
NExt ApplicationS of Quantum Computing

D5.2: Specification of QRL algorithm
for inventory management

Document Properties

Contract Number 951821

Contractual Deadline M25 (30/09/2022)

Dissemination Level Public (PU)

Nature Report

Editors Vedran Dunjko, ULEI
Simon Marshall, ULEI

Authors Vedran Dunjko, ULEI

Reviewers Andrés Gomez, CESGA
Emmanuel Jeandel , LORIA

Date 7/10/2022

Keywords Quantum algorithms, quantum reinforcement learning, reinforce-
ment learning

Status Final version

Release 1.1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

© NEASQC Consortium Partners. All rights reserved. Page 1 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

History of Changes

Release Date Author, Organisation Description of Changes

0.1 31/07/2022 Simon Marshall, ULEI NEASQC format

0.2 25/08/2022 Vedran Dunjko, ULEI Executive summary added. Description of
change of targeted application added. Sec-
tion on applications to inventory management
added.

1.0 20/09/2022 Vedran Dunjko, ULEI Final version including the corrections of re-
viewers.

1.1 07/10/2022 Vedran Dunjko, ULEI Dissemination status re-classified as public

© NEASQC Consortium Partners. All rights reserved. Page 2 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

Table of Contents

1. Executive Summary 5

2. Introduction 6
2.1. Contributions . 6
2.2. Related work . 7

3. Parameterised quantum policies: definitions and learning algorithm 8
3.1. Quantum computation: a primer . 8
3.2. The RAW-PQC and SOFTMAX-PQC policies . 8
3.3. Learning algorithm . 9
3.4. Efficient policy sampling and policy-gradient evaluation . 10

4. Performance comparison in benchmaking environments 12
4.1. RAW-PQC v.s. SOFTMAX-PQC . 12
4.2. Influence of architectural choices . 13

5. Quantum advantage of PQC agents in RL environments 14
5.1. Quantum advantage of PQC policies over any classical learner 14

5.1.1. SL-DLP . 14
5.1.2. Cliffwalk-DLP . 14
5.1.3. Deterministic-DLP . 15

5.2. Quantum advantage of PQC policies over DNN policies . 15
5.3. PQC-generated environments . 15
5.4. Performance comparison . 16

6. Applicability to inventory management and other industrial problems 17

7. Conclusions 18

List of Figures 19

List of Tables 21

Bibliography 22

A. Appendix 25
A.1. Derivation of the log-policy gradient . 25
A.2. Efficient implementation of SOFTMAX-PQC policies . 25

A.2.1. Efficient approximate policy sampling . 25
A.2.2. Efficient estimation of the log-policy gradient . 26

A.3. The role of trainable observables in SOFTMAX-PQC policies 27
A.3.1. Training the eigenbasis and the eigenvalues of an observable 27
A.3.2. The power of universal observables . 27

A.4. Environments specifications and hyperpameters . 28
A.5. Deferred plots and shape of policies learned by PQCs v.s. DNNs 28

A.5.1. Influence of architectural choices on RAW-PQC agents 28
A.5.2. Shape of the policies learned by PQCs v.s. DNNs . 31
A.5.3. Additional numerical simulation on the CognitiveRadio environment 31

A.6. Supervised learning task of Liu et al. 34
A.7. Proof of Theorem 1 . 34
A.8. Proof of Lemma 5 . 36

A.8.1. Upper bound on the value function . 36
A.8.2. Lower bound on the value function . 37
A.8.3. Bounds for classical hardness and quantum learnability 38

A.9. Proof of Lemma 6 . 39
A.9.1. Proof of classical hardness . 39

© NEASQC Consortium Partners. All rights reserved. Page 3 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

A.9.2. Proof of quantum learnability . 40
A.10.Construction of a PQC agent for the DLP environments . 41

A.10.1.Implicit v.s. explicit quantum SVMs . 41
A.10.2.Description of the PQC classifier . 41
A.10.3.Noisy classifier . 42

A.11.Proof of trainability of our PQC agent in the SL-DLP environment 43

© NEASQC Consortium Partners. All rights reserved. Page 4 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

1. Executive Summary

The main objective of this deliverable is the theoretical development of quantum machine learning machin-
ery for reinforcement learning, which is near-term-device friendly, yet sufficiently general to be applicable to
the task of inventory management. This deliverable documents this achievement.

With the advent of real-world quantum computing, the idea that parametrized quantum computations can be
used as hypothesis families in a quantum-classical machine learning system is gaining increasing traction.
Such hybrid quantum-classical systems, which use a classical loop over a parameterized quantum circuit,
have already shown the potential to tackle real-world tasks in supervised and generative learning, and
recent works have established their provable advantages in special artificial tasks. Yet, in the case of
reinforcement learning, which is arguably most challenging and where learning boosts would be extremely
valuable, no proposal has been successful in solving even standard benchmarking tasks, nor in showing a
theoretical learning advantage over classical algorithms. In this work, we achieve both. We propose a hybrid
quantum-classical reinforcement learning model using very few qubits, which we show can be effectively
trained to solve several standard benchmarking environments. Moreover, we demonstrate, and formally
prove, the ability of parametrized quantum circuits to solve certain learning tasks that are intractable to
classical models, including current state-of-art deep neural networks, under the widely-believed classical
hardness of the discrete logarithm problem.

Our approach is general, and has shown applicable to both discrete and continuous state domains, with
discrete actions, and is thus sufficiently general for application to the problem of inventory management.
Furthermore, it is built around parametrized circuits, and is thus within the accepted paradigm for near-
term-friendly proposals.

© NEASQC Consortium Partners. All rights reserved. Page 5 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

2. Introduction

Hybrid classical-quantum machine learning models constitute one of the most promising applications of
near-term quantum computers (Bharti et al., 2021; Preskill, 2018). In these models, parametrized and
data-dependent quantum computations define a hypothesis family for a given learning task, and a classical
optimization algorithm is used to train them. For instance, parametrized quantum circuits (PQCs) (Benedetti
et al., 2019) have already proven successful in classification (Farhi & Neven, 2018; Havlicek et al., 2019;
Peters et al., 2021; Schuld et al., 2020; Schuld & Killoran, 2019), generative modeling (J.-G. Liu & Wang,
2018; Zhu et al., 2019) and clustering (Otterbach et al., 2017) problems. Moreover, recent results have
shown proofs of their learning advantages in artificially constructed tasks (Havlicek et al., 2019; Huang
et al., 2021) , some of which are based on widely believed complexity-theoretic (Havlicek et al., 2019)
assumptions (Du et al., 2020; Huang et al., 2021; Y. Liu et al., 2021; Sweke et al., 2021). All these results,
however, only consider supervised and generative learning settings.

Arguably, the largest impact quantum computing can have is by providing enhancements to the hardest
learning problems. From this perspective, reinforcement learning (RL) stands out as a field that can greatly
benefit from a powerful hypothesis family. This is showcased by the boost in learning performance that
deep neural networks (DNNs) have provided to RL (Mnih et al., 2015), which enabled systems like AlphaGo
(Silver et al., 2017), among other achievements (Berner et al., 2019; Mirowski et al., 2018). Nonetheless,
the true potential of near-term quantum approaches in RL remains very little explored. The few existing
works (Chen et al., 2020; Jerbi et al., 2021; Lockwood & Si, 2020; Wu et al., 2020) have failed so far at
solving classical benchmarking tasks using PQCs and left open the question of their ability to provide a
learning advantage.

2.1. Contributions

In this work, we demonstrate the potential of policies based on PQCs in solving classical RL environments.
To do this, we first propose new model constructions, describe their learning algorithms, and show nu-
merically the influence of design choices on their learning performance. In our numerical investigation,
we consider benchmarking environments from OpenAI Gym (Brockman et al., 2016), for which good and
simple DNN policies are known, and in which we demonstrate that PQC policies can achieve comparable
performance. Second, inspired by the classification task of Havlı́ček et al. (Havlicek et al., 2019), conjec-
tured to be classically hard by the authors, we construct analogous RL environments where we show an
empirical learning advantage of our PQC policies over standard DNN policies used in deep RL. In the same
direction, we construct RL environments with a provable gap in performance between a family of PQC poli-
cies and any efficient classical learner. These environments essentially build upon the work of Liu et al.
(Y. Liu et al., 2021) by embedding into a learning setting the discrete logarithm problem (DLP), which is the
problem solved by Shor’s celebrated quantum algorithm (Shor, 1999) but widely believed to be classically
hard to solve (Blum & Micali, 1984).

We note that an accompanying tutorial (Jerbi et al., 2021), implemented as part of the quantum machine
learning library TensorFlow Quantum (Broughton et al., 2020), provides the code required to reproduce our
numerical results and explore different settings. It also implements the Q-learning approach for PQC-based
RL of Skolik et al. (Skolik et al., 2021)

© NEASQC Consortium Partners. All rights reserved. Page 6 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

𝜋𝜽(𝑎|𝑠)

𝑠, 𝜽

ۧ|0
ۧ|0

ۧ|0

𝑠, 𝜽𝜽 𝜽 𝜽

𝑂𝑎 𝑠,𝜽

𝑎

𝑠

𝑟

∇𝜽 log 𝜋𝜽

Figure 1: Training parametrized quantum policies for reinforcement learning. We consider a
quantum-enhanced RL scenario where a hybrid quantum-classical agent learns by interacting with a

classical environment. For each state s it perceives, the agent samples its next action a from its policy
πθ(a|s) and perceives feedback on its behavior in the form of a reward r. For our hybrid agents, the policy

πθ is specified by a PQC (see Def. 1) evaluated (along with the gradient ∇θ log πθ) on a quantum
processing unit (QPU). The training of this policy is performed by a classical learning algorithm, such as
the REINFORCE algorithm (see Alg. 1), which uses sample interactions and policy gradients to update

the policy parameters θ.

2.2. Related work

Recently, a few works have been exploring hybrid quantum approaches for RL. Among these, Refs. (Chen
et al., 2020; Lockwood & Si, 2020) also trained PQC-based agents in classical RL environments. However,
these take a value-based approach to RL, meaning that they use PQCs as value-function approximators
instead of direct policies. The learning agents in these works are also tested on OpenAI Gym environments
(namely, a modified FrozenLake and CartPole), but do not achieve sufficiently good performance to be
solving them, according to the Gym specifications. Ref. (Skolik et al., 2021) shows that, using some of our
design choices for PQCs in RL (i.e., data re-uploading circuits (Pérez-Salinas et al., 2020) with trainable
observable weights and input scaling parameters), one can also solve these environments using a value-
based approach. An actor-critic approach to quantum RL (QRL) was introduced in Ref. (Wu et al., 2020),
using both a PQC actor (or policy) and a PQC critic (or value-function approximator). In contrast to our work,
these are trained in quantum environments (e.g., quantum-control environments), that provide a quantum
state to the agent, which acts back with a continuous classical action. These aspects make it a very different
learning setting to ours. Ref. (Jerbi et al., 2021) also describes a hybrid quantum-classical algorithm for
value-based RL. The function-approximation models on which this algorithm is applied are however not
PQCs but energy-based neural networks (e.g., deep and quantum Boltzmann machines). Finally, our work
provides an alternative approach to take advantage of quantum effects in designing QRL agents compared
to earlier approaches (Crawford et al., 2018; Dong et al., 2008; Dunjko et al., 2016; Neukart et al., 2018;
Paparo et al., 2014), which are mainly based on (variations of) Grover’s search algorithm (Grover, 1996) or
quantum annealers (Johnson et al., 2011) to speed up sampling routines.

