 23
A.3.2. iterative quantum pe . 23

A.4. Amplitude Estimation package . 23
A.4.1. maximum likelihood ae . 24
A.4.2. iterative quantum ae . 25
A.4.3. ae classical qpe . 25
A.4.4. ae iterative quantum pe . 25
A.4.5. real quantum ae . 26

A.5. Utils package . 26
A.6. Price estimation and applications to finance . 26
A.7. Benchmark folder . 27

B. Summary of experiments 28
B.1. Price Estimation problems . 28
B.2. Standard Encoding Evaluation. 28
B.3. New encoding evaluation . 29

© NEASQC Consortium Partners. All rights reserved. Page 3 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

1.Executive Summary

NEASQC Use Case 5 (UC5) works on the development and evaluation of quantum algorithms for financial applica-
tions. More specifically, the main line of research in UC5 focuses on Pricing and Value at Risk (VaR) problems. These
two problems are computationally demanding tasks that are classically solved using Monte Carlo (MC) techniques.
As Quantum Accelerated Monte Carlo (QAMC) techniques promise a quadratic speedup over Classical Monte Carlo
(CMC) this roughly motivates why and how this field could benefit from the recent advances in Quantum Computing.

This report summarises the development of a new pricing algorithm as well as its experimental assessment. In the
first part of the report there is a brief summary of the classical and quantum techniques used to tackle both financial
challenges. In the second part of the report the new method is explained in detail and evaluated. This new method
includes two well defined parts: a new encoding for the quantum oracle and a new Amplitude Estimation (AE)
technique.

The new proposals are not yet applicable to current NISQ architectures although they represent a clear advance be-
cause:

• The new encoding algorithm allows pricing derivative products with negative payoffs. In particular, as illustrated
in Section 3.1, it works in cases where other proposals fail as it is the case for a payoff of the form V (x) = x−K.

• The new AE algorithm, the so-called Real Quantum Amplitude Estimation (RQAE), allows pricing financial
products with negative values (see Figure 9), which is an absolute novelty in the area. Current AE algorithms
in the literature are concerned with the efficient estimation of the probability of finding a particular state, but
they are not designed to be sensitive to the phases present in the underlying amplitudes. In contrast, RQAE is
specifically tailored to be sensible to the sign of the amplitude.

• RQAE achieves a similar performance when compared with other previous well-known AE algorithms. In
fact, in reference (Manzano et al., 2022), tighter bounds on the convergence of RQAE than any of the existing
methods in the literature are proved. In this work, the experimental results show that although the performance
is not the best one, it is on par with the cutting edge methods.

However, there are some less positive results as:

• The new encoding algorithm gives a worse performance compared to the standard encoding algorithm. It de-
pends on a factor (Npaths) that can overshadow or even kill the speedup depending on its specific setup. Nev-
ertheless, NEASQC researchers who participate in the Use Case are actively working in new encoding methods
to solve this issue.

Two identified challenges have to be addressed in the near future. On the one hand, how to improve these algorithms
to execute on current Quantum Processing Units (QPU), where deep circuits such as those required by the AE routines
are not feasible without error correction techniques. On the other hand, previous works such as (Montanaro, 2015;
Rebentrost et al., 2018) implicitly assume that the simulation of the Stochastic Differential Equation (SDE) to solve for
these financial calculations can be directly done by translating the classical circuits into quantum circuits. However,
this direct translation would require in practice a number of qubits too far from the current possibilities of the NISQ era.

© NEASQC Consortium Partners. All rights reserved. Page 4 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

2.Introduction

As discussed in the classical literature about quatitative finance, several strategies can be followed to solve the problem
of pricing financial derivatives. In Figure 1 we depict schematically some of the most common ones. For an in depth
review on the main concepts and strategies in derivatives pricing and VaR see (Gómez et al., 2022) and the references
therein.

Black-Scholes Model

dSt = µStdt+ σStdWt

Expectation

V = e−r(T−t)E[V (ST)|Ft]

Probabilities

n-nomial
trees

Fokker-Planck

∂p

∂t
= −r ∂

∂S
(Sp) +

σ2

2

∂2

∂S2

(
S2p

)

Monte Carlo

Black-Scholes PDE

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

Finite ElementsFinite Differences

Figure 1: Some mathematical strategies for the pricing of financial derivatives.

This document is particularly focused on pricing and VaR, via Monte Carlo (MC) techniques, because they share main
kernel algorithms. Therefore, the forthcoming Section 2.1 briefly describes how classical MC techniques are used for
pricing, while Section 2.2 outlines the way to obtain a quadratic speedup of this algorithm using Quantum Computing.
Section 2.3 describes how the problem of computing VaR is transformed to that of pricing and the approximations to
calculate it.

After this brief contextual review, Section 3 presents the authors contributions to this area, researched and developed
during the execution of the Use Case 5 (UC5) of NEASQC European project: new algorithms for encoding data
(Section 3.1) and for Amplitude Estimation (Section 3.2). The descriptions include their experimental evaluation as
well.

Finally, the document closes with the main conclusions.

Additionally, two Appendices are included. The first one (Appendix A) documents the library with the Quantum Al-
gorithms that have been implemented for Quantum Learning Machine (QLM). Appendix B describes the methodology
for the experimental evaluation of the algorithms.

2.1. Classical Monte Carlo for derivatives pricing

The Classical Monte Carlo (CMC) method for derivatives pricing in finance is composed of two steps:

1. Simulation of an stochastic differential equation (SDE) satisfied by the underlying assets.

2. Use of the Monte Carlo integration techniques to compute an expectation.

© NEASQC Consortium Partners. All rights reserved. Page 5 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

2.1.1. Simulation of SDEs

For the simulation of a SDEs there exists several numerical methods such as the Euler-Maruyama method. For exam-
ple, for the following Black-Scholes SDE (Black & Scholes, 1973):

dSt = rStdt+ σStdWt, (2.1)

the application of the Euler-Maruyama scheme leads to the expression (Achdou & Pironneau, 2005):

St+∆t = rSt∆t+ σSt

√
∆tX. (2.2)

Note that W in Equation (2.1) represents a Brownian motion, X is a standard normal random variable, i.e. with mean
equal to 0 and variance equal to 1, and ∆t is the time step that is considered in the numerical method. The time step
is also referred as step of the time discretization. In this case, ∆t = (T − t)/NT , NT being the number of time steps,
T the maturity date and t the initial time. By using Equation (2.2), it is straightforward to produce samples of ST ,
starting from a value of St at time t. More precisely, as follows:

• Start with an initial point St.

• Get a sample from the normal distribution.

• Compute St+∆t from the random sample generated in the previous step.

• Repeat the process NT times until maturity to obtain a sample of ST .

2.1.2. Integration by Monte Carlo

Via the simulation of SDEs described in Section 2.1.1 it is possible to produce sample Si
T of the random variable ST ,

which can then be used to estimate the expectation:

E[V (ST)|Ft] =
1

Npaths

Npaths−1∑
i=0

V (Si
T) + ϵMC + ϵEM . (2.3)

Here Npaths is the number of samples (paths) Si
T generated by the simulation of the SDE, V is the payoff function of

the target derivatives contract, ϵMC is the error due to the Monte Carlo approximation of the expectation and ϵEM is
the error due to the Euler-Maruyama scheme in the approximation of the samples. Due to Chebysev’s inequality, the
statistical error scales as (Glasserman, 2004):

ϵMC ∼ 1√
Npaths

. (2.4)

The error due to the Euler-Maruyama scheme is (Kloeden & Platen, 2013):

ϵEM ∼ ∆t =
1

NT
. (2.5)

Taking the definition of the total cost of the algorithmC as the number of calls to the Euler-Maruyama formula defined
in Equation (2.2), it is straightforward to derive that the total cost is approximately C ≈ NtNpaths. Hence, the overall
error of the algorithm ϵ scales with the cost as:

ϵ ∼ 1√
C
. (2.6)

2.2. Quantum Accelerated Monte Carlo for derivatives pricing

The quantum computing community has proposed a quantum version of the MC techniques which can obtain
quadratic speedups (see (Montanaro, 2015) for very general settings. We will refer to such techniques as Quantum
Accelerated Monte Carlo (QAMC). In particular, this quadratic speedup can be applied to tackle financial problems
such as derivatives pricing (see (Rebentrost et al., 2018; Stamatopoulos et al., 2020)) and the computation of Value at
Risk (VaR) (see (Egger et al., 2020; Egger & Woerner, 2019)).

© NEASQC Consortium Partners. All rights reserved. Page 6 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

Nevertheless, QAMC can be a very misleading term outside the quantum computing community. Similarly to
the CMC there are two main building blocks. On the one hand, there is the generation of an oracle and on the other
hand the measuring step. These two blocks are discussed in Sections 2.2.1 and 2.2.2, respectively.