© NEASQC Consortium Partners. All rights reserved. Page 7 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

3. Parameterised quantum policies: definitions and learning algorithm

In this section, we give a detailed construction of our parametrized quantum policies and describe their
associated training algorithms. We start however with a short introduction to the basic concepts of quantum
computation, introduced in more detail in (De Wolf, 2019; Nielsen & Chuang, 2000).

3.1. Quantum computation: a primer

A quantum system composed of n qubits is represented by a 2n-dimensional complex Hilbert space H =
(C2)⊗n. Its quantum state is described by a vector |ψ⟩ ∈ H of unit norm ⟨ψ|ψ⟩ = 1, where we adopt
the bra-ket notation to describe vectors |ψ⟩, their conjugate transpose ⟨ψ| and inner-products ⟨ψ|ψ′⟩ in H.
Single-qubit computational basis states are given by |0⟩ = (1, 0)T , |1⟩ = (0, 1)T , and their tensor products
describe general computational basis states, e.g., |10⟩ = |1⟩ ⊗ |0⟩ = (0, 0, 1, 0)T .

A quantum gate is a unitary operation U acting on H. When a gate U acts non-trivially only on a subset
S ⊆ [n] of qubits, we identify it to the operation U ⊗1[n]\S , where 1x denotes the identity acting on x. In this
work, we are mainly interested in the single-qubit Pauli gates Z, Y and their associated rotations Rz, Ry:

Z =

(
1 0
0 −1

)
, Rz(θ) = exp

(
−iθ

2
Z

)
, Y =

(
0 −i
i 0

)
, Ry(θ) = exp

(
−iθ

2
Y

)
, (3.1)

for rotation angles θ ∈ R, and the 2-qubit Ctrl-Z gate = diag(1, 1, 1,−1).

A projective measurement is described by a Hermitian operator O called an observable. Its spectral decom-
position O =

∑
m αmPm in terms of eigenvalues αm and orthogonal projections Pm defines the outcomes

of this measurement, according to the Born rule: a measured state |ψ⟩ gives the outcome αm and gets
projected onto the state Pm |ψ⟩ /

√
p(m) with probability p(m) = ⟨ψ|Pm |ψ⟩ = ⟨Pm⟩ψ. The expectation value

of the observable O with respect to |ψ⟩ is Eψ[O] =
∑
m p(m)αm = ⟨O⟩ψ.

3.2. The RAW-PQC and SOFTMAX-PQC policies

At the core of our parametrized quantum policies is a PQC defined by a unitary U(s,θ) that acts on a
fixed n-qubit state (e.g., |0⟩⊗n). This unitary encodes an input state s ∈ Rd of the classical environment,
and is parametrized by a trainable vector θ. Although different choices of PQCs are possible, throughout
our numerical experiments (e.g., Sec. 5.2), we consider so-called hardware-efficient PQCs (Kandala et
al., 2017) with an alternating-layered architecture (Pérez-Salinas et al., 2020; Schuld et al., 2021). This
architecture is depicted in Fig. 2 and essentially consists in an alternation of Denc encoding unitaries Uenc
(composed of single-qubit rotations Rz, Ry) and Denc+1 variational unitaries Uvar (composed of single-qubit
rotations Rz, Ry and entangling Ctrl-Z gates).

For any given PQC, we define two families of policies, differing in how the final quantum states |ψs,θ⟩ =
U(s,θ) |0⊗n⟩ are used. In the RAW-PQC model, we exploit the probabilistic nature of quantum measure-
ments to define an RL policy. For |A| available actions to the RL agent, we partition H in |A| disjoint
subspaces (e.g., spanned by computational basis states) and associate a projection Pa to each of these
subspaces. The projective measurement associated to the observable O =

∑
a aPa then defines our RAW-

PQC policy πθ(a|s) = ⟨Pa⟩s,θ. A limitation of this policy family however is that it does not have a directly
adjustable greediness (i.e., a control parameter that makes the policy more peaked). This consideration
arises naturally in an RL context where an agent’s policy needs to shift from an exploratory behavior (i.e.,
close to uniform distribution) to a more exploitative behavior (i.e., a peaked distribution). To remedy this
limitation, we define the SOFTMAX-PQC model, that applies an adjustable softmaxβ non-linear activation
function on the expectation values ⟨Pa⟩s,θ measured on |ψs,θ⟩. Since the softmax function normalizes any
real-valued input, we can generalize the projections Pa to be arbitrary Hermitian operators Oa. We also
generalize these observables one step further by assigning them trainable weights. The two models are
formally defined below.

© NEASQC Consortium Partners. All rights reserved. Page 8 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

Figure 2: PQC architecture for n = 2 qubits and depth Denc = 1. This architecture is composed of
alternating layers of encoding unitaries Uenc(s,λi) taking as input a state vector s = (s0, . . . , sd−1) and

scaling parameters λi (part of a vector λ ∈ R|λ| of dimension |λ|), and variational unitaries Uvar(ϕi) taking
as input rotation angles ϕi (part of a vector ϕ ∈ [0, 2π]|ϕ| of dimension |ϕ|).

Definition 1 (RAW- and SOFTMAX-PQC). Given a PQC acting on n qubits, taking as input a state s ∈ Rd,
rotation angles ϕ ∈ [0, 2π]|ϕ| and scaling parameters λ ∈ R|λ|, such that its corresponding unitary U(s,ϕ,λ)
produces the quantum state |ψs,ϕ,λ⟩ = U(s,ϕ,λ) |0⊗n⟩, we define its associated RAW-PQC policy as:

πθ(a|s) = ⟨Pa⟩s,θ (3.2)

where ⟨Pa⟩s,θ = ⟨ψs,ϕ,λ|Pa|ψs,ϕ,λ⟩ is the expectation value of a projection Pa associated to action a, such
that

∑
a Pa = I and PaPa′ = δa,a′ . Here, θ = (ϕ,λ) constitute all of its trainable parameters.

Using the same PQC, we also define a SOFTMAX-PQC policy as:

πθ(a|s) =
eβ⟨Oa⟩s,θ

∑
a′ e

β⟨Oa′ ⟩s,θ
(3.3)

where ⟨Oa⟩s,θ = ⟨ψs,ϕ,λ|
∑
i wa,iHa,i|ψs,ϕ,λ⟩ is the expectation value of the weighted (with real values

wa,i) Hermitian operators Ha,i associated to action a, and β ∈ R is an inverse-temperature parameter and
θ = (ϕ,λ,w).

Note that we adopt here a very general definition for the observables Oa of our SOFTMAX-PQC policies.
As we discuss in more detail in Appendix A.3, very expressive trainable observables can in some extreme
cases take over all training of the PQC parameters ϕ,λ and render the role of the PQC in learning trivial.
However, in practice, as well as in our numerical experiments, we only consider very restricted observ-
ables Oa =

∑
i wa,iHa,i, where Ha,i are (tensor products of) Pauli matrices or high-rank projections on

computational basis states, which do not allow for these extreme scenarios.

In our PQC construction, we include trainable scaling parameters λ, used in every encoding gate to re-
scale its input components. This modification to the standard data encoding in PQCs comes in light of
recent considerations on the structure of PQC functions (Schuld et al., 2019). These additional parameters
allow to represent functions with a wider and richer spectrum of frequencies, and hence provide shallow
PQCs with more expressive power.

3.3. Learning algorithm

In order to analyze the properties of our PQC policies without the interference of other learning mechanisms
(Weng, 2018), we train these policies using the basic Monte Carlo policy gradient algorithm REINFORCE
(Sutton, Barto, et al., 1998; Williams, 1992) (see Alg. 1). This algorithm consists in evaluating Monte Carlo
estimates of the value function Vπθ

(s0) = Eπθ

[∑T−1
t=0 γtrt

]
, γ ∈ [0, 1], using batches of interactions with the

environment, and updating the policy parameters θ via a gradient ascent on Vπθ
(s0). T denotes the horizon

of interest, i.e., the number of steps in the future we wish to consider. The resulting updates (see line 8
of Alg. 1) involve the gradient of the log-policy ∇θ log πθ(a|s), which we therefore need to compute for our
policies. We describe this computation in the following lemma.

Lemma 1. Given a SOFTMAX-PQC policy πθ(a—s), the gradient of its logarithm is given by:

∇θ log πθ(a|s) = β
(
∇θ ⟨Oa⟩s,θ −

∑
a′
πθ(a

′|s)∇θ ⟨Oa′⟩s,θ
)
. (3.4)

© NEASQC Consortium Partners. All rights reserved. Page 9 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

Algorithm 1: REINFORCE with PQC policies and value-function baselines

Input: a PQC policy πθ from Def. 1; a value-function approximator Ṽω
1 Initialize parameters θ and ω;
2 while True do
3 Generate N episodes {(s0, a0, r1, . . . , sH−1, aH−1, rH)}i following πθ;
4 for episode i in batch do
5 Compute the returns Gi,t ←

∑H−t
t′=1 γ

t′r
(i)
t+t′ ;

6 Compute the gradients ∇θ log πθ(a
(i)
t |s(i)t) using Lemma 1;

7 Fit
{
Ṽω(s

(i)
t)
}
i,t

to the returns {Gi,t}i,t;

8 Compute ∆θ =
1

N

N∑
i=1

H−1∑
t=0
∇θ log πθ(a

(i)
t |s(i)t)

(
Gi,t − Ṽω(s(i)t)

)
;

9 Update θ ← θ + α∆θ;

Partial derivatives with respect to observable weights are trivially given by ∂wa,i
⟨Oa⟩s,θ =

⟨ψs,ϕ,λ|Ha,i|ψs,ϕ,λ⟩ (see Def. 1), while derivatives with respect to rotation angles ∂ϕi
⟨Oa⟩s,θ and scaling

parameters1 ∂λi⟨Oa⟩s,θ can be estimated via the parameter-shift rule (Mitarai et al., 2018; Schuld et al.,
2019):

∂i ⟨Oa⟩s,θ =
1

2

(
⟨Oa⟩s,θ+π

2 ei
− ⟨Oa⟩s,θ−π

2 ei

)
, (3.5)

i.e., using the difference of two expectation values ⟨Oa⟩s,θ′ with a single angle shifted by ±π2 .
For a RAW-PQC policy πθ, we have instead:

∇θ log πθ(a|s) = ∇θ ⟨Pa⟩s,θ / ⟨Pa⟩s,θ (3.6)

where the partial derivatives ∂ϕi⟨Pa⟩s,θ and ∂λi⟨Pa⟩s,θ can be estimated similarly to above.

In some of our environments, we additionally rely on a linear value-function baseline to reduce the variance
of the Monte Carlo estimates (Greensmith et al., 2004). We choose it to be identical to that of Ref. (Duan
et al., 2016).

3.4. Efficient policy sampling and policy-gradient evaluation

A natural consideration when it comes to the implementation of our PQC policies is whether one can effi-
ciently (in the number of executions of the PQC on a quantum computer) sample and train them.

By design, sampling from our RAW-PQC policies can be done with a single execution (and measurement)
of the PQC: the projective measurement corresponding to the observable O =

∑
a aPa naturally samples a

basis state associated to action a with probability ⟨Pa⟩s,θ. However, as Eq. (3.6) indicates, in order to train
these policies using REINFORCE, one is nonetheless required to estimate the expectation values ⟨Pa⟩s,θ,
along with the gradients ∇θ ⟨Pa⟩s,θ. Fortunately, these quantities can be estimated efficiently up to some
additive error ε, using only O(ε−2) repeated executions and measurements on a quantum computer.

In the case of our SOFTMAX-PQC policies, it is less clear whether similar noisy estimates ⟨Õa⟩s,θ of the
expectation values ⟨Oa⟩s,θ are sufficient to evaluate policies of the form of Eq. (3.3). We show however
that, using these noisy estimates, we can compute a policy π̃θ that produces samples close to that of the
true policy πθ. We state our result formally in the following lemma, proven in Appendix A.2.

Lemma 2. For a SOFTMAX-PQC policy πθ(a—s) defined by a unitary U(s,θ) and observables Oa, call
⟨Õa⟩s,θ approximations of the true expectation values ⟨Oa⟩s,θ with at most ε additive error. Then the ap-
proximate policy π̃θ(a|s) = softmaxβ(⟨Õa⟩s,θ) has total variation distance O(βε) to πθ = softmaxβ(⟨Oa⟩s,θ).
Since expectation values can be efficiently estimated to additive error on a quantum computer, this implies
efficient approximate sampling from πθ.

1Note that the parameters λ do not act as rotation angles. To compute the derivatives ∂λi,j
⟨Oa⟩s,θ , one should compute derivatives

w.r.t. sjλi,j instead and apply the chain rule: ∂λi,j
⟨Oa⟩s,θ = sj∂sjλi,j

⟨Oa⟩s,θ .

© NEASQC Consortium Partners. All rights reserved. Page 10 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

We also obtain a similar result for the log-policy gradient of SOFTMAX-PQCs (see Lemma 1), that we show
can be efficiently estimated to additive error in ℓ∞-norm (see Appendix A.2 for a proof).

© NEASQC Consortium Partners. All rights reserved. Page 11 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

4. Performance comparison in benchmaking environments

In the previous section, we have introduced our quantum policies and described several of our design
choices. We defined the RAW-PQC and SOFTMAX-PQC models and introduced two original features for
PQCs: trainable observables at their output and trainable scaling parameters for their input. In this section,
we evaluate the influence of these design choices on learning performance through numerical simulations.
We consider three classical benchmarking environments from the OpenAI Gym library (Brockman et al.,
2016): CartPole, MountainCar and Acrobot. All three have continuous state spaces and discrete action
spaces (see Appendix A.4 for their specifications). Moreover, simple NN-policies, as well as simple closed-
form policies, are known to perform very well in these environments (OpenAI, 2020), which makes them an
excellent test-bed to benchmark PQC policies.

4.1. RAW-PQC v.s. SOFTMAX-PQC

0 250 500 750 1000 1250 1500 1750 2000
Episode

0

100

200

300

400

500

Av
er
ag

e
co

lle
ct
ed

re
w
ar
ds

CartPole-v1 (n = 4, Denc = 1)

softmax-PQC
raw-PQC

0 250 500 750 1000 1250 1500 1750 2000
Episode

-180

-160

-140

-120

-100

-80

-60
MountainCar-v0 (n = 2, Denc = 4)

softmax-PQC
raw-PQC

0 250 500 750 1000 1250 1500 1750 2000
Episode

-500

-450

-400

-350

-300

-250

-200

-150

-100
Acrobot-v1 (n = 6, Denc = 2)

softmax-PQC
raw-PQC

Figure 3: Numerical evidence of the advantage of SOFTMAX-PQC over RAW-PQC in benchmarking
environments. The learning curves (20 agents per curve) of randomly-initialized SOFTMAX-PQC agents

(green curves) and RAW-PQC agents (red curves) in OpenAI Gym environments: CartPole-v1,
MountainCar-v0, and Acrobot-v1. Each curve is temporally averaged with a time window of 10 episodes
(complete “games” until the agent fails). All agents have been trained using the REINFORCE algorithm

(see Alg. 1), with value-function baselines for the MountainCar and Acrobot environments.

0 250 500 750 1000 1250 1500 1750 2000
Episode

0

100

200

300

400

500

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

CartPole - softmax-PQC

Depth 5
Reference (depth 1)
Fixed lambdas
Fixed weights, β = 2, 10

0 250 500 750 1000 1250 1500 1750 2000
Episode

-180

-160

-140

-120

-100

-80

-60
MountainCar - softmax-PQC

Depth 6
Reference (depth 4)
Fixed lambdas
Fixed weights, β = 2, 10

0 250 500 750 1000 1250 1500 1750 2000
Episode

-500

-450

-400

-350

-300

-250

-200

-150

-100

Acrobot - softmax-PQC

Depth 5
Reference (depth 2)
Fixed lambdas
Fixed weights, β = 2, 10

Figure 4: Influence of the model architecture for SOFTMAX-PQC agents. The blue curves in each plot
correspond to the learning curves from Fig. 3 and are taken as a reference. Other curves highlight the

influence of individual hyperparameters. For RAW-PQC agents, see Appendix A.5.

In our first set of experiments, presented in Fig. 3, we evaluate the general performance of our proposed
policies. The full specification of all the hyperparameters is given in the appendix. The aim of these
experiments is twofold: first, to showcase that quantum policies based on shallow PQCs and acting on very
few qubits can be trained to good performance in our selected environments; second, to test the advantage
of SOFTMAX-PQC policies over RAW-PQC policies that we conjectured in the Sec. 3.2. To assess these
claims, we take a similar approach for each of our benchmarking environments, in which we evaluate the
average learning performance of 20 RAW-PQC and 20 SOFTMAX-PQC agents. Apart from the PQC depth,
the shared hyperparameters of these two models were jointly picked as to give the best overall performance

© NEASQC Consortium Partners. All rights reserved. Page 12 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

for both; the hyperparameters specific to each model were optimized independently. As for the PQC depth
Denc, the latter was chosen as the minimum depth for which near-optimal performance was observed for
either model. The simulation results confirm both our hypotheses: quantum policies can achieve good
performance on the three benchmarking tasks that we consider, and we can see a clear separation between
the performance of SOFTMAX-PQC and RAW-PQC agents.

4.2. Influence of architectural choices

The results of the previous subsection however do not indicate whether other design choices we have made
in Sec. 3.2 had an influence on the performance of our quantum agents. To address this, we run a second
set of experiments, presented in Fig. 4. In these simulations, we evaluate the average performance of our
SOFTMAX-PQC agents after modifying one of three design choices: we either increment the depth of the
PQC (until no significant increase in performance is observed), fix the input-scaling parameters λ to 1, or
fix the observable weights w to 1. By comparing the performance of these agents with that of the agents
from Fig. 3, we can make the following observations:

• Influence of depth: Increasing the depth of the PQC generally improves (not strictly) the performance
of the agents. Note that the maximum depth we tested was Denc = 10.

• Influence of scaling parameters λ: We observe that training these scaling parameters in general
benefits the learning performance of our PQC policies, likely due to their increased expressivity.

• Influence of trainable observable weights w: our final consideration relates to the importance of
having a policy with “trainable greediness” in RL scenarios. For this, we consider SOFTMAX-PQC agents
with fixed observables βOa throughout training. We observe that this has the general effect of decreasing
the performance and/or the speed of convergence of the agents. We also see that policies with fixed high
β (or equivalently, a large observable norm β∥Oa∥) tend to have a poor learning performance, likely due
to their lack of exploration in the RL environments.

Finally, note that all the numerical simulations performed here did not include any source of noise in the
PQC evaluations. It would be an interesting research direction to assess the influence of (simulated or
hardware-induced) noise on the learning performance of PQC agents.

© NEASQC Consortium Partners. All rights reserved. Page 13 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

5. Quantum advantage of PQC agents in RL environments

The proof-of-concept experiments of the previous section show that our PQC agents can learn in basic
classical environments, where they achieve comparable performance to standard DNN policies. This ob-
servation naturally raises the question of whether there exist RL environments where PQC policies can
provide a learning advantage over standard classical policies. In this section, we answer this question in
the affirmative by constructing: a) environments with a provable separation in learning performance be-
tween quantum and any classical (polynomial-time) learners, and b) environments where our PQC policies
of Sec. 4 show an empirical learning advantage over standard DNN policies.

5.1. Quantum advantage of PQC policies over any classical learner

In this subsection, we construct RL environments with theoretical guarantees of separation between quan-
tum and classical learning agents. These constructions are predominantly based on the recent work of Liu
et al. (Y. Liu et al., 2021), which defines a classification task out of the discrete logarithm problem (DLP),
i.e., the problem solved in the seminal work of Shor (Shor, 1999). In broad strokes, this task can be viewed
as an encryption of an easy-to-learn problem. For an “un-encrypted” version, one defines a labeling fs of
integers between 0 and p − 2 (for a large prime p), where the integers are labeled positively if and only if
they lie in the segment [s, s + (p − 3)/2] (mod p − 1). Since this labeling is linearly separable, the concept
class {fs}s is then easy to learn. To make it hard, the input integers x (now between 1 and p − 1) are
first encrypted using modular exponentiation, i.e., the secure operation performed in the Diffie–Hellman key
exchange protocol. In the encrypted problem, the logarithm of the input integer logg(x) (for a generator g
of Z∗

p, see Appendix A.6) hence determines the label of x. Without the ability to decrypt by solving DLP,
which is widely believed to be classically intractable, the numbers appear randomly labeled. Moreover, Liu
et al. show that achieving non-trivial labeling accuracy 1/2 + 1/poly(n) (for n = log(p), i.e., slightly better
than random guessing) with a classical polynomial-time algorithm using poly(n) examples would lead to an
efficient classical algorithm that solves DLP (Y. Liu et al., 2021). In contrast, the same authors construct a
family of quantum learners based on Shor’s algorithm, that can achieve a labeling accuracy larger than 0.99
with high probability.

5.1.1. SL-DLP

Our objective is to show that analogous separations between classical and quantum learners can be es-
tablished for RL environments, in terms of their attainable value functions. We start by pointing out that
supervised learning (SL) tasks (and so the classification problem of Liu et al.) can be trivially embedded
into RL environments (Dunjko et al., 2017): for a given concept fs, the states x are datapoints, an action a
is an agent’s guess on the label of x, an immediate reward specifies if it was correct (i.e., fs(x) = a), and
subsequent states are chosen uniformly at random. In such settings, the value function is trivially related
to the testing accuracy of the SL problem, yielding a direct reduction of the separation result of Liu et al.
(Y. Liu et al., 2021) to an RL setting. We call this family of environments SL-DLP.

5.1.2. Cliffwalk-DLP

In the above described SL-DLP construction, we made the environment fully random in order to simulate
the process of obtaining i.i.d. samples in an SL setting. It is an interesting question whether similar results
can be obtained for environments that are less random, and endowed with temporal structure, which is
characteristic of RL. In our second family of environments (Cliffwalk-DLP), we supplement the SL-DLP
construction with next-state transitions inspired by the textbook “cliff walking” environment of Sutton & Barto
(Sutton, Barto, et al., 1998): all states are ordered in a chain and some actions of the agent can lead to
immediate episode termination. We keep however stochasticity in the environment by allowing next states
to be uniformly sampled, with a certain probability δ (common in RL to ensure that an agent is not simply
memorizing a correct sequence of actions). This allows us to show that, as long as sufficient randomness
is provided, we still have a simple classical-quantum separation.