2.2.1. Standard encoding

The QAMC algorithm begins by creating a state in superposition where the probabilities of each path match those of
the classical process discretized by using some numerical scheme such as the Euler-Maruyama formula. In order to
build the algorithm NT +1 different registers are needed, one for each time step. The first NT registers are composed
of two registers of nqb qubits each (see Figure 2a):

[|0⟩ |0⟩]0 ⊗ [|0⟩ |0⟩]1 ⊗ ...⊗ |0⟩NT
, (2.7)

where [|0⟩ |0⟩]i =
[
|0⟩⊗nqb |0⟩⊗nqb

]
i

and |0⟩NT
= |0⟩⊗nqb .

Each of the individual registers |0⟩⊗nqb will be used to represent a decimal number. For simplicity, it can be
understood as a single precision register.

The algorithm now requires the definition of a unitary operator Up which performs the following transforma-
tion:

[Up |0⟩ |0⟩]i =

[
J−1∑
i=0

√
p(xj) |xj⟩ |0⟩

]
i

, (2.8)

where x is a set of J floating point numbers that can be represented by the nqb qubits from the individual registers
and p(x) is a discrete probability distribution defined in the set x = {x0, x1, ..., xJ}. Note that, in general, J doesn’t
need to be equal to 2nqb = Nqb. The efficiency of this subroutine is crucial for the overall efficiency of the algorithm.
In the best case, this efficiency can be achieved using O(log2(J)) gates (see (Grover & Rudolph, 2002)). In the worst
case, it can be achieved inO(J log2(J)) combining the results in (Grover & Rudolph, 2002) and (Shende et al., 2006).

The first step requires applying the operator Up to one of the members of all pairs [|0⟩ |0⟩]i, thus obtaining the
state:

[Up |0⟩ |0⟩]0⊗ [Up |0⟩ |0⟩]1⊗ ...⊗|0⟩NT
=

J−1∑
j=0

√
p(xj) |xj⟩ |0⟩


0

⊗

J−1∑
j=0

√
p(xj) |xj⟩ |0⟩


1

⊗ ...⊗|0⟩NT
. (2.9)

In this configuration, the amplitudes encode (with the square roots) the probabilities for all the different combinations
of x in the different steps. In order to continue, the first register also has to be initialised to S0. More precisely, the
first state |0⟩ has to be transformed to the state |S0⟩. Figure 2 depicts schematically this process.

|0⟩nqb

|0⟩nqb

|0⟩nqb

|0⟩nqb

...
...

|0⟩nqb

[|0⟩ |0⟩]0

[|0⟩ |0⟩]1

...

|0⟩NT

(a) Structure of registers.

|0⟩nqb

|0⟩nqb |x⟩

|0⟩nqb

|0⟩nqb |x⟩

...
...

|0⟩nqb

[|0⟩ |0⟩]0
Up

[|0⟩ |0⟩]1
Up

...

|0⟩NT

(b) Loading probability.

|0⟩nqb |S0⟩

|0⟩nqb |x⟩

|0⟩nqb

|0⟩nqb |x⟩

...
...

|0⟩nqb

[|0⟩ |0⟩]0

S0

Up

[|0⟩ |0⟩]1
Up

...

|0⟩NT

(c) Loading initial value.

Figure 2: Circuit initialisation.

© NEASQC Consortium Partners. All rights reserved. Page 7 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

Once the circuit is correctly initialised, an evolution operator must be applied. This evolution operator acts upon three
individual registers as follows:

U∆t [|xj⟩ |Sk⟩]i [|0⟩]i+1 −→ [|xj⟩ |Sk⟩]i [|S(Sk, xj)⟩]i+1 ,

where the update rule is given, for instance, by Equation (2.2). Figure 3 depicts schematically this process.

|0⟩nqb |S0⟩ |S0⟩

|0⟩nqb |x⟩ |x⟩

|0⟩nqb |S1⟩ |S1⟩

|0⟩nqb |x⟩ |x⟩

|0⟩nqb |S2⟩ . . .

|0⟩nqb |x⟩ . . .

...
...

...
...

...
...

. . .

|0⟩nqb . . . |SNT
⟩

[|0⟩ |0⟩]0

S0

U∆tUp

[|0⟩ |0⟩]1
U∆tUp

[|0⟩ |0⟩]2
Up

...

|0⟩NT
U∆t

Figure 3: Sketch description of the construction of the oracle defined in Equation (2.10).

So far, a circuit has been built which samples paths with the same probability as the classical circuit would. Moreover,
the computational cost of one execution of the circuit is the same as in one execution of the classical circuit. In other
words, the number of gates needed to sample one path from the classical and the quantum circuit is “the same”, as
the classical circuit can always be translated to a quantum one using Toffoli gates (see (Nielsen & Chuang, 2011)).
However note that classical and quantum gates are not directly comparable.

2.2.2. Amplitude estimation

As discussed in the previous section, up to this point the quantum and the classical circuit have the same complexity.
Nevertheless, when the error correction is taken into consideration the current quantum gates are much slower than
the analogous classical ones. Now, the mechanism that produces an speedup is briefly described.

The current quantum state is:

|S⟩ = US |0⟩ =
Npaths−1∑

i=0

√
p(Si) |Si⟩ , (2.10)

whereNpaths are the number of possible paths defined by the given discretization. The next step is to define the operator
UV such that pushes the payoff into the amplitude. In order to do that an additional single qubit register is needed:

|V ⟩ = UV |S⟩ = 1

∥
√
V (S)∥∞

Npaths−1∑
i=0

√
p(Si)V (Si) |Si⟩ |0⟩+

√
p(Si) (1− V (Si)) |Si⟩ |1⟩ . (2.11)

For simplicity the term ∥
√
V (S)∥∞ is considered to be equal to one. In other words, it is assumed to be properly

normalised. Moreover, it tacitly assumed that the operator UV can be efficiently implemented.

Figure 4 depicts schematically the overall process.

© NEASQC Consortium Partners. All rights reserved. Page 8 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

∑Npaths−1
i=0

√
p(Si) |Si⟩

∑Npaths−1
i=0

√
p(Si) |Si⟩

√
V (Si) |0⟩+

√
(1− V 2(Si)) |1⟩

|0⟩nqb⊗NT+1 US

UV

|0⟩

Figure 4: Scheme of the generation of the oracle. The gate US corresponds to Equation (2.10). The gate UV

corresponds to equation (2.11).

Finally, the expectation of the payoff can be approximated by estimating the probability of obtaining |0⟩ in the last
register:

E[V (ST)|Ft] =

∫
R
p(t, S)V (S)dS =

Npaths−1∑
i=0

p(Si)V (Si) + ϵRiemann + ϵMC ≈ p|0⟩ + ϵRiemann + ϵMC, (2.12)

where ϵRiemann is the error due to approximating the integral using a Gaussian quadrature (see (Quarteroni et al., 2006)),
ϵMC is the sampling error and the expression

p|0⟩ =

Npaths−1∑
i=0

|p(Si)V (Si)|

is proportional to the exact probability of obtaining the state |0⟩ in the last register.

Assuming that the payoff depends only on the price of the underlying asset at maturity, the error coming from
the truncation of the integral scales as:

ϵRiemann ∼ 1

2nqb
. (2.13)

Using amplitude estimation (AE) techniques, the error coming from the estimation (by sampling the state |0⟩) of the
Riemann sum is:

ϵMC ∼ 1

Noracle
, (2.14)

with Noracle being the number of calls to the oracle defined by Equation (2.11). Recall that this oracle is strictly the
same as in the classical algorithm described in Section 2.1.1 except for the application of operator UV .

Table 1 shows the computational cost, measured in the number of evaluations of the Euler-Maruyama formula,
of each of the CMC and the QAMC. It can be easily seen that the QAMC performs quadratically better than the CMC.

Error
CMC d-dimensions O(1/

√
C)

QAMC d-dimensions O(1/C)

Table 1: Comparison of order of the errors for the CMC and the QAMC in d dimensions. The letter C denotes the
number of evaluations of the Euler-Maruyama formula.

In Figure 5 the results of the QAMC algorithm for different payoffs and AE algorithms are shown. If tweaked properly,
the best performance is obtained with the Maximum Likelihodd Amplitude Estimation (MLAE) (Suzuki et al., 2020).
However, if no fine tuning is performed, the best one is the Iterative Quantum Amplitude Estimation (IQAE)(Grinko
et al., 2021) as it is more stable. The standard amplitude estimation algorithm (here denoted by CQPEAE) (Brassard
et al., 2002) and the version where the classical quantum phase estimation is replaced by an iterative phase estimation
(here denoted by IQPEAE) (Dobsicek et al., 2007; Kitaev, 1995) have similar results and are stable but, in general,
they have worse performance. A detailed explanation of the experiments performed for getting the results presented
in Figure 5 is provided in Appendix B (see Sections B.1 and B.2).