© NEASQC Consortium Partners. All rights reserved. Page 14 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

5.1.3. Deterministic-DLP

In the two families constructed above, each environment instance provided the randomness needed for a
reduction from the SL problem. This brings us to the question of whether separations are also possible
for fully deterministic environments. In this case, it is clear that for any given environment, there exists an
efficient classical agent which performs perfectly over any polynomial horizon (a lookup-table will do). How-
ever, we show in our third family of environments (Deterministic-DLP) that a separation can still be attained
by moving the randomness to the choice of the environment itself: assuming an efficient classical agent is
successful in most of exponentially-many randomly generated (but otherwise deterministic) environments,
implies the existence of a classical efficient algorithm for DLP.

We summarize our results in the following theorem, detailed and proven in Appendices A.7 through A.9.

Theorem 1. There exist families of reinforcement learning environments which are: i) fully random (i.e.,
subsequent states are independent from the previous state and action); ii) partially random (i.e., the pre-
vious moves determine subsequent states, except with a probability δ at least 0.86 where they are chosen
uniformly at random), and iii) fully deterministic; such that there exists a separation in the value functions
achievable by a given quantum polynomial-time agent and any classical polynomial-time agent. Specifi-
cally, the value of the initial state for the quantum agent Vq(s0) is ε−close to the optimal value function (for
a chosen ε, and with probability above 2/3). Further, if there exists a classical efficient learning agent that
achieves a value Vc(s0) better than Vrand(s0) + ε′ (for a chosen ε′, and with probability above 0.845), then
there exists a classical efficient algorithm to solve DLP. Finally, we have Vq(s0) − Vc(s0) larger than some
constant, which depends on the details of the environment.

The remaining point we need to address here is that the learning agents of Liu et al. do not rely on PQCs
but rather support vector machines (SVMs) based on quantum kernels (Havlicek et al., 2019; Schuld &
Killoran, 2019). Nonetheless, using a connection between these quantum SVMs and PQCs (Schuld &
Killoran, 2019), we construct PQC policies which are as powerful in solving the DLP environments as the
agents of Liu et al. (even under similar noise considerations). We state our result in the following informal
theorem, that we re-state formally, along with the details of our construction in Appendices A.10 and A.11.

Theorem 2 (informal version). Using a training set of size polynomial in n = log(p) and a number of (noisy)
quantum circuit evaluations also polynomial in n, we can train a PQC classifier on the DLP task of Liu et
al. of size n that achieves a testing accuracy arbitrarily close to optimal, with high probability. This PQC
classifier can in turn be used to construct close-to-optimal quantum agents in our DLP environments, as
prescribed by Theorem 1.

The above cannot be achieved using just a classical computer in polynomial time.

5.2. Quantum advantage of PQC policies over DNN policies

While the DLP environments establish a proof of the learning advantage PQC policies can have in theory,
these environments remain extremely contrived and artificial. They are based on algebraic properties that
agents must explicitly decrypt in order to perform well. Instead, we would like to consider environments that
are less tailored to a specific decryption function, which would allow more general agents to learn. To do
this, we take inspiration from the work of Havlı́ček et al. (Havlicek et al., 2019), who, in order to test their
PQC classifiers, define a learning task generated by similar quantum circuits.

5.3. PQC-generated environments

We generate our RL environments out of random RAW-PQCs. To do so, we start by uniformly sampling
a RAW-PQC that uses the alternating-layer architecture of Fig. 2 for n = 2 qubits and depth Denc = 4.
We use this RAW-PQC to generate a labeling function f(s) by assigning a label +1 to the datapoints s in
[0, 2π]2 for which ⟨ZZ⟩s,θ ≥ 0 and a label −1 otherwise. We create a dataset S of 10 datapoints per label by
uniformly sampling points in [0, 2π]2 for which | ⟨ZZ⟩s,θ | ≥ ∆

2 = 0.15. This dataset allows us to define two
RL environments, similar to the SL-DLP and Cliffwalk-DLP environments of Sec. 5.1:

© NEASQC Consortium Partners. All rights reserved. Page 15 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

0 π 2π0

π

2π (a) PQC labeling function

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

(b) SL-PQC

softmax-PQC
DNN

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 (c) Cliffwalk-PQC

softmax-PQC
DNN

Figure 5: Numerical evidence of the advantage of PQC policies over DNN policies in
PQC-generated environments. (a) Labeling function and training data used for both RL environments.

The data labels (red for +1 label and blue for −1 label) are generated using a RAW-PQC of depth Denc = 4
with a margin ∆ = 0.3 (white areas). The training samples are uniformly sampled from the blue and red

regions, and arrows indicate the rewarded path of the cliffwalk environment. (b) and (c) The learning
curves (20 agents per curve) of randomly-initialized SOFTMAX-PQC agents and DNN agents in RL
environments where input states are (b) uniformly sampled from the dataset and (c) follow cliffwalk

dynamics. Each curve is temporally averaged with a time window of 10 episodes.

• SL-PQC: this degenerate RL environment encodes a classification task in an episodic RL environment:
at each interaction step of a 20-step episode, a sample state s is uniformly sampled from the dataset S,
the agent assigns a label a = ±1 to it and receives a reward δf(s),a = ±1.

• Cliffwalk-PQC: this environment essentially adds a temporal structure to SL-PQC: each episode starts
from a fixed state s0 ∈ S, and if an agent assigns the correct label to a state si, 0 ≤ i ≤ 19, it moves to a
fixed state si+1 and receives a +1 reward, otherwise the episode is instantly terminated and the agent
gets a −1 reward. Reaching s20 also causes termination.

5.4. Performance comparison

Having defined our PQC-generated environments, we now evaluate the performance of SOFTMAX-PQC
and DNN policies in these tasks. The particular models we consider are SOFTMAX-PQCs with PQCs
sampled from the same family as that of the RAW-PQCs generating the environments (but with re-initialized
parameters θ), and DNNs using Rectified Linear Units (ReLUs) in their hidden layers. In our hyperparameter
search, we evaluated the performance of DNNs with a wide range of depths (number of hidden layers
between 2 to 10) and widths (number of units per hidden layer between 8 and 64), and kept the architecture
with the best average performance (depth 4, width 16).

Despite this hyperparametrization, we find (see Fig. 5, and Fig. 9 in Appendix A.5 for different environ-
ment instances) that the performance of DNN policies on these tasks remains limited compared to that of
SOFTMAX-PQCs, that learn close-to-optimal policies on both tasks. Moreover, we observe that the sep-
aration in performance gets boosted by the cliffwalk temporal structure. This is likely do to the increased
complexity of this task, as, in order to move farther in the cliffwalk, the policy family should allow learning
new labels without “forgetting” the labels of earlier states. In these particular case studies, the SOFTMAX-
PQC policies exhibited sufficient flexibility in this sense, whereas the DNNs we considered did not (see
Appendix A.5 for a visualization of these policies). Note that these results do not reflect the difficulty of our
tasks at the sizes we consider (a look-up table would perform optimally) but rather highlight the inefficacy
of these DNNs at learning PQC functions.

© NEASQC Consortium Partners. All rights reserved. Page 16 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

6. Applicability to inventory management and other industrial problems

The main objective of task T5.1 in this phase of the project was to develop quantum machine learning ma-
chinery for reinforcement learning which: i) may harbour a capacity for quantum advantage, ii) is compatible
with current approaches to work under near-term quantum computing restrictions and iii) is general enough
to be in later stages applied to instances of inventory management and other related industrial problems in
simulations and, if possible, on real devices.

With this deliverable we achieve this task. We have provided a rigorous proof for the capacity for quantum
advantage, the overall paradimg is within the variational circuit framework, and the method is policy gradient
based, meaning it can work with continuous and discrete input domains.

With regards to the specific problem of inventory management, it constitutes a sequential decision problem
where the actions of an agent control the re-stocking of an inventory based on previous supply-and-demand
experiences. It is a critical problem in modern business, widely acknowledged as hard (as it also involves
dealing with temporal correlations and uncertainties), and may thus benefit from advanced reinforcement
learning solutions. Prior work in the classical domain has paved the way for the application of a RL algo-
rithm. For example, references (Boute et al., 2022; Geevers, 2020; Gijsbrechts et al., 2021) constitute just
a few of the available studies documenting and benchmarking how RL machinery of the type developed
here can be applied to the problem. In the remainder of this project we will make further steps to im-
plement these methods and apply them to (perhaps simplified) industrially-relevant instances of inventory
management problems.

© NEASQC Consortium Partners. All rights reserved. Page 17 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

7. Conclusions

In this work, we have investigated the design of quantum RL agents based on PQCs. We proposed several
constructions and showed the impact of certain design choices on learning performance. In particular, we
introduced the SOFTMAX-PQC model, where a softmax policy is computed from expectation values of a
PQC with both trainable observable weights and input scaling parameters. These added features to stan-
dard PQCs used in ML (e.g., as quantum classifiers) enhance both the expressivity and flexibility of PQC
policies, which allows them to achieve a learning performance on benchmarking environments comparable
to that of standard DNNs. We additionally demonstrated the existence of task environments, constructed
out of PQCs, that are very natural for PQC agents, but on which DNN agents have a poor performance. To
strengthen this result, we constructed several RL environments, each with a different degree of degeneracy
(i.e., closeness to a supervised learning task), where we showed a rigorous separation between a class
of PQC agents and any classical learner, based on the widely-believed classical hardness of the discrete
logarithm problem. We believe that our results constitute strides toward a practical quantum advantage in
RL using near-term quantum devices, and form the basis to address the problem inventory management,
which is the objective of our use case.

© NEASQC Consortium Partners. All rights reserved. Page 18 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

List of Figures

Figure 1.: Training parametrized quantum policies for reinforcement learning. We con-
sider a quantum-enhanced RL scenario where a hybrid quantum-classical agent
learns by interacting with a classical environment. For each state s it perceives, the
agent samples its next action a from its policy πθ(a|s) and perceives feedback on its
behavior in the form of a reward r. For our hybrid agents, the policy πθ is specified
by a PQC (see Def. 1) evaluated (along with the gradient ∇θ log πθ) on a quantum
processing unit (QPU). The training of this policy is performed by a classical learn-
ing algorithm, such as the REINFORCE algorithm (see Alg. 1), which uses sample
interactions and policy gradients to update the policy parameters θ. 7

Figure 2.: PQC architecture for n = 2 qubits and depth Denc = 1. This architecture is
composed of alternating layers of encoding unitaries Uenc(s,λi) taking as input a
state vector s = (s0, . . . , sd−1) and scaling parameters λi (part of a vector λ ∈ R|λ|

of dimension |λ|), and variational unitaries Uvar(ϕi) taking as input rotation angles
ϕi (part of a vector ϕ ∈ [0, 2π]|ϕ| of dimension |ϕ|). 9

Figure 3.: Numerical evidence of the advantage of SOFTMAX-PQC over RAW-PQC in
benchmarking environments. The learning curves (20 agents per curve) of
randomly-initialized SOFTMAX-PQC agents (green curves) and RAW-PQC agents
(red curves) in OpenAI Gym environments: CartPole-v1, MountainCar-v0, and
Acrobot-v1. Each curve is temporally averaged with a time window of 10 episodes
(complete “games” until the agent fails). All agents have been trained using the RE-
INFORCE algorithm (see Alg. 1), with value-function baselines for the MountainCar
and Acrobot environments. 12

Figure 4.: Influence of the model architecture for SOFTMAX-PQC agents. The blue curves
in each plot correspond to the learning curves from Fig. 3 and are taken as a ref-
erence. Other curves highlight the influence of individual hyperparameters. For
RAW-PQC agents, see Appendix A.5. 12

Figure 5.: Numerical evidence of the advantage of PQC policies over DNN policies in
PQC-generated environments. (a) Labeling function and training data used for
both RL environments. The data labels (red for +1 label and blue for −1 label)
are generated using a RAW-PQC of depth Denc = 4 with a margin ∆ = 0.3 (white
areas). The training samples are uniformly sampled from the blue and red regions,
and arrows indicate the rewarded path of the cliffwalk environment. (b) and (c) The
learning curves (20 agents per curve) of randomly-initialized SOFTMAX-PQC agents
and DNN agents in RL environments where input states are (b) uniformly sampled
from the dataset and (c) follow cliffwalk dynamics. Each curve is temporally averaged
with a time window of 10 episodes. 16

Figure 6.: Influence of the model architecture for RAW-PQC agents. The blue curves in
each plot correspond to the learning curves from Fig. 3 and are taken as a reference. 29

Figure 7.: Performance of our SOFTMAX-PQC agents on the CognitiveRadio environment
proposed in Ref. (Chen et al., 2020). Average performance of 20 agents for system
sizes (and number of qubits) n = 2 to 5. 31

Figure 8.: Prototypical unnormalized policies learned by SOFTMAX-PQC agents and DNN
agents in CartPole. Due to the 4 dimensions of the state space in CartPole, we
represent the unnormalized policies learned by (a) SOFTMAX-PQC agents and (b)
DNN agents on 3 subspaces of the state space by fixing unrepresented dimensions
to 0 in each plot. To get the probability of the agent pushing the cart to the left, one
should apply the logistic function (i.e., 2-dimensional softmax) 1/(1+exp(−z)) to the
z-axis values of each plot. 32

© NEASQC Consortium Partners. All rights reserved. Page 19 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

Figure 9.: Different random initializations of PQC-generated environments and their as-
sociated learning curves. See Fig. 5 for details. The additional learning curves
(20 agents per curve) of randomly-initialized RAW-PQC agents highlight the hard-
ness of these environments for PQC policies drawn from the same family as the
environment-generating PQCs. 33

Figure 10.: Prototypical policies learned by SOFTMAX-PQC agents and DNN agents in
PQC-generated environments. All policies are associated to the labeling func-
tion of Fig. 9.d. Policies (a) and (b) are learned in the SL-PQC environment while
policies (c) and (d) are learned in the Cliffwalk-PQC environment. 33

© NEASQC Consortium Partners. All rights reserved. Page 20 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

List of Tables

Table 1.: Environments specifications. The reward function of Mountaincar-v0 has been mod-
ified compared to the standard specification of OpenAI Gym (Brockman et al., 2016),
similarly to Ref. (Duan et al., 2016). 28

Table 2.: Hyperparmeters 1/2. For PQC policies, we choose 3 distinct learning rates
[αϕ, αw, αλ] for rotation angles ϕ, observable weights w and scaling parameters λ,
respectively. For SOFTMAX-PQCs, we take a linear annealing schedule for the inverse
temperature parameter β starting from 1 and ending up in the final β. The batch size
is counted in number of episodes used to evaluate the gradient of the value function.
Depth indicates the number of encoding layers Denc for PQC policies, or the number of
hidden layers for a DNN policy. Width corresponds to the number of qubits n on which
acts a PQC (also equal to the dimension d of the environment’s state space), or the
number of units per hidden layer for a DNN. 29

Table 3.: Hyperparmeters 2/2. We call entangling layer a layer of 2-qubit gates in the PQC.
Circular and all-to-all topologies of entangling layers are equivalent for n = 2 qubits, so
we call them one-to-one in that case. When trained, entangling layers are composed
of Rzz = e−iθ(Z⊗Z)/2 rotations, otherwise, they are composed of Ctrl-Z gates. For
policies with 2 actions, the same observable, up to a sign change, is used for both
actions. Zi refers to a Pauli-Z observable acting on qubit i, while Pi..j indicates a
projection on basis states i to j. In the experiments of Sec. 4.2, when the weights of the
SOFTMAX-PQC are kept fixed, the observables used for MountainCar-v0 and Acrobot-
v1 are [Z0, Z0Z1, Z1], and those used for CartPole-v1 are [Z0Z1Z2Z3,−Z0Z1Z2Z3].
The different number of parameters in a given row correspond to the different depths
in that same row in Table 2. 30

beep

© NEASQC Consortium Partners. All rights reserved. Page 21 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

Bibliography

Benedetti, M., Lloyd, E., Sack, S., & Fiorentini, M. (2019). Parameterized quantum circuits as machine
learning models. Quantum Science and Technology, 4(4), 043001.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme,
S., Hesse, C., et al. (2019). Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680.

Bharti, K., Cervera-Lierta, A., Kyaw, T. H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Heimonen,
H., Kottmann, J. S., Menke, T., et al. (2021). Noisy intermediate-scale quantum (nisq) algorithms.
arXiv preprint arXiv:2101.08448.

Blum, M., & Micali, S. (1984). How to generate cryptographically strong sequences of pseudorandom bits.
SIAM journal on Computing, 13(4), 850–864.

Boute, R. N., Gijsbrechts, J., van Jaarsveld, W., & Vanvuchelen, N. (2022). Deep reinforcement learning
for inventory control: A roadmap. European Journal of Operational Research, 298(2), 401–412.
https://doi.org/https://doi.org/10.1016/j.ejor.2021.07.016

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., & Zaremba, W. (2016).
Openai gym. arXiv preprint arXiv:1606.01540.

Broughton, M., Verdon, G., McCourt, T., Martinez, A. J., Yoo, J. H., Isakov, S. V., Massey, P., Niu, M. Y.,
Halavati, R., Peters, E., et al. (2020). Tensorflow quantum: A software framework for quantum ma-
chine learning. arXiv preprint arXiv:2003.02989.

Chen, S. Y.-C., Yang, C.-H. H., Qi, J., Chen, P.-Y., Ma, X., & Goan, H.-S. (2020). Variational quantum circuits
for deep reinforcement learning. IEEE Access, 8, 141007–141024.

Crawford, D., Levit, A., Ghadermarzy, N., Oberoi, J. S., & Ronagh, P. (2018). Reinforcement learning using
quantum boltzmann machines. Quantum Information & Computation, 18(1-2), 51–74.

De Wolf, R. (2019). Quantum computing: Lecture notes. arXiv preprint arXiv:1907.09415.
Dong, D., Chen, C., Li, H., & Tarn, T.-J. (2008). Quantum reinforcement learning. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), 38(5), 1207–1220.
Du, Y., Hsieh, M.-H., Liu, T., & Tao, D. (2020). Expressive power of parametrized quantum circuits. Physical

Review Research, 2(3), 033125.
Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016). Benchmarking deep reinforcement

learning for continuous control. International conference on machine learning, 1329–1338.
Dunjko, V., Liu, Y.-K., Wu, X., & Taylor, J. M. (2017). Exponential improvements for quantum-accessible

reinforcement learning. arXiv preprint arXiv:1710.11160.
Dunjko, V., Taylor, J. M., & Briegel, H. J. (2016). Quantum-enhanced machine learning. Physical review

letters, 117 (13), 130501.
Farhi, E., & Neven, H. (2018). Classification with quantum neural networks on near term processors. arXiv

preprint arXiv:1802.06002.
Geevers, K. (2020). Deep reinforcement learning in inventory management. http://essay.utwente.nl/85432/
Gijsbrechts, J., Boute, R. N., Van Mieghem, J. A., & Zhang, D. (2021). Can deep reinforcement learning

improve inventory management? performance on dual sourcing, lost sales and multi-echelon prob-
lems. Manufacturing Service Operations Management, 298(2), 401–412. https : / / doi . org / http :
//dx.doi.org/10.2139/ssrn.3302881

Google. (2018). Cirq: A python framework for creating, editing, and invoking noisy intermediate scale quan-
tum circuits.

Goto, T., Tran, Q. H., & Nakajima, K. (2021). Universal approximation property of quantum machine learning
models in quantum-enhanced feature spaces. Physical Review Letters, 127 (9), 090506.

Greensmith, E., Bartlett, P. L., & Baxter, J. (2004). Variance reduction techniques for gradient estimates in
reinforcement learning. Journal of Machine Learning Research, 5(Nov), 1471–1530.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, 212–219.

Havlicek, V., Corcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., & Gambetta, J. M. (2019).
Supervised learning with quantum-enhanced feature spaces. Nature, 567 (7747), 209–212.

Huang, H.-Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., & McClean, J. R. (2021).
Power of data in quantum machine learning. Nature communications, 12(1), 1–9.

Jerbi, S., Trenkwalder, L. M., Poulsen Nautrup, H., Briegel, H. J., & Dunjko, V. (2021). Quantum enhance-
ments for deep reinforcement learning in large spaces. PRX Quantum, 2, 010328.

© NEASQC Consortium Partners. All rights reserved. Page 22 of 45

https://doi.org/https://doi.org/10.1016/j.ejor.2021.07.016
http://essay.utwente.nl/85432/
https://doi.org/http://dx.doi.org/10.2139/ssrn.3302881
https://doi.org/http://dx.doi.org/10.2139/ssrn.3302881

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

Jerbi et al. (2021). Parametrized quantum circuits for reinforcement learning. https://www.tensorflow.org/
quantum/tutorials/quantum reinforcement learning

Johnson, M. W., Amin, M. H., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A. J.,
Johansson, J., Bunyk, P., et al. (2011). Quantum annealing with manufactured spins. Nature,
473(7346), 194–198.

Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J. M., & Gambetta, J. M. (2017).
Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Na-
ture, 549(7671), 242–246.

Liu, J.-G., & Wang, L. (2018). Differentiable learning of quantum circuit born machines. Physical Review A,
98(6), 062324.

Liu, Y., Arunachalam, S., & Temme, K. (2021). A rigorous and robust quantum speed-up in supervised
machine learning. Nature Physics, 17 (9), 1013–1017.

Lockwood, O., & Si, M. (2020). Reinforcement learning with quantum variational circuit. Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, 16(1), 245–251.

Mirowski, P., Grimes, M., Malinowski, M., Hermann, K. M., Anderson, K., Teplyashin, D., Simonyan, K.,
Zisserman, A., Hadsell, R., et al. (2018). Learning to navigate in cities without a map. Advances in
Neural Information Processing Systems, 31, 2419–2430.

Mitarai, K., Negoro, M., Kitagawa, M., & Fujii, K. (2018). Quantum circuit learning. Physical Review A, 98(3),
032309.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement
learning. nature, 518(7540), 529–533.

Neukart, F., Von Dollen, D., Seidel, C., & Compostella, G. (2018). Quantum-enhanced reinforcement learn-
ing for finite-episode games with discrete state spaces. Frontiers in Physics, 5, 71.

Nielsen, M. A., & Chuang, I. L. (2000). Quantum computation and quantum information. Cambridge Univer-
sity Press.

OpenAI. (2020). Leaderboard of openai gym environments.
Otterbach, J., Manenti, R., Alidoust, N., Bestwick, A., Block, M., Bloom, B., Caldwell, S., Didier, N., Fried,

E. S., Hong, S., et al. (2017). Unsupervised machine learning on a hybrid quantum computer. arXiv
preprint arXiv:1712.05771.