© NEASQC Consortium Partners. All rights reserved. Page 9 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

104 105 106 107

10−7

10−5

10−3

10−1

E
ur

op
ea

n

Call

104 105 106 107
10−7

10−6

10−5

10−4

10−3

10−2

Put

104 105 106 107
10−8

10−6

10−4

10−2

D
ig

ita
l

104 105 106 107
10−9

10−7

10−5

10−3

Noracle

∣ ∣ ∣∑ N p
at

hs
−
1

i=
0

p
(S

i)
V
(S

i)
−
p
|0
⟩∣ ∣ ∣

IQAE MLAE CQPEA IQPEAE 1/
√
x

Figure 5: Absolute error between the QAMC algorithm and the Riemann sum for different number of calls to the
oracle. Each of the panels corresponds to a different payoff (see B.1 for details) and each line corresponds to a

different AE algorithm . The experiments have been performed using the standard encoding. Detailed information
about the experiments are provided in Tables 3, 4, 5 and 6 from Appendix B.

2.3. VaR/Expected shortfall

Very similar techniques as the ones discussed in Section 2.2 can be extended to compute risk measures such as VaR.
Varα(X) of a random variable X : S → R is defined as the smallest value x such that:

P [X ≤ x] ≥ (1− α), (2.15)

where α is the confidence level.

In finance, typically the space S is a set of assets and X represents the profit. To simplify things, the case
where there is a single asset and X = ST will be considered.

To leverage the power of a quantum computer the problem of computing VaR is transformed to that of pric-
ing. The first part of the algorithm is the generation of an appropriate oracle. That starts by generating a state in
superposition encoding the probabilities of each possible path:

|S⟩ = US |0⟩ =
Npaths−1∑

i=0

√
p(Si) |Si⟩ . (2.16)

© NEASQC Consortium Partners. All rights reserved. Page 10 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

Next, instead of pushing a payoff function into the amplitude, a step function is pushed.

1x(Si) =

{
1 if Si(T) ≤ x,

0 if Si(T) > x.
(2.17)

Applying the step function to the state |S⟩, its effect will be the following. If US is applied followed by UV :

UV US |0⟩ |0⟩ =
∑

Si(T)≤x

√
p(Si) |Si⟩ |0⟩+

∑
Si(T)>x

√
p(Si) |Si⟩ |0⟩ . (2.18)

Hence, the probability of measuring |0⟩ is:
p|0⟩ =

∑
Si(T)≤x

p(Si). (2.19)

The second part of the algorithm uses a search algorithm over x to find the VaRα(X). This routine boils down to
efficiently estimating the probability of measuring |0⟩. Typically this is done by means of AE algorithms.

© NEASQC Consortium Partners. All rights reserved. Page 11 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

3.Original contributions

So far, in Section 2, the application of QAMC in pricing and VaR computation has been explained. Theoretically, there
is a quantum advantage in the complexity scaling, although it is not achievable with the current hardware (Chakrabarti
et al., 2021). This is due to three factors:

1. The implementation of the oracle US as explained in Section 2.2.1 requires an excessively large number of
qubits.

2. The depths required by the current Grover-like routines are not feasible under the current decoherence times.

3. The total number of gates when combining the implementation of oracle US with a Grover-like algorithm
requires a gate error beyond the capabilities of the current technology.

In the next sections, some of the problems present in the standard pricing algorithm are presented and solutions to
them are proposed.

3.1. New encoding protocol

As it can be seen in Section 2.2.2, by sampling from the quantum circuit an estimation of:

Npaths−1∑
i=0

|p(Si)V (Si)| , (3.1)

can be obtained. Note that the payoff is assumed to be normalised so that ∥
√
V (S)∥∞ = 1.

Nevertheless, it is important to note that, for derivatives with payoffs that can become negative this method will not
yield to correct prices approximations. In order to illustrate this, suppose that there is a payoff of the form:

VT (S;K) = ST −K, (3.2)

with T being the maturity of the contract, ST the price of the underlying at maturity and K the strike price of the
contract (see (Gómez et al., 2022) for details).

104 105 106 107

3.7574

3.7575

3.7576

Noracle

∣ ∣ ∣∑ N p
at

hs
−
1

i=
0

p
(S

i)
V
(S

i)
−
p
|0
⟩∣ ∣ ∣ IQAE

MLAE
CQPEAE
IQPEAE

Figure 6: Absolute error between the QAMC algorithm and the Riemann sum of an option with a payoff (ST −K)
with K = S0 for different number of calls to the oracle. Each line corresponds to a different amplitude estimation

algorithm. The experiments have been performed using the standard encoding. Detailed information about the
experiments are provided in Tables 3, 4, 5 and 6 from Appendix B

© NEASQC Consortium Partners. All rights reserved. Page 12 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

In Figure 6, when this standard encoding is used, it is easily seen that none of the algorithms can converge to the real
value because of the presence of the absolute value. In order to address this issue, a new encoding protocol has been
developed. Detailed information about the experiments for getting the results in Figure 6 can be found in subsections
B.1 and B.2 included in Appendix B.

The new encoding algorithm requires a register with one additional qubit than the standard one. It begins by
applying a Walsh-Hadamard transform on the first register:

|H⟩ = (W11) |0⟩ |0⟩ |0⟩ = (W11) |0⟩ = 1√
Npaths

Npaths−1∑
i=0

|i⟩ |0⟩ |0⟩ , (3.3)

where 1 denotes the identity matrix, W = H⊗nqb and for simplicity |0⟩ |0⟩ |0⟩ = |0⟩.
Next, the encoding protocol requires a redefinition of gates US and UV :

US |i⟩ |0⟩ |0⟩ = p(Si) |i⟩ |0⟩ |0⟩+
√
1− p2(Si) |i⟩ |1⟩ |0⟩ , (3.4)

UV |i⟩ |0⟩ |0⟩ = V (Si) |i⟩ |0⟩ |0⟩+
√
1− V 2(Si) |i⟩ |0⟩ |1⟩ . (3.5)

Note what is of interest now is to load the payoff and probability density itself instead of loading the square roots of
the payoff and the probability density, as the standard protocol requires. When the operators US and UV in Equation
(3.3) are applied, the result is:

(UV US) (W11) |0⟩ = 1√
Npaths

Npaths−1∑
i=0

|i⟩
[
p(Si)V (Si) |0⟩ |0⟩

+
√
1− p2(Si)V (Si) |1⟩ |0⟩

+ p(Si)
√
1− V 2(Si) |0⟩ |1⟩

+
√
(1− p2(Si))(1− V 2(Si)) |1⟩ |1⟩

]
.

(3.6)

Finally, a Walsh-Hadamard transform has to be applied again on the first register, to get:

(W11) (UV US) (W11) |0⟩ =

 1

Npaths

Npaths−1∑
i=0

p(Si)V (Si)

 |0⟩ |0⟩ |0⟩+ ... (3.7)

1√
Npaths

∑Npaths−1
i=0 |i⟩|0⟩ W

US UV

W

1

Npaths

∑Npaths−1
i=0 p(Si)V (Si) |0⟩|0⟩

|0⟩

Figure 7: Scheme of the first algorithm.

If projecting this state onto state |0⟩, the result is:

p|0⟩ = |⟨0| (W11) (UV US) (W11) |0⟩|2 =

∣∣∣∣∣∣ 1

Npaths

Npaths−1∑
i=0

p(Si)V (Si)

∣∣∣∣∣∣
2

. (3.8)

Hence, an estimation of the Riemann sum is obtained as:∣∣∣∣∣∣
Npaths−1∑
i=0

p(Si)V (Si)

∣∣∣∣∣∣ = Npaths
√
p|0⟩. (3.9)

© NEASQC Consortium Partners. All rights reserved. Page 13 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

Again, in order to achieve a speedup, an amplitude estimation algorithm is needed. As there is a very large constant
factor involved, namely Npaths, it will be very difficult to obtain an actual speedup in practice. However, as can be seen
in Figure 8, when this new encoding algorithm is used, the result converges to the Riemann sum even when the payoff
takes negative values, which is a novelty when compared with other proposed methods, that cannot work with these
negative values.

104 105 106 107
10−6

10−5

10−4

10−3

10−2

10−1

100

Noracle

∣ ∣ ∣∑ N p
at

hs
−
1

i=
0

p
(S

i)
V
(S

i)
−
p
|0
⟩∣ ∣ ∣ IQAE

MLAE
CQPEAE
IQPEAE

Figure 8: Absolute error between the QAMC algorithm and the Riemann sum of an option with a payoff (ST −K)
with K = S0 for different number of calls to the oracle. Each line corresponds to a different amplitude estimation

algorithm. The experiments have been performed using the new encoding. Detailed information about the
experiments are provided in Tables 3, 4, 5 and 7 from Appendix B.