Paparo, G. D., Dunjko, V., Makmal, A., Martin-Delgado, M. A., & Briegel, H. J. (2014). Quantum speedup for
active learning agents. Physical Review X, 4(3), 031002.

Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., & Latorre, J. I. (2020). Data re-uploading for a universal
quantum classifier. Quantum, 4, 226.

Pérez-Salinas, A., López-Núñez, D., Garcıéa-Sáez, A., Forn-Dıéaz, P., & Latorre, J. I. (2021). One qubit as
a universal approximant. Physical Review A, 104(1), 012405.

Peters, E., Caldeira, J., Ho, A., Leichenauer, S., Mohseni, M., Neven, H., Spentzouris, P., Strain, D., &
Perdue, G. N. (2021). Machine learning of high dimensional data on a noisy quantum processor.
arXiv preprint arXiv:2101.09581.

Preskill, J. (2018). Quantum computing in the nisq era and beyond. Quantum, 2, 79.
Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., & Killoran, N. (2019). Evaluating analytic gradients on

quantum hardware. Physical Review A, 99(3), 032331.
Schuld, M., Bocharov, A., Svore, K. M., & Wiebe, N. (2020). Circuit-centric quantum classifiers. Physical

Review A, 101(3), 032308.
Schuld, M., & Killoran, N. (2019). Quantum machine learning in feature hilbert spaces. Physical review

letters, 122(4), 040504.
Schuld, M., Sweke, R., & Meyer, J. J. (2021). Effect of data encoding on the expressive power of variational

quantum-machine-learning models. Physical Review A, 103(3), 032430.
Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum

computer. SIAM review, 41(2), 303–332.
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,

Bolton, A., et al. (2017). Mastering the game of go without human knowledge. Nature, 550(7676),
354.

Skolik, A., Jerbi, S., & Dunjko, V. (2021). Quantum agents in the gym: A variational quantum algorithm for
deep q-learning. arXiv preprint arXiv:2103.15084.

Sutton, R. S., Barto, A. G. et al. (1998). Reinforcement learning: An introduction.

© NEASQC Consortium Partners. All rights reserved. Page 23 of 45

https://www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning
https://www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

Suzuki, Y., Kawase, Y., Masumura, Y., Hiraga, Y., Nakadai, M., Chen, J., Nakanishi, K. M., Mitarai, K., Imai,
R., Tamiya, S., et al. (2020). Qulacs: A fast and versatile quantum circuit simulator for research
purpose. arXiv preprint arXiv:2011.13524.

Sweke, R., Seifert, J.-P., Hangleiter, D., & Eisert, J. (2021). On the quantum versus classical learnability of
discrete distributions. Quantum, 5, 417.

Weng, L. (2018). Policy gradient algorithms.
Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learn-

ing. Machine learning, 8(3-4), 229–256.
Wu, S., Jin, S., Wen, D., & Wang, X. (2020). Quantum reinforcement learning in continuous action space.

arXiv preprint arXiv:2012.10711.
Zhu, D., Linke, N. M., Benedetti, M., Landsman, K. A., Nguyen, N. H., Alderete, C. H., Perdomo-Ortiz, A.,

Korda, N., Garfoot, A., Brecque, C., et al. (2019). Training of quantum circuits on a hybrid quantum
computer. Science advances, 5(10), eaaw9918.

© NEASQC Consortium Partners. All rights reserved. Page 24 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

A. Appendix

Outline The Supplementary Material is organized as follows. In Appendix A.1, we derive the expression of
the log-policy gradient for SOFTMAX-PQCs presented in Lemma 1. In Appendix A.2, we prove Lemmas 2
and 3 on the efficient policy sampling and the efficient estimation of the log-policy gradient for SOFTMAX-
PQC policies. In Appendix A.3, we clarify the role of the trainable observables in our definition of SOFTMAX-
PQC policies. In Appendix A.4, we give a specification of the environments considered in our numerical
simulations, as well the hyperparameters we used to train all RL agents. In Appendix A.5, we present
additional plots and numerical simulations that help our understanding and visualization of PQC polices.
In Appendix A.6, we give a succinct description of the DLP classification task of Liu et al. In Appendices
A.7 to A.9, we prove our main Theorem 1 on learning separations in DLP environments. In appendix A.10,
we construct PQC agents with provable guarantees of solving the DLP environments, stated and proven in
Theorem 3.

A.1. Derivation of the log-policy gradient

For a SOFTMAX-PQC defined in Def. 1, we have:

∇θ log πθ(a|s) = ∇θ log e
β⟨Oa⟩s,θ −∇θ log

∑

a′

eβ⟨Oa′ ⟩s,θ

= β∇θ ⟨Oa⟩s,θ −
∑

a′

eβ⟨Oa′ ⟩s,θβ∇θ ⟨Oa′⟩s,θ∑
a′′ e

β⟨Oa′′ ⟩s,θ

= β

(
∇θ ⟨Oa⟩s,θ −

∑

a′

πθ(a
′|s)∇θ ⟨Oa′⟩s,θ

)
.

A.2. Efficient implementation of SOFTMAX-PQC policies

A.2.1. Efficient approximate policy sampling

In this section we prove Lemma 2, restated below:

Lemma 2. For a SOFTMAX-PQC policy πθ(a—s) defined by a unitary U(s,θ) and observables Oa, call
⟨Õa⟩s,θ approximations of the true expectation values ⟨Oa⟩s,θ with at most ε additive error. Then the ap-
proximate policy π̃θ(a|s) = softmaxβ(⟨Õa⟩s,θ) has total variation distance O(βε) to πθ = softmaxβ(⟨Oa⟩s,θ).
Since expectation values can be efficiently estimated to additive error on a quantum computer, this implies
efficient approximate sampling from πθ.

Proof. Consider |A| estimates
{
⟨Õa⟩s,θ

}
1≤a≤|A|

, obtained all to additive error ε, i.e.,

∣∣∣⟨Õa⟩s,θ − ⟨Oa⟩s,θ
∣∣∣ ≤ ε, ∀a

and used to compute an approximate policy

π̃θ(a|s) =
eβ⟨Õa⟩s,θ

∑
a′ e

β⟨Õa′ ⟩s,θ
.

© NEASQC Consortium Partners. All rights reserved. Page 25 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

Due to the monoticity of the exponential, we have, for all a:

e−βεeβ⟨Oa⟩s,θ

eβε
∑
a′ e

β⟨Oa′ ⟩s,θ
≤ eβ⟨Õa⟩s,θ
∑
a′ e

β⟨Õa′ ⟩s,θ
≤ eβεeβ⟨Oa⟩s,θ

e−βε
∑
a′ e

β⟨Oa′ ⟩s,θ

⇔ e−2βεπθ(a|s) ≤ π̃θ(a|s) ≤ e2βεπθ(a|s). (A.1)

Hence,

TV(πθ, π̃θ) =
∑

a

|π̃θ(a|s)− πθ(a|s)|

≤
∑

a

∣∣e2βεπθ(a|s)− e−2βεπθ(a|s)
∣∣

=
∑

a

∣∣e2βε − e−2βε
∣∣πθ(a|s)

= 2|sinh(2βε)| =
βε→0+

4βε+O
(
(βε)3

)
,

where we used {π̃θ(a|s), πθ(a|s)} ∈ [e−2βεπθ(a|s), e2βεπθ(a|s)] in the first inequality.

A.2.2. Efficient estimation of the log-policy gradient

Using a similar approach to the proof of the previous section, we show the following lemma:

Lemma 3. For a SOFTMAX-PQC policy πθ defined by a unitary U(s,θ) and observables Oa, call ∂i⟨Õa⟩s,θ
approximations of the true derivatives ∂i⟨Oa⟩s,θ with at most ε additive error, and ⟨Õa⟩s,θ approximations of
the true expectation values ⟨Oa⟩s,θ with at most ε′ = ε(4βmaxa ∥Oa∥)−1 additive error. Then the approx-
imate log-policy gradient ∇θ log π̃θ(a|s) = β

(
∇θ⟨Õa⟩s,θ −

∑
a′ π̃θ(a

′|s)∇θ⟨Õa′⟩s,θ
)

has distance O(βε) to
∇θ log πθ(a|s) in ℓ∞-norm.

Proof. Call xa,i = πθ(a|s)∂i⟨Oa⟩s,θ and x̃a,i = π̃θ(a|s)∂i⟨Õa⟩s,θ, such that:

∂i log π̃θ(a|s) = β
(
∂i⟨Õa⟩s,θ −

∑
a′
x̃a′,i

)
.

and similarly for ∂i log πθ(a|s).
Using Eq. (A.1) and that |∂i⟨Oa⟩s,θ − ∂i⟨Õa⟩s,θ| ≤ ε, ∀a, i, we have:

e−2βε′πθ(a|s) (∂i⟨Oa⟩s,θ − ε) ≤ π̃θ(a|s)∂i⟨Õa⟩s,θ ≤ e2βε
′
πθ(a|s) (∂i⟨Oa⟩s,θ + ε)

⇒ e−2βε′

(∑

a

xa,i − ε
)
≤

∑

a

x̃a,i ≤ e2βε′
(∑

a

xa,i + ε

)

where we summed the first inequalities over all a. Hence:
∣∣∣∣∣
∑

a

xa,i −
∑

a

x̃a,i

∣∣∣∣∣ ≤
∣∣∣∣∣e

2βε′

(∑

a

xa,i + ε

)
− e−2βε′

(∑

a

xa,i − ε
)∣∣∣∣∣

≤
∣∣∣∣∣(e

2βε′ + e−2βε′)ε+ (e2βε
′ − e−2βε′)

∑

a

xa,i

∣∣∣∣∣

≤
∣∣∣∣∣2 cosh(2βε

′)ε+ 2 sinh(2βε′)
∑

a

xa,i

∣∣∣∣∣

=
βε′→0+

∣∣∣∣∣ε+ 4βε′
∑

a

xa,i +O
(
(βε′)2ε

)
+O

(
(βε′)3

)
∣∣∣∣∣. (A.2)

© NEASQC Consortium Partners. All rights reserved. Page 26 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

We also have ∣∣∣∣∣
∑

a

xa,i

∣∣∣∣∣ =
∣∣∣∣∣
∑

a

πθ(a|s)∂i⟨Oa⟩s,θ
∣∣∣∣∣ ≤ max

a,i
|∂i⟨Oa⟩s,θ| ≤ max

a
∥Oa∥

where the last inequality derives from the parameter-shift rule (Eq. (3.5)) formulation of ∂i ⟨Oa⟩ for deriva-
tives with respect to rotation angles of the PQC and the fact that ∂i ⟨Oa⟩ are simply expectation values ⟨Ha,i⟩
with ∥Ha,i∥ ≤ ∥Oa∥ for observable weights.
Applying the triangular inequality on the right side of Eq. (A.2), we hence have:

∣∣∣∣∣
∑

a

xa,i −
∑

a

x̃a,i

∣∣∣∣∣ ≤
βε′→0+

ε+ 4βε′ max
a
∥Oa∥+O

(
(βε′)2ε

)
+O

(
(βε′)3

)
.

For ε′ = ε(4βmaxa ∥Oa∥)−1 and using |∂i⟨Oa⟩s,θ − ∂i⟨Õa⟩s,θ| ≤ ε,∀a, i, we finally have:

|∂i log πθ(a|s)− ∂i log π̃θ(a|s)| ≤
βε→0+

3βε+O(βε3) ∀i

A.3. The role of trainable observables in SOFTMAX-PQC policies

In Sec. 3.2, we presented a general definition of the SOFTMAX-PQC observables Oa =
∑
i wa,iHa,i in

terms of an arbitrary weighted sum of Hermitian matrices Ha,i. In this appendix, we clarify the role of such
a decomposition.

A.3.1. Training the eigenbasis and the eigenvalues of an observable

Consider a projective measurement defined by an observable O =
∑
m αmPm, to be performed on a

quantum state of the form V (θ) |ψ⟩, where V (θ) denotes a (variational) unitary. Equivalently, one could
also measure the observable V †(θ)OV (θ) on the state |ψ⟩. Indeed, these two measurements have the
same probabilities p(m) = ⟨ψ|V †(θ)PmV (θ) |ψ⟩ of measuring any outcome αm. Note also that the possible
outcomes αm (i.e., the eigenvalues of the observable O) remain unchanged.

From this observation, it is then clear that, by defining an observable O =
∑
m αmPm using projec-

tions Pm on each computational basis state of the Hilbert space H and arbitrary eigenvalues αm ∈ R,
the addition of a universal variational unitary V (θ) prior to the measurement results in a family of observ-
ables {V †(θ)OV (θ)}θ,α that covers all possible Hermitian observables in H. Moreover, in this setting, the
parameters that define the eigenbasis of the observables V †(θ)OV (θ) (i.e., θ) are completely distinct from
the parameters that define their eigenvalues (i.e., α). This is not the case for observables that are expressed
as linear combinations of non-commuting matrices, for instance.

In our simulations, we consider restricted families of observables. In particular, we take the Hermitian ma-
trices Ha,i to be diagonal in the computational basis (e.g., tensor products of Pauli-Z matrices), which
means they, as well as Oa, can be decomposed in terms of projections on the computational basis
states. However, the resulting eigenvalues α that we obtain from this decomposition are in our case
degenerate, which means that the weights wa underparametrize the spectrums of the observables Oa.
Additionally, the last variational unitaries Vvar(ϕL) of our PQCs are far from universal, which restricts the
accessible eigenbasis of all variational observables V †

var(ϕL)OaVvar(ϕL).

A.3.2. The power of universal observables

Equivalently to the universal family of observables {V †(θ)OV (θ)}θ,α that we defined in the previous
section, one can construct a family of observables {Ow =

∑
i wiHi}w that parametrizes all Hermi-

tian matrices in H (e.g., by taking Hi to be single components of a Hermitian matrix acting on H).
Note that this family is covered by our definition of SOFTMAX-PQC observables. Now, given access to
data-dependent quantum states |ψs⟩ that are expressive enough (e.g., a binary encoding of the input s, or
so-called universal quantum feature states (Goto et al., 2021)), one can approximate arbitrary functions of
s using expectations values of the form ⟨ψs|Ow |ψs⟩. This is because the observables Ow can encode an

© NEASQC Consortium Partners. All rights reserved. Page 27 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

arbitrary quantum computation. Hence, in the case of our SOFTMAX-PQCs, one could use such observ-
ables and such encodings |ψs⟩ of the input states s to approximate any policy π(a|s) (using an additional
softmax), without the need for any variational gates in the PQC generating |ψs⟩.
As we mentioned in the previous section, the observables that we consider in this work are more restricted,
and moreover, the way we encode the input states s leads to non-trivial encodings |ψs,ϕ,λ⟩ in general.
This implies that the variational parameters ϕ,λ of our PQCs have in general a non-trivial role in learning
good policies. One can even show here that these degrees of freedom are sufficient to make such PQCs
universal function approximators (Pérez-Salinas et al., 2021).

A.4. Environments specifications and hyperpameters

In Table 1, we present a specification of the environments we consider in our numerical simulations. These
are standard benchmarking environments from the OpenAI Gym library (Brockman et al., 2016), described
in Ref. (OpenAI, 2020), PQC-generated environments that we define in Sec. 5.2, and the CognitiveRadio
environment of Ref. (Chen et al., 2020) that we discuss in Appendix A.5.

Environment
State

dimension
Number of
actions

Horizon Reward function Termination conditions

CartPole-v1 4 2 500 +1 until termination

� Pole angle or cart position
outside of bounds

� Reaching horizon

MountainCar-v0 2 3 200
−1 + height

until termination
Reaching goal or horizon

Acrobot-v1 6 3 500 −1 until termination Reaching goal or horizon

SL-PQC 2 2 20
+1 for good action

Reaching horizon−1 for wrong action

Cliffwalk-PQC 2 2 20
+1 for good action � Doing wrong action

−1 for wrong action � Reaching horizon

CognitiveRadio
2 to 5

2 to 5 100
+1 for good action

Reaching horizon
(discrete) −1 for wrong action

Table 1: Environments specifications. The reward function of Mountaincar-v0 has been modified
compared to the standard specification of OpenAI Gym (Brockman et al., 2016), similarly to Ref. (Duan

et al., 2016).

In Tables 2 and 3, we list the hyperparameters used to train our agents on the various environments we
consider. All agents use an ADAM optimizer. For the plots presented in this manuscript, all quantum circuits
were implemented using the Cirq library (Google, 2018) in Python and simulated using a Qulacs backend
(Suzuki et al., 2020) in C++. For the tutorial (Jerbi et al., 2021), the TensorFlow Quantum library (Broughton
et al., 2020) was used.
All simulations were run on the LEO cluster (more than 3000 CPUs) of the University of Innsbruck, with an
estimated total compute time (including hyperparametrization) of 20 000 CPU-hours.

A.5. Deferred plots and shape of policies learned by PQCs v.s. DNNs

A.5.1. Influence of architectural choices on RAW-PQC agents

In Fig. 6, we run a similar experiment to that of Sec. 4.2 in the main text, but on RAW-PQC agents instead
of SOFTMAX-PQC agents. We observe that both increasing the depth of the PQCs and training the scaling
parameters λ have a similar positive influence on the learning performance, and even more pronounced

© NEASQC Consortium Partners. All rights reserved. Page 28 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

Environment Model
Learning
rates

Discount
γ

Final
β

Batch
size

Depth Width

CartPole-v1
softmax-PQC [0.01, 0.1, 0.1] 1 1 10 {1, 5} 4

raw-PQC [0.01, 0., 0.1] 1 ✗ 10 {1, 5} 4

MountainCar-v0
softmax-PQC [0.01, 0.1, 0.01] 1 1.5 10 {4, 6} 2

raw-PQC [0.01, 0., 0.01] 1 ✗ 10 {4, 6} 2

Acrobot-v1
softmax-PQC [0.01, 0.1, 0.1] 1 1 10 {2, 5} 6

raw-PQC [0.01, 0., 0.1] 1 ✗ 10 {2, 5} 6

SL-PQC
softmax-PQC [0.01, 0.1, 0.01] 0.9 1 10 4 2

DNN 0.01 0.9 1 10 4 16

Cliffwalk-PQC
softmax-PQC [0.01, 0.1, 0.1] 0.9 1 10 4 2

DNN 0.01 0.9 1 10 4 16

CognitiveRadio softmax-PQC [0.01, 0.1, 0.1] 0.9 1 1 3 2 to 5

Table 2: Hyperparmeters 1/2. For PQC policies, we choose 3 distinct learning rates [αϕ, αw, αλ] for
rotation angles ϕ, observable weights w and scaling parameters λ, respectively. For SOFTMAX-PQCs, we
take a linear annealing schedule for the inverse temperature parameter β starting from 1 and ending up in

the final β. The batch size is counted in number of episodes used to evaluate the gradient of the value
function. Depth indicates the number of encoding layers Denc for PQC policies, or the number of hidden

layers for a DNN policy. Width corresponds to the number of qubits n on which acts a PQC (also equal to
the dimension d of the environment’s state space), or the number of units per hidden layer for a DNN.

than for SOFTMAX-PQC agents. Nonetheless, we also observe that, even at greater depth, the final per-
formance, as well as the speed of convergence, of RAW-PQC agents remain limited compared to that of
SOFTMAX-PQC agents.

0 250 500 750 1000 1250 1500 1750 2000
Episode

0

100

200

300

400

500

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

CartPole - raw-PQC

Depth 5
Reference (depth 1)
Fixed lambdas

0 250 500 750 1000 1250 1500 1750 2000
Episode

-180

-160

-140

-120

-100

-80

-60
MountainCar - raw-PQC

Depth 6
Reference (depth 4)
Fixed lambdas

0 250 500 750 1000 1250 1500 1750 2000
Episode

-500

-450

-400

-350

-300

-250

-200

-150

-100
Acrobot - raw-PQC

Depth 5
Reference (depth 2)
Fixed lambdas

Figure 6: Influence of the model architecture for RAW-PQC agents. The blue curves in each plot
correspond to the learning curves from Fig. 3 and are taken as a reference.

© NEASQC Consortium Partners. All rights reserved. Page 29 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

Environment Model
Entang.
topology

Train
entang.

Observables
Number

of
params.

Baseline

CartPole-v1
softmax-PQC All-to-all Yes [wZ0Z1Z2Z3, (− . . .)] {31, 119} No

raw-PQC All-to-all Yes [Z0Z1Z2Z3, (− . . .)] {30, 118} No

MountainCar-v0
softmax-PQC One-to-one No [w0Z0, w1Z0Z1, w2Z1] {39, 55} Yes

raw-PQC One-to-one No [P0,1, P2, P3] {36, 52} Yes

Acrobot-v1
softmax-PQC Circular Yes

[
wi · (Z0, . . . , Z5)

T
]
1≤i≤3

{90, 180} Yes

raw-PQC Circular Yes [P0..21, P22..42, P43..63] {72, 162} Yes

SL-PQC
softmax-PQC One-to-one No [wZ0Z1, (− . . .)] 37 No

DNN ✗ ✗ ✗ 902 No

Cliffwalk-PQC
softmax-PQC One-to-one No [wZ0Z1, (− . . .)] 37 No

DNN ✗ ✗ ✗ 902 No

CognitiveRadio softmax-PQC Circular No [w0Z0, w1Z1, . . . , wnZn] 30 to 75 No

Table 3: Hyperparmeters 2/2. We call entangling layer a layer of 2-qubit gates in the PQC. Circular and
all-to-all topologies of entangling layers are equivalent for n = 2 qubits, so we call them one-to-one in that
case. When trained, entangling layers are composed of Rzz = e−iθ(Z⊗Z)/2 rotations, otherwise, they are
composed of Ctrl-Z gates. For policies with 2 actions, the same observable, up to a sign change, is used
for both actions. Zi refers to a Pauli-Z observable acting on qubit i, while Pi..j indicates a projection on

basis states i to j. In the experiments of Sec. 4.2, when the weights of the SOFTMAX-PQC are kept fixed,
the observables used for MountainCar-v0 and Acrobot-v1 are [Z0, Z0Z1, Z1], and those used for

CartPole-v1 are [Z0Z1Z2Z3,−Z0Z1Z2Z3]. The different number of parameters in a given row correspond
to the different depths in that same row in Table 2.