Detailed information about the experiments done for getting results for Figure 8 are provided in sections B.1 and B.3
included in Appendix B.

3.2. New amplitude estimation algorithm

At the end of the previous section it was briefly mentioned that the Riemann sum can be estimated through the
probability of measuring state |0⟩:

√
p|0⟩ ∝

∣∣∣∣∣∣
Npaths−1∑

i=0

p(Si)V (Si)

∣∣∣∣∣∣ .
Now, this partially solves the initial problem. Instead of obtaining the sum of absolute values, something proportional
to the absolute value of the sum is returned. Hence, in a situation where the sign of the expectation is of interest, an
additional mechanism to overcome this issue is needed. In fact, this is usually the case in financial applications, where
the sign is the difference between a profit and a loss.

For this case, a new algorithm called Real Quantum Amplitude Estimation (RQAE) has been developed. Its
main qualitative feature is that it is able to recover the amplitude of the quantum state plus some information on the
quantum phase. Additionally, it has a free parameter q called amplification ratio which allows the user to control the
overall depth of the circuit. Bigger values of q yields shallower circuits but slower convergence while smaller values
of q yields deeper circuits but faster convergence. In Figure 9, an example where the price of the derivative becomes
negative is shown. As it can be seen, RQAE is the only algorithm that converges to the exact solution. Moreover,
RQAE is competitive with the most advanced algorithms in the literature. In fact, it has the tightest convergence
bounds. Nonetheless, Figure 10 shows that it requires a greater number of calls to the oracle in practice than some of
the most advanced ones.

A detailed explanation of the experiments performed for getting the results presented in Figures 9 and 10 is provided
in Appendix B (see subsections B.1 and B.3).

© NEASQC Consortium Partners. All rights reserved. Page 14 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

104 105 106 107 108 109

10−6

10−5

10−4

10−3

10−2

10−1

100

Noracle

∣ ∣ ∣∑ N p
at

hs
−
1

i=
0

p
(S

i)
V
(S

i)
−
p
|0
⟩∣ ∣ ∣ RQAE q = 2

RQAE q = 20
IQAE
MLAE

CQPEAE
IQPEAE

Figure 9: Absolute error between the QAMC algorithm and the Riemann sum of an option with a payoff (ST −K)
with K = 1.5S0 for different number of calls to the oracle. Each line corresponds to a different amplitude estimation

algorithm. The experiments have been performed using the new encoding. Detailed information about the
experiments are provided in Tables 3, 4, 5 and 7 from Appendix B.

104 105 106 107 108 109 1010
10−7

10−5

10−3

10−1

E
ur

op
ea

n

Call

104 105 106 107 108 109 1010
10−7

10−5

10−3

10−1

Put

104 105 106 107 108 109 1010
10−8

10−6

10−4

10−2

D
ig

ita
l

104 105 106 107 108 109 1010
10−8

10−6

10−4

10−2

Noracle

∣ ∣ ∣∑ N p
at

hs
−
1

i=
0

p
(S

i)
V
(S

i)
−
p
|0
⟩∣ ∣ ∣

RQAE q = 2 RQAE q = 20 IQAE MLAE CQPEA IQPEAE

Figure 10: Absolute error between the QAMC algorithm and the Riemann sum for different number of calls to the
oracle. Each of the panels corresponds to a different payoff and each line corresponds to a different amplitude

estimation algorithm. Detailed information about the experiments are provided in Tables 3, 4, 5 and 7 from Appendix
B.

© NEASQC Consortium Partners. All rights reserved. Page 15 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

4.Conclusions

Pricing and VaR estimation are computationally demanding tasks that can benefit from the advances in Quantum
Computing. In theory, as QAMC gets a quadratic speedup over CMC, it would be possible to directly apply this
result to our target goals. However, there are still many issues to solve in practice, more if we take into consideration
the current hardware constraints. This work presented two novel proposals and their evaluation using simulators.
For making such an evaluation, an exhaustive benchmarking of the existing methods was performed with rigorous
experiments to validate the actual performance of the different AE algorithms. From the obtained results presented in
previous sections and from this benchmarking, some conclusions can be extracted.

The positive outcomes are:

• A new encoding algorithm allows pricing derivative products with negative payoffs. In particular, as illustrated
in Section 3.1, it works when other older proposals fail for a payoff of the form V (x) = x−K.

• The new AE algorithm RQAE allows pricing financial products with negative values. The AE algorithms in the
literature are concerned with the efficient estimation of the probability of finding a particular state, but they are
not designed to be sensible to the phases present in the underlying amplitudes. In contrast, RQAE is specifically
tailored to be sensible to the sign of the amplitude.

• RQAE achieves a similar performance when compared with other previous well-known AE algorithms. In the
reference (Manzano et al., 2022), tighter bounds on the convergence of RQAE than any of the existing methods
in the literature are proven. Here, experimental results show that although the performance is not the best one,
it is on par with the cutting edge methods.

• A new library of quantum computational methods in finance for QLM has been made available. This library
includes implementations of both encoding protocols and all the AE used algorithms. Moreover, it provides
many user-friendly notebooks showing how the library can be used. A more detailed description of the available
software can be found in Appendix A.

However, there are some less positive outcomes such as:

• The new encoding algorithm gives a worse performance compared to the standard encoding algorithm. This is
due to a factorNpaths appearing in Equation (3.9). Depending on the specific setup this factor can overshadow or
even kill the speedup. Nevertheless, NEASQC researchers who participate in the Use Case are actively working
in new encoding methods to solve this caveat.

Even though some progress has been made with respect to pricing financial derivatives and VaR calculation, the
delivered quantum algorithm is not competitive yet with respect to classical algorithms when executed on NISQ
architectures. In this regard, the challenge to address hereon is twofold. On the one hand, without error correction
techniques, the execution of deep circuits such as those required by the AE routines is not feasible. On the other hand,
in works such as (Montanaro, 2015; Rebentrost et al., 2018) they implicitly assume that the simulation of the SDE
can be done by directly translating the classical circuit into a quantum one. However, this direct translation would
require in practice a number of qubits too far from the current possibilities of the NISQ era.

These challenges require the Use Case 5 to mainly focus its efforts on techniques which efficiently solve the
SDE associated with the pricing problem. The goal would be to reduce both the depth and the number of qubits
required to implement the oracle, as it would tackle both problems at the same time.

© NEASQC Consortium Partners. All rights reserved. Page 16 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

List of Acronyms

Term Definition
AE Amplitude Estimation
CMC Classical Monte Carlo
CQPEAE Amplitude Estimation based on Classical Quantum Phase Estimation
FT3 FinisTerrae III
IQPEAE Amplitude Estimation based on Iterative Quantum Phase Estimation
IQAE Iterative Quantum Amplitude Estimation
MC Monte Carlo
MLAE Maximum Likelihood Amplitude Estimation
NEASQC NExt ApplicationS of Quantum Computing
NISQ Noisy Intermediate-Scale Quantum
PE Phase Estimation
QAMC Quantum Accelerated Monte Carlo
QFT Quantum Fourier Transformation
QLM Quantum Learning Machine
QPU Quantum Processing Unit
QQuantLib Quantum Quantitative Finance Library
RQAE Real Quantum Amplitude Estimation
SDE Stochastic Differential Equation
UC Use Case
VaR Value at Risk

Table 2: Acronyms and Abbreviations

© NEASQC Consortium Partners. All rights reserved. Page 17 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

List of Figures

Figure 1.: Some mathematical strategies for the pricing of financial derivatives. 5
Figure 2.: Circuit initialisation. 7
Figure 3.: Sketch description of the construction of the oracle defined in Equation (2.10). 8
Figure 4.: Scheme of the generation of the oracle. The gate US corresponds to Equation (2.10). The gate

UV corresponds to equation (2.11). 9
Figure 5.: Absolute error between the QAMC algorithm and the Riemann sum for different number of

calls to the oracle. Each of the panels corresponds to a different payoff (see B.1 for details)
and each line corresponds to a different AE algorithm . The experiments have been performed
using the standard encoding. Detailed information about the experiments are provided in
Tables 3, 4, 5 and 6 from Appendix B. 10

Figure 6.: Absolute error between the QAMC algorithm and the Riemann sum of an option with a payoff
(ST −K) with K = S0 for different number of calls to the oracle. Each line corresponds to
a different amplitude estimation algorithm. The experiments have been performed using the
standard encoding. Detailed information about the experiments are provided in Tables 3, 4, 5
and 6 from Appendix B . 12

Figure 7.: Scheme of the first algorithm. 13
Figure 8.: Absolute error between the QAMC algorithm and the Riemann sum of an option with a payoff

(ST −K) with K = S0 for different number of calls to the oracle. Each line corresponds to
a different amplitude estimation algorithm. The experiments have been performed using the
new encoding. Detailed information about the experiments are provided in Tables 3, 4, 5 and
7 from Appendix B. 14

Figure 9.: Absolute error between the QAMC algorithm and the Riemann sum of an option with a payoff
(ST −K) with K = 1.5S0 for different number of calls to the oracle. Each line corresponds
to a different amplitude estimation algorithm. The experiments have been performed using
the new encoding. Detailed information about the experiments are provided in Tables 3, 4, 5
and 7 from Appendix B. 15

Figure 10.: Absolute error between the QAMC algorithm and the Riemann sum for different number
of calls to the oracle. Each of the panels corresponds to a different payoff and each line
corresponds to a different amplitude estimation algorithm. Detailed information about the
experiments are provided in Tables 3, 4, 5 and 7 from Appendix B. 15

© NEASQC Consortium Partners. All rights reserved. Page 18 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

List of Tables

Table 1.: Comparison of order of the errors for the CMC and the QAMC in d dimensions. The letter C
denotes the number of evaluations of the Euler-Maruyama formula. 9

Table 2.: Acronyms and Abbreviations . 17

Table 3.: List of the different options simulated, their corresponding strikes and returns. Maturity T and
initial value of the underlying, S0, are provided in Table 4. 28

Table 4.: Financial model and parameters for the underlying used in the evaluation. 28
Table 5.: Settings for the domain discretization used for the simulations. 28
Table 6.: AE algorithms and their corresponding parameters for the standard encoding protocol. 29
Table 7.: AE algorithms and their correspondent parameters used for the simulations with the new encod-

ing protocol. 29

© NEASQC Consortium Partners. All rights reserved. Page 19 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

Bibliography

Achdou, Y., & Pironneau, O. (2005). Computational methods for option pricing (frontiers in applied mathematics)
(frontiers in applied mathematics 30). Society for Industrial; Applied Mathematics.

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3),
637–654.

Brassard, G., Høyer, P., Mosca, M., & Tapp, A. (2002). Quantum amplitude amplification and estimation. https :
//doi.org/10.1090/conm/305/05215

Chakrabarti, S., Krishnakumar, R., Mazzola, G., Stamatopoulos, N., Woerner, S., & Zeng, W. J. (2021). A threshold
for quantum advantage in derivative pricing. Quantum, 5, 463. https://doi.org/10.22331/q-2021-06-01-463

Dobsicek, M., Johansson, G., Shumeiko, V., & Wendin, G. (2007). Arbitrary accuracy iterative quantum phase esti-
mation algorithm using a single ancillary qubit: A two-qubit benchmark. Physical Review A, 76(3). https:
//doi.org/10.1103/physreva.76.030306

Egger, D. J., Gutiérrez, R. G., Mestre, J. C., & Woerner, S. (2020). Credit risk analysis using quantum computers.
IEEE Transactions on Computers.

Egger, D. J., & Woerner, S. (2019). Quantum risk analysis. Quantum Information, 5(1).
Glasserman, P. (2004). Monte Carlo methods in financial engineering. Springer.
Gómez, A., Leitao Rodriguez, A., Manzano, A., Nogueiras, M., Ordóñez, G., & Vázquez, C. (2022). A survey on

quantum computational finance for derivatives pricing and var. Archives of Computational Methods in Engi-
neering. https://doi.org/10.1007/s11831-022-09732-9

Grinko, D., Gacon, J., Zoufal, C., & Woerner, S. (2021). Iterative quantum amplitude estimation. npj Quantum Infor-
mation, 7(1). https://doi.org/10.1038/s41534-021-00379-1

Grover, L., & Rudolph, T. (2002). Creating superpositions that correspond to efficiently integrable probability distri-
butions. https://doi.org/10.48550/ARXIV.QUANT-PH/0208112

Kitaev, A. Y. (1995). Quantum measurements and the abelian stabilizer problem. https://doi.org/10.48550/ARXIV.
QUANT-PH/9511026

Kloeden, P. E., & Platen, E. (2013). Numerical solution of stochastic differential equations (Vol. 23). Springer Science
& Business Media.

Manzano, A., Musso, D., & Leitao, Á. (2022). Real quantum amplitude estimation. https://doi.org/10.48550/ARXIV.
2204.13641

Montanaro, A. (2015). Quantum speedup of Monte Carlo methods. https://doi.org/http://doi.org/10.1098/rspa.2015.
0301

Nielsen, M. A., & Chuang, I. L. (2011). Quantum computation and quantum information: 10th anniversary edition.
Cambridge University Press.

Quarteroni, A., Sacco, R., & Saleri, F. (2006). Numerical mathematics (texts in applied mathematics). Springer-Verlag.
Rebentrost, P., Gupt, B., & Bromley, T. R. (2018). Quantum computational finance: Monte Carlo pricing of financial

derivatives. Physical Review A, 98(2).
Shende, V., Bullock, S., & Markov, I. (2006). Synthesis of quantum-logic circuits. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 25(6), 1000–1010. https: / /doi .org/10.1109/tcad.2005.
855930

Stamatopoulos, N., Egger, D. J., Sun, Y., Zoufal, C., Iten, R., Shen, N., & Woerner, S. (2020). Option pricing using
quantum computers. Quantum, 4, 291.

Suzuki, Y., Uno, S., Raymond, R., Tanaka, T., Onodera, T., & Yamamoto, N. (2020). Amplitude estimation without
phase estimation. Quantum Information Processing, 19(2). https://doi.org/10.1007/s11128-019-2565-2

© NEASQC Consortium Partners. All rights reserved. Page 20 of 30

https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.22331/q-2021-06-01-463
https://doi.org/10.1103/physreva.76.030306
https://doi.org/10.1103/physreva.76.030306
https://doi.org/10.1007/s11831-022-09732-9
https://doi.org/10.1038/s41534-021-00379-1
https://doi.org/10.48550/ARXIV.QUANT-PH/0208112
https://doi.org/10.48550/ARXIV.QUANT-PH/9511026
https://doi.org/10.48550/ARXIV.QUANT-PH/9511026
https://doi.org/10.48550/ARXIV.2204.13641
https://doi.org/10.48550/ARXIV.2204.13641
https://doi.org/http://doi.org/10.1098/rspa.2015.0301
https://doi.org/http://doi.org/10.1098/rspa.2015.0301
https://doi.org/10.1109/tcad.2005.855930
https://doi.org/10.1109/tcad.2005.855930
https://doi.org/10.1007/s11128-019-2565-2

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

A.Financial Application library

In this appendix the Financial Application software repository is described. The repo can be downloaded at the
NEASQC github: https://github.com/NEASQC/FinancialApplications.

Main idea of this repo is the development of a software library called Quantum Quantitative Finance Library
(QQuantLib from now) for assembling different quantum algorithms and techniques used in the financial indus-
try. QQuantLib library was developed using Python 3.9.9 and is based on the Atos Quantum Learning Machine
library (QLM) 1.5.1.

The Financial Applications software repository has the following folder structure:

• QQuantLib. This folder contains the code of the QQuantLib library. The library is a typical Python library (so
import QQuantLib gives the user the complete access to the library, its packages and modules).

• misc. This folder contains a notebooks folder where several jupyter notebooks were created. This notebooks
were developed as a tutorial for the use of the different packages and modules of the QQuantLib library.

• doc. This folder contains all mandatory files for creating a web documentation which can be find at
https://neasqc.github.io/FinancialApplications/.

• tests. This folder contains several Python scripts for testing purposes.

• benchmark. This folder contains several Python scripts and Jupyter notebooks for automatization of price esti-
mation problems and benchmarking purpouses.

• binder. This folder contains mandatory files for deploying and test the complete software repository on binder
environment.

The main folder of the repo is the QQuantLib where the QQuantLib library is developed. QQuantLib is organised
in the following packages:

• Data Loading

• Amplitude Amplification

• Phase Estimation

• Amplitude Estimation

• Utils

In the following sections these packages are described.

A.1. Data Loading package

This package contains modules related with the loading of the data into the quantum circuits. The main module is the
data loading (import QQuantLib.DL.data loading) where different functions for loading data into quantum circuits
were developed. For the user, the more useful functions are:

• load probability. It creates a QLM AbstractGate for loading a discretized probability density p(x) (given as a
numpy array) into the amplitudes of a register of a quantum circuit (Grover & Rudolph, 2002). Equation A.1
provides a mathematical representation of the desired operator.

US |0⟩n =

2n−1∑
i=0

√
p(xi)|i⟩n. (A.1)

• load array. It creates a QLM AbstractGate for loading an input numpy array f(x) following A.2.

UV |x⟩n|0⟩ = |x⟩n
(√

f(x)|0⟩+
√

1− f(x)|1⟩
)
. (A.2)

Both functions load the data into the amplitudes of quantum state using controlled rotations by state |x⟩:

© NEASQC Consortium Partners. All rights reserved. Page 21 of 30

https://github.com/NEASQC/FinancialApplications
https://neasqc.github.io/FinancialApplications/
https://mybinder.org/
https://mybinder.org/

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

|x⟩|0⟩ −→ (1 ⊗Ry(θx)) |x⟩|0⟩ = |x⟩ (cos(θx)|0⟩+ sin(θx)|1⟩) . (A.3)

Direct implementation of A.3 usually results in deep circuits. A more efficient circuit implementation of this kind
of operators are the Quantum Multiplexors (Shende et al., 2006). The user can select between these two different
implementations by providing the method argument to the before functions:

• brute force: for direct implementation

• multiplexor: for multiplexor implementation

A more detailed explanation on the use of the package and the modules is provided in the jupyter notebook:
01 Data Loading Module Use.ipynb

A.2. Amplitude Amplification package

This package deals with the construction of amplitude amplification (Grover-like) operators (Bras-
sard et al., 2002) given an input oracle. The main module is amplitude amplification (import
QQuantLib.AA.amplitude amplification) where mandatory functions for creating this Grover-like operators
are located. For the user, the most useful function is the grover one: given an input oracle (A.4) as a QLM Routine

O|0⟩ = |Ψ⟩ = sin(θ)|Ψ0⟩+ cos(θ)|Ψ1⟩, (A.4)

where |Ψ0⟩ and |Ψ1⟩ are orthogonal states, the grover creates a QLM AbstractGate implementation of the correspond-
ing Grover-like operator (A.5)

Q̂ = Û|Ψ⟩Û|Ψ0⟩, (A.5)

where:

Û|Ψ0⟩ = Î − 2|Ψ0⟩⟨Ψ0|, (A.6)

Û|Ψ⟩ = Î − 2|Ψ⟩⟨Ψ|. (A.7)

In order to use the grover function, the user should provide:

• oracle: QLM Routine with the oracle implementation.

• target: state which the user want to amplify as a Python list of ints.

• index: Python list with the index of the qubits where the Grover-like operator is applied.

For constructing the Û|Ψ⟩ operator (A.7), the use of a multi-controlled Z gate is mandatory. There are a couple of
functions that allow the user to implement this gate in 2 ways, selected by using the Boolean argument mcz qlm:

• True: direct QLM construction for multi-controlled Z gate is used.

• False: multiplexor implementation of multi-controlled Z gate is used.

A more detailed explanation on use of the package and the modules is provided in the Jupyter notebook:
02 Amplitude Amplification Operators.ipynb

A.3. Phase Estimation package

This package contains modules for pure Phase Estimation algorithms (PE). More precisely, given an initial state |Ψ⟩
and an unitary operator U such that:

U |Ψ⟩ = e2πiλ |Ψ⟩ . (A.8)

© NEASQC Consortium Partners. All rights reserved. Page 22 of 30

https://github.com/NEASQC/FinancialApplications/blob/main/misc/notebooks/01_Data_Loading_Module_Use.ipynb
https://github.com/NEASQC/FinancialApplications/blob/main/misc/notebooks/02_Amplitude_Amplification_Operators.ipynb

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

PE algorithms allow to estimate λ. In general, PE algorithms need to use the Quantum Fourier Transformation (QFT)
as a subroutine.

PE package from QQuantLib has the following main modules:

• classical qpe

• iterative quantum pe

Following sub sections summarise these modules.

A.3.1. classical qpe module

This module (import QQuantLib.PE.classical pe) implements classical PE based on QFT (Brassard et al., 2002).
The algorithm was coded as a Python class, called CQPE.

In order to instantiate the class, the user should provide a Python dictionary where the following keys are mandatory:

• initial state: QLM Routine with the implementation of |Ψ⟩

• unitary operator: QLM Routine with the implementation of the unitary operator U

Other optional keys allow the user to configure the algorithm:

• auxiliar qbits number: number of qubits used for phase estimation

• shots: number of shots.

The Jupyter notebook in 04 Classical Phase Estimation Class.ipynb provides more explanations and using examples
of the module.

A.3.2. iterative quantum pe

This module (import QQuantLib.PE.iterative quantum pe) implements PE based on an iterative implementation
of QFT where only one additional qbit is needed for the estimation of λ (Dobsicek et al., 2007; Kitaev, 1995). The
algorithm was coded as a Python class, called IQPE.

In order to instantiate the class, the user should provide a Python dictionary where the following keys are mandatory:

• initial state: QLM Routine with the implementation of |Ψ⟩

• unitary operator: QLM Routine with the implementation of the unitary operator U

Other optional keys allow the user to configure the algorithm:

• cbits number: number of classical bits used for phase estimation

• shots: number of shots.

The Jupyter notebook in 05 Iterative Quantum Phase Estimation Class.ipynb provides more explanations and using
examples of the module.

A.4. Amplitude Estimation package

Given an oracle operator (A.4), the AE problem consists in getting an estimation of sin2(θ) by making measurements
of the state |Ψ0⟩. For improving this estimation, the corresponding Grover-like operator (A.5) can be used. The effect
of this operator is the following:

Qk|Ψ⟩ = sin((2k + 1)θ)|Ψ0⟩+ cos((2k + 1)θ)|Ψ1⟩. (A.9)

When the k is selected in such a way that (2k + 1)θ ∼ π
2 then the probability of measuring |Ψ0⟩is near 1. The main

problem is that this optimal k depends on θ. AE algorithms are systematic strategies for selecting this k aiming to
obtain the best sin2(θ) estimation.

Several AE algorithms were implemented in the following modules of this package:

© NEASQC Consortium Partners. All rights reserved. Page 23 of 30

https://github.com/NEASQC/FinancialApplications/blob/main/misc/notebooks/04_Classical_Phase_Estimation_Class.ipynb
https://github.com/NEASQC/FinancialApplications/blob/main/misc/notebooks/05_Iterative_Quantum_Phase_Estimation_Class.ipynb

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

• maximum likelihood ae: implements MLAE algorithm (Suzuki et al., 2020).

• iterative quantum ae: implements IQAE algorithm (Grinko et al., 2021).

• ae classical qpe: implements AE using classical quantum phase estimation based on QFT A.3.1.

• ae iterative quantum pe: implements AE using classical quantum phase estimation based on an iterative version
of QFT A.3.2.

• real quantum ae: implements the RQAE algorithm (Manzano et al., 2022).

All the AE algorithms were implemented as Python classes that follow the same working scheme. For instantiating
any of theses classes three common mandatory arguments, that are related with the oracle and the creation of the
correspondent Grover-like operator, should be provided:

• oracle: QLM Routine with the oracle implementation.

• target: state that the user want to amplify as a Python list of ints.

• index: Python list with the index of the qubits where the Grover-like operator is applied.

Additionally, a Python dictionary can be provided for configuring the algorithm.

Each class has a run method that executes the AE algorithm and returns the desired sin2(θ).

In the following subsections a brief summary of the algorithms and some tips about their corresponding classes will
be provided.

A.4.1. maximum likelihood ae

In the MLAE algorithm (Suzuki et al., 2020) a schedule for the Grover-like operator is defined. This schedule consist
of a list of two pairs of integers (mj , nj) for j ∈ N . For each pair (mj , nj) the quantum circuit for (A.9) with k = mj

is created and nj measurements will be done. The number of occurrences of the state |ψ0⟩, hj , is recorded. So for
each possible j a list of three values, (mj , nj , hj), is generated and the MLAE algorithm can compute the associated
cost function:

C(θ) = − log

 J∏
j=0

lk(θ/hj , nj ,mj)

 , (A.10)

where lk(θ/hj , nj ,mj) is the associated likelihood:

lk(θ/hj , nj ,mj) = sin2 ((2mj + 1)θ)
hj cos2 ((2mj + 1)θ)

nj−hj . (A.11)

Then, the MLAE algorithm finds the angle θ∗ that minimises the cost function:

θ∗ = argmin
θ
C(θ). (A.12)

Once this θ∗ is obtained then the desired sin2(θ∗) can be computed.

The MLAE algorithm was implemented in the QQuantLib library as a Python class called MLAE (from
QQuantLib.AE.maximum likelihood ae import MLAE). For configuring the MLAE algorithm, a Python input dic-
tionary can be provided. The more useful keys for the user are the following:

• schedule: Python list of list where the user can provided the schedule for the method (example: [[0, 1, 2, 3],
[100, 200, 100, 50]]).

• optimizer: optimizer used to minimize the cost function (A.12). It should be provided as a Python lambda
function. If not provided, the brute optimizer from scipy.optimize will be used.

The Jupyter notebook in 03 Maximum Likelihood Amplitude Estimation Class.ipynb provides a complete explana-
tion of the MLAE algorithm and the MLAE class.

© NEASQC Consortium Partners. All rights reserved. Page 24 of 30

https://github.com/NEASQC/FinancialApplications/blob/main/misc/notebooks/03_Maximum_Likelihood_Amplitude_Estimation_Class.ipynb

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

A.4.2. iterative quantum ae

IQAE algorithm (Grinko et al., 2021) is an iterative one where two inputs should be provided: an error ϵ and a
confidence level α. The return will be two angles (θl, θu) such that the θ angle of the AE problem satisfies that:

P
[
θ ∈ [θl, θu]

]
≥ 1− α, (A.13)

and

θu − θl
2

≤ ϵ. (A.14)

The run method of the IQAE class will return [sin2 θl, sin
2 θu].

For each step of the IQAE, k applications of the Grover-like operator are selected in a smart way (and depending of
previous steps) trying to reduce the (θl, θu) interval until the previous conditions are satisfied.

The IQAE algorithm was implemented in the QQuantLib library as a Python class called IQAE (from
QQuantLib.AE.iterative quantum ae import IQAE). For configuring the IQAE algorithm, a Python input dictio-
nary can be provided. The more useful keys for the user are the following:

• epsilon (ϵ): error allowed for the algorithm

• alpha (α): confident interval for the algorithm.

• shots: number of shots for each iteration.

The Jupyter notebook in 06 Iterative Quantum Amplitude Estimation class.ipynb provides a complete explanation of
the IQAE algorithm and of the IQAE class.

A.4.3. ae classical qpe

In this module the classical PE algorithm based on QFT (see A.3.1) is adapted for solving AE problems in a trans-
parent view for the user. A Python class called CQPEAE was created (from QQuantLib.AE.ae classical qpe import
CQPEAE) based on the class CQPE from QQuantLib.PE.classical pe.

For configuring the algorithm, a Python input dictionary can be provided. The more useful keys for the user are the
following:

• auxiliar qbits number: number of qubits for doing phase estimation.

• shots: number of shots for each iteration.

The Jupyter notebook in 04 Classical Phase Estimation Class.ipynb provides a complete explanation of the algorithm
and the CQPEAE class.

A.4.4. ae iterative quantum pe

In this module the classical PE algorithm based on iterative QFT (see A.3.2) is adapted for solv-
ing AE problems in a transparent view for the user. A Python class called IQPEAE was cre-
ated (from QQuantLib.AE.ae iterative quantum pe IQPEAE) based on the class IQPE from
QQuantLib.PE.iterative quantum pe.

For configuring the algorithm, a Python input dictionary can be provided. The more useful keys for the user are the
following:

• cbits number: number of classical bits used for phase estimation

• shots: number of shots for each iteration.

The Jupyter notebook in 05 Iterative Quantum Phase Estimation Class.ipynb provides a complete explanation of the
algorithm and the IQPEAE class.

© NEASQC Consortium Partners. All rights reserved. Page 25 of 30

https://github.com/NEASQC/FinancialApplications/blob/main/misc/notebooks/06_Iterative_Quantum_Amplitude_Estimation_class.ipynb
https://github.com/NEASQC/FinancialApplications/blob/main/misc/notebooks/04_Classical_Phase_Estimation_Class.ipynb
https://github.com/NEASQC/FinancialApplications/blob/main/misc/notebooks/05_Iterative_Quantum_Phase_Estimation_Class.ipynb

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

A.4.5. real quantum ae

As explained, typical AE try to estimate sin2(θ) by measuring the probability of the state |ψ0⟩ of (A.9). This estimation
always will be in the interval [0, 1], even when the amplitude of |ψ0⟩ was negative. The Real Quantum Amplitude
Estimation (RQAE) algorithm (Manzano et al., 2022) aims to estimate the amplitude, so the sin(θ) return of the
algorithm will be in the domain [−1, 1].

For the RQAE two inputs should be provided: an error ϵ and a confidence level γ. The return will be two values
(al, au) such that the desired sin(θ) will satisfy

P
[
sin(θ) ∈ [al, au]

]
≥ 1− γ, (A.15)

and

au − al
2

≤ ϵ. (A.16)

RQAE is an iterative algorithm where, in each step, k applications of the Grover-like operator are selected in an smart
way (and depending of previous steps) trying to reduce the (al, au) interval until the previous conditions are satisfied.

For configuring the algorithm a Python input dictionary can be provided. The more useful keys for the user are the
following:

• epsilon (ϵ): error allowed for the algorithm

• gamma (γ): confidence interval for the algorithm.

The Jupyter notebook in 07 Real Quantum Amplitude Estimation class.ipynb provides a complete explanation of the
algorithm and the IQPEAE class.

A.5. Utils package

In this package several auxiliary modules needed by the different packages of the QQuantLib library were developed:

• data extracting: this module implements functions for creating QLM Programs from AbstractGates or QRou-
tines, creating their correspondent quantum circuits and jobs, simulating them and post-processing the obtained
results.

• qlm solver: module for calling the QLM solver.

• utils: module with different auxiliary functions used by the other packages of the library.

• classical finance: module with several functions from classical quantitative finance.

Usually, the library user does not have to interact with these modules.

A.6. Price estimation and applications to finance

The price estimation of an option, given an underlying S, with strike K at maturity T , is the computation of the fair
price of the option at a time t < T . Let V (S) be the payoff of the option for a value S of the underlying and p(T, S)
be the probability distribution of the underlying value at option expiration time T . The classical price estimation of
the option at time t < T is computed by following A.17:

V (t, S) = e−r(T−t)E [V |Ft] , (A.17)

where r is the risk free rate and E [V |Ft] will be the expectation of the payoff V (S) under probability distribution
p(T, S):

E [V |Ft] =

∫
R
p(T, S)V (S)dS. (A.18)

© NEASQC Consortium Partners. All rights reserved. Page 26 of 30

https://github.com/NEASQC/FinancialApplications/blob/main/misc/notebooks/07_Real_Quantum_Amplitude_Estimation_class.ipynb

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

This integral can be approximated as a Riemman sum:

E [V |Ft] ∼
∑
i

p(xi)V (xi). (A.19)

QQuantLib allows the user to compute A.19 by using AE algorithms. The user needs to create an oracle operator
where the desired Riemman sum (A.19) is codified in the amplitude of the |ψ0⟩, see equation (A.4). For this oracle
creation, the two encoding protocols explained in Section 2.2.1 and in Section 3.1 can be used:

1. Standard encoding: this encoding is explained in Section 2.2.1 and summarized in equation (2.11). The
load probability function (see A.1) will be used for loading the desired probability density and the load array
function (see A.2) will be used for loading the payoff. The implementation of this encoding is explained with
great detail in the 08 ApplicationTo Finance 01 StandardApproach.ipynb Jupyter notebook. With this encoding

protocol, the encoded value in the amplitude of the state to amplify will be: sin θ =
∑2n−1

i=0

∣∣∣√p(xi)V (xi)
∣∣∣2.

2. New encoding Protocol: this encoding is explained in Section 3.1 and summarised in equation (3.7). In this
case the load array function (see A.2) will be used for loading probability distribution and payoff. This
protocol is explained in Jupyter notebook: 10 ApplicationTo Finance 03 StandardApproachProblems.ipynb.
With this encoding protocol, the encoded value in the amplitude of the state to amplify will be: sin θ =
1
2n

∑2n−1
i=0 p(xi)V (xi).

A more detailed tutorial for computing price estimation using typical probability densities associated to financial
models (like Black-Scholes model) or different options (like European Put or Call options, Digital Call or Put options
or Futures) using QQuantLib can be found in the following jupyter notebooks:

• In 09 ApplicationTo Finance 02 Call Option BlackScholes.ipynb the standard encoding protocol is used.

• 11 ApplicationTo Finance 04 NewDataLoading.ipynb the new encoding protocol is used.

A.7. Benchmark folder

In the benchmark folder of the Financial Applications software repository, some scripts and notebooks were de-
veloped for the experimental tests presented in this deliverable. The user of the library can find useful the fi-
nance benchmark module. This module develops a Python class called PriceEstimation. This class creates a price
estimation problem and uses the QQuantLib library to solve it in a transparent way for the user. The user can configure
the problem to be solved and the amplitude estimation algorithm to be used by providing an input Python dictionary.

Some useful keys for the input dictionary are:

• ae type: string for setting the type of AE algorithm to use (MLAE, CQPEAE, IQPEAE, IQAE, RQAE)

• probability loading. Boolean value: True for standard encoding and False for new encoding

• pay off type: string for setting the type of option: European Call Option, European Put Option, Digi-
tal Call Option, Digital Put Option, Futures

Additionally, different keys for AE algorithm, probability density or option configuration can be provided. In Jupyter
notebook 01 Benchamark PriceEstimation.ipynb an explanation of the class and the different configuration keys can
be found.

The QQuantLib can be used for solving VaR computation problems by means of AE techniques. Jupyter notebook
03 Benchmark VaR.ipynb from benchmark folder explains how to do this kind of computations. For automating
these VaR computations, a module called var benchmark was created, that includes several classes for doing these
computations in a transparent way for the user. The Jupyter notebook 04 Benchmark VaR.ipynb explains how these
classes can be used.

© NEASQC Consortium Partners. All rights reserved. Page 27 of 30

https://github.com/NEASQC/FinancialApplications/blob/main/misc/notebooks/08_ApplicationTo_Finance_01_StandardApproach.ipynb
https://github.com/NEASQC/FinancialApplications/blob/main/misc/notebooks/10_ApplicationTo_Finance_03_StandardApproachProblems.ipynb
https://github.com/NEASQC/FinancialApplications/blob/main/misc/notebooks/09_ApplicationTo_Finance_02_Call_Option_BlackScholes.ipynb
https://github.com/NEASQC/FinancialApplications/blob/main/misc/notebooks/11_ApplicationTo_Finance_04_NewDataLoading.ipynb
https://github.com/NEASQC/FinancialApplications/blob/main/benchmark/01_Benchamark_PriceEstimation.ipynb
https://github.com/NEASQC/FinancialApplications/blob/main/benchmark/03_Benchmark_VaR.ipynb
https://github.com/NEASQC/FinancialApplications/blob/main/benchmark/04_Benchmark_VaR.ipynb

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

B.Summary of experiments

This appendix describes the experiments performed for the evaluation of the different AE algorithms presented in this
deliverable (see Figure 5 from Section 2.2.2 and Figures 6, 8, 9 and 10 from Section 3). The proposed experiments
consist in the simulation of a price estimation problem for different financial derivatives (see Section B.1) using
QAMC and AE techniques. For encoding the price estimation problem into the quantum circuit, the standard and the
new encoding algorithms, respectively described in Subsection B.2 and Section B.3, were used.

All the experiments were done with the QQuantLib Python library and the software package Financial Applications
described in Appendix A.

B.1. Price Estimation problems

The proposed experiments correspond to a price estimation problem for different typical derivative options, the solu-
tion of which is defined by equation (2.12). Table 3 shows the different options, their correspondent strikes (K) and
returns used.

Option K/S0 Return
European Call Option 0.5 V (S) = max(0, S(t)−K)
European Put Option 1.5 V (S) = max(0,K − S(t))
Digital Call Option 0.5 V (S) = 1 if S(t) ≥ K. 0 otherwise
Digital Put Option 1.5 V (S) = 1 if S(t) ≤ K. 0 otherwise

Futures 0.5 V (S) = S(t)−K
Futures 1.0 V (S) = S(t)−K
Futures 1.5 V (S) = S(t)−K

Table 3: List of the different options simulated, their corresponding strikes and returns. Maturity T and initial value
of the underlying, S0, are provided in Table 4.

For the options of Table 3, an underlying that follows Black-Scholes model was chosen. Table 4 shows the different
parameters of the underlying used in the evaluation.

Probability type S0 maturity volatility risk free rate
Black-Scholes 1.0 1.0 0.5 0.05

Table 4: Financial model and parameters for the underlying used in the evaluation.

For computing expected value appearing in equation (2.12), the domain of the underlying was discretized following
Table 5.

x0 xf nqbits intervals
0.01 5.0 5 32

Table 5: Settings for the domain discretization used for the simulations.

B.2. Standard Encoding Evaluation.

The standard encoding procedure explained in Section 2.2.1 and summarised in equation (2.11) was used for loading
the data for the proposed price estimation problems into the quantum circuit. The following AE techniques were used
for solving the QAMC simulation:

• Classical Quantum Phase Estimation, CQPEAE, see (Brassard et al., 2002).

• Iterative Quantum Phase Estimation, IQPEAE, see (Dobsicek et al., 2007).

• Iterative Quantum Amplitude Estimation, IQAE, see (Grinko et al., 2021).

• Maximum Likelihood Amplitude Estimation, MLAE, see (Suzuki et al., 2020).

© NEASQC Consortium Partners. All rights reserved. Page 28 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

In A.4 a brief summary of these techniques is provided. In Table 6 the parameters for the different tested AE techniques
are presented.

Parameters CQPEAE IQPEAE IQAE MLAE
auxiliar qubits number 10, 12, 14, 16 N/A N/A N/A
classical bits number N/A 10, 12, 14 N/A N/A

epsilon (ϵ) N/A N/A 10−2, 10−3, 10−4, 10−5 NA
alpha (α) N/A N/A 0.05 N/A

number of different schedules N/A N/A N/A 5
ns N/A N/A N/A 10000

delta N/A N/A N/A 10−7

shots 100 100 100 NA
QPU QLM QLM FT3 QLM

repetitions 10 5 10 10

Table 6: AE algorithms and their corresponding parameters for the standard encoding protocol.

So the different price estimation problems defined in Tables 3, 4 and 5 were simulated using the different AE tech-
niques (and the different parameters) of the Table 6. The parameter QPU from Table 6 references to the type of
hardware platform where the simulations were done:

• QLM: the simulations were done in the Atos Quantum Learning Machine: this is a hardware platform for
quantum circuit simulator up to 30 qubits: with 96 cores and 1.5 TB of RAM.

• FT3: simulations were done in a computation node of the FinisTerrae III: Intel Xeon Ice Lake 835Y with 256
GB of RAM and 64 cores1.

The parameter repetitions in Table 6 was the number of simulations done for each possible combination of the different
options (Table 3), AE techniques, and parameters (Table 6). As can be seen 10 repetitions were done for each AE
technique, except for the IQPEAE where only 5 repetitions were done. This is because this technique needs a longer
run time simulation compared with the other ones.

B.3. New encoding evaluation

The new encoding protocol presented in Section 3.1 and summarised in equation (3.7) was used to load the data for the
proposed price estimation problems into the quantum circuit. The price estimation problems defined in Tables 3, 4 and
5 were solved using QAMC and the AE techniques enumerated in Section B.2. Additionally, the new original Real
Quantum Amplitude Estimation (RQAE) algorithm, see (Manzano et al., 2022), was used (brief description of the
algorithm is provided in A.4). Table 7 shows the different AE algorithms and the parameters used for the evaluation
of the new encoding protocol.

Parameters CQPEAE IQPEAE IQAE MLAE RQAE
auxiliar qubits number 10, 12, 14, 16 N/A N/A N/A N/A
classical bits number N/A 10, 12, 14 N/A N/A N/A

epsilon (ϵ) N/A N/A 10−2, 10−3, 10−4, 10−5 N/A 10−3, 10−4, 10−5

alpha (α) N/A N/A 0.05 N/A N/A
gamma (γ) N/A N/A N/A N/A 0.05

q N/A N/A N/A N/A 1.2, 1.5, 2, 5, 10, 20
number of different schedules N/A N/A N/A 5 N/A

ns N/A N/A N/A 10000 N/A
delta N/A N/A N/A 10−7 N/A
shots 100 100 100 N/A N/A

repetitions 10 5 100 10 100
QPU QLM QLM FT3 QLM QLM + FT3

Table 7: AE algorithms and their correspondent parameters used for the simulations with the new encoding protocol.

1The number of cores and the amount of the RAM used depended on the simulations to be executed.

© NEASQC Consortium Partners. All rights reserved. Page 29 of 30

D5.4 Evaluation of quantum algorithms for pricing and computation of VaR (1.0- Final)

See Section B.2 for explanation of QPU and repetitions parameters. For the evaluation of the new loading protocol, a
detailed comparison of the results of the IQAE vs the RQAE algorithms was desired, so more repetitions for this two
algorithms were used. As explained before, due to the long simulation times, lower number of repetitions were used
for the IQPEAE algorithm.

© NEASQC Consortium Partners. All rights reserved. Page 30 of 30

	1 Executive Summary
	2 Introduction
	2.1 Classical Monte Carlo for derivatives pricing
	2.1.1 Simulation of SDEs
	2.1.2 Integration by Monte Carlo

	2.2 Quantum Accelerated Monte Carlo for derivatives pricing
	2.2.1 Standard encoding
	2.2.2 Amplitude estimation

	2.3 VaR/Expected shortfall

	3 Original contributions
	3.1 New encoding protocol
	3.2 New amplitude estimation algorithm

	4 Conclusions
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography
	A Financial Application library
	A.1 Data Loading package
	A.2 Amplitude Amplification package
	A.3 Phase Estimation package
	A.3.1 classical_qpe module
	A.3.2 iterative_quantum_pe

	A.4 Amplitude Estimation package
	A.4.1 maximum_likelihood_ae
	A.4.2 iterative_quantum_ae
	A.4.3 ae_classical_qpe
	A.4.4 ae_iterative_quantum_pe
	A.4.5 real_quantum_ae

	A.5 Utils package
	A.6 Price estimation and applications to finance
	A.7 Benchmark folder

	B Summary of experiments
	B.1 Price Estimation problems
	B.2 Standard Encoding Evaluation.
	B.3 New encoding evaluation