© NEASQC Consortium Partners. All rights reserved. Page 30 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

A.5.2. Shape of the policies learned by PQCs v.s. DNNs

In CartPole-v1 The results of the Sec. 4 demonstrate that our PQC policies can be trained to good per-
formance in benchmarking environments. To get a feel of the solutions found by our agents, we compare
the SOFTMAX-PQC policies learned on CartPole to those learned by standard DNNs (with a softmax output
layer), which are known to easily learn close-to-optimal behavior on this task. More specifically, we look
at the functions learned by these two models, prior to the application of the softmax normalization function
(see Eq. (3.3)). Typical instances of these functions are depicted in Figure 8. We observe that, while DNNs
learn simple, close to piece-wise linear functions of their input state space, PQCs tend to naturally learn
very oscillating functions that are more prone to instability. While the results of Schuld et al. (Schuld et al.,
2019) already indicated that these highly oscillating functions would be natural for PQCs, it is noteworthy
to see that these are also the type of functions naturally learned in a direct-policy RL scenario. Moreover,
our enhancements to standard PQC classifiers show how to make these highly oscillating functions more
amenable to real-world tasks.

In PQC-generated environments Fig. 9 shows the analog results to Fig. 5 in the main text but with
two different random initializations of the environment-generating PQC. Both confirm our observations. In
Fig. 10, we compare the policies learned by prototypical SOFTMAX-PQC and DNN agents in these PQC-
generated environments. We observe that the typical policies learned by DNNs are rather simple, with up
to 2 (or 3) regions, delimited by close-to-linear boundaries, as opposed to the policies learned by SOFTMAX-
PQCs, which delimit red from blue regions with wide margins. These observations highlight the inherent
flexibility of SOFTMAX-PQC policies and their suitability to these PQC-generated environments, as opposed
to the DNN (and RAW-PQC) policies we consider.

A.5.3. Additional numerical simulation on the CognitiveRadio environment

In a related work on value-based RL with PQCs, the authors of Ref. (Chen et al., 2020) introduced the
CognitiveRadio environment as a benchmark to test their RL agents. In this environment, the agent is
presented at each interaction step with a binary vector (0, 0, 0, 1, 0) of size n that describes the occupation
of n radio channels. Given this state, the agent must select one of the n channels as its communication
channel, such as to avoid collision with occupied channels (a ±1 reward reflects these collisions). The
authors of Ref. (Chen et al., 2020) consider a setting where, in any given state, only one channel is occupied,
and its assignment changes periodically over time steps, for an episode length of 100 steps. While this
constitutes a fairly simple task environment with discrete state and action spaces, it allows to test the
performance of PQC agents on a family of environments described by their system size n and make claims
on the parameter complexity of the PQCs as a function of n. As to reproduce the findings of Ref. (Chen
et al., 2020) in a policy-gradient setting, we test the performance of our SOFTMAX-PQC agents on this
environment. We find numerically (see Fig. 7) that these achieve a very similar performance to the PQC
agents of Ref. (Chen et al., 2020) on the same system sizes they consider (n = 2 to 5), using PQCs with
the same scaling of number of parameters, i.e., O(n).

0 100 200 300 400 500
Episode

0

20

40

60

80

100

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

2 channels

softmax-PQC
0 100 200 300 400 500

Episode
0

20

40

60

80

100
3 channels

softmax-PQC
0 100 200 300 400 500

Episode
0

20

40

60

80

100
4 channels

softmax-PQC
0 100 200 300 400 500

Episode
0

20

40

60

80

100
5 channels

softmax-PQC

Figure 7: Performance of our SOFTMAX-PQC agents on the CognitiveRadio environment proposed
in Ref. (Chen et al., 2020). Average performance of 20 agents for system sizes (and number of qubits)

n = 2 to 5.

© NEASQC Consortium Partners. All rights reserved. Page 31 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

Pole angle

-0.4
-0.2

0.0
0.2

0.4

Ca
rt
po
sit
ion

-2
-1

0
1

2

U
nn

or
m
al
iz
ed

pr
ob

ab
ili
ty

-4
-2
0

2

4

Pole angle

-0.4
-0.2

0.0
0.2

0.4

Ca
rt
ve
loc
ity

-2
-1

0
1

2

U
nn

or
m
al
iz
ed

pr
ob

ab
ili
ty

-3
-2
-1
0
1
2

Pole angle

-0.4
-0.2

0.0
0.2

0.4 Po
le
an
gu
lar

ve
loc
ity

-2
-1

0
1

2

U
nn

or
m
al
iz
ed

pr
ob

ab
ili
ty

-6
-4
-2
0
2
4
6
8

(a)

Pole angle

-0.4
-0.2

0.0
0.2

0.4

Ca
rt
po
sit
ion

-2
-1

0
1

2

U
nn

or
m
al
iz
ed

pr
ob

ab
ili
ty

-2
0

2

4

6

Pol
e a

ngl
e

-0.4
-0.2

0.0
0.2

0.4

Cart velocity

-2
-1

0
1

2

-10

-5

0

5

10

Pol
e a

ngl
e

-0.4
-0.2

0.0
0.2

0.4

Pole angular velocity

-2
-1

0
1

2

U
nnorm

alized
probability

-20
-10
0
10
20

(b)

Figure 8: Prototypical unnormalized policies learned by SOFTMAX-PQC agents and DNN agents in
CartPole. Due to the 4 dimensions of the state space in CartPole, we represent the unnormalized policies

learned by (a) SOFTMAX-PQC agents and (b) DNN agents on 3 subspaces of the state space by fixing
unrepresented dimensions to 0 in each plot. To get the probability of the agent pushing the cart to the left,
one should apply the logistic function (i.e., 2-dimensional softmax) 1/(1 + exp(−z)) to the z-axis values of

each plot.

© NEASQC Consortium Partners. All rights reserved. Page 32 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

0 π 2π0

π

2π (a) PQC labeling function

(a)

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

(b) SL-PQC

softmax-PQC
raw-PQC
DNN

(b)

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 (c) Cliffwalk-PQC

softmax-PQC
raw-PQC
DNN

(c)

0 π 2π0

π

2π (a) PQC labeling function

(d)

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Av
er
ag

e
co
lle

ct
ed

re
w
ar
ds

(b) SL-PQC

softmax-PQC
raw-PQC
DNN

(e)

0 200 400 600 800 1000
Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 (c) Cliffwalk-PQC

softmax-PQC
raw-PQC
DNN

(f)

Figure 9: Different random initializations of PQC-generated environments and their associated
learning curves. See Fig. 5 for details. The additional learning curves (20 agents per curve) of

randomly-initialized RAW-PQC agents highlight the hardness of these environments for PQC policies
drawn from the same family as the environment-generating PQCs.

0 π 2π0

π

2π DNN policy

(a)

0 π 2π0

π

2π softmax-PQC policy

(b)

0 π 2π0

π

2π DNN policy

(c)

0 π 2π0

π

2π softmax-PQC policy

(d)

Figure 10: Prototypical policies learned by SOFTMAX-PQC agents and DNN agents in
PQC-generated environments. All policies are associated to the labeling function of Fig. 9.d. Policies (a)
and (b) are learned in the SL-PQC environment while policies (c) and (d) are learned in the Cliffwalk-PQC

environment.

© NEASQC Consortium Partners. All rights reserved. Page 33 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

A.6. Supervised learning task of Liu et al.

Define p a large prime number, n = ⌈log2(p− 1)⌉, and g a generator of Z∗
p = {1, 2, . . . , p− 1} (i.e., a g ∈ Z∗

p

such that {gy, y ∈ Zp−1} = Z∗
p). The DLP consists in computing logg x on input x ∈ Z∗

p. Based on DLP, Liu
et al. (Y. Liu et al., 2021) define a concept class C = {fs}s∈Zp−1 over the input space X = Z∗

p, where each
labeling function of this concept class is defined as follows:

fs(x) =

{
+1, if logg x ∈ [s, s+ p−3

2],

−1, otherwise.
(A.3)

Each function fs : Z∗
p → {−1, 1} hence labels half the elements in Z∗

p with a label +1 and the other half with
a label −1. We refer to Figure 1 in Ref. (Y. Liu et al., 2021) for a good visualization of all these objects.
The performance of a classifier f is measured in terms of its testing accuracy

Accf (fs) = Prx∼X [f(x) = fs(x)].

A.7. Proof of Theorem 1

In the following, we provide constructions of a) fully random, b) partially random and c) fully deterministic
environments satisfying the properties of Theorem 1. We consider the three families of environments
separately and provide individual lemmas specifying their exact separation properties.

Fully random: the SL-DLP environment. This result is near-trivially obtained by noting that any classifi-
cation problem can be easily mapped to a (degenerate) RL problem. For this, the environment will be an
MDP defined as follows: its state space is the input space of the classification problem, its action space
comprises all possible labels, rewards are trivially +1 for assigning a correct label to an input state and −1
otherwise, and the initial and next-state transition probabilities are state-independent and equal to the input
distribution of the classification task. The optimal policy of this MDP is clearly the optimal classifier of the
corresponding SL task. Consider now the classification task of Liu et al., defined in detail in Appendix A.6:
the input distribution is taken to be uniform on the state space, i.e., P (st) = 1

|S| , and the performance of a
classifier f with respect to a labeling (or ground truth) function f∗ is measured in terms of a testing accuracy

Accf (f∗) =
1

|S|
∑

s

Pr[f(s) = f∗(s)]. (A.4)

For the MDP associated to this classification task and length-1 episodes of interaction, the value function of
any policy π(a|s) is given by

Vπ(s0) =
1

|S|
∑

s0

(π(f∗(s0)|s0)− π(−f∗(s0)|s0))

=
1

|S|
∑

s0

2π(f∗(s0)|s0)− 1

= 2Accπ(f∗)− 1,

which is trivially related to the testing accuracy of this policy on the classification task. Note that we also
have Vrand(s0) = 0 and Vopt(s0) = 1.
Since these observations hold irrespectively of the labeling function f∗, we can show the following result:

Lemma 4 (Quantum advantage in SL-DLP). There exists a uniform family of SL-DLP MDPs, each derived
from a labeling function f∗ of the DLP concept class C (see Appendix A.6), for which classical hardness and
quantum learnability holds. More specifically, the performance of any classical learner is upper bounded by
1/poly(n), while that of a class of quantum agents is lower bounded by 0.98 with probability above 2/3 (over
the randomness of their interaction with the environment and noise in their implementation).

Proof. Classical hardness is trivially obtained by contraposition: assuming no classical polynomial-time
algorithm can solve DLP, then using Theorem 1 of Liu et al., any classical policy would have testing accuracy
Accπ(f∗) ≤ 1/2 + 1/poly(n), and hence its value function would be Vπ(s0) ≤ 1/poly(n).

© NEASQC Consortium Partners. All rights reserved. Page 34 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

For quantum learnability, we define an agent that first collects poly(n) random length-1 interactions (i.e., a
random state s0 and its associated reward for an action +1, from which the label f∗(s0) can be inferred),
and use Theorem 2 of Liu et al. to train a classifier that has test accuracy at least 0.99 with probability at
least 2/3 (this process can be repeated O

(
log
(
δ−1
))

times to increase this probability to 1− δ via majority
voting). This classifier has a value function Vπ(s0) ≥ 0.98.

Note that this proof trivially generalizes to episodes of interaction with length greater than 1, when preserving
the absence of temporal correlation in the states experienced by the agents. For episodes of length T , the
only change is that the value function of any policy, and hence the bounds we achieve, get multiplied by a
factor of 1−γT

1−γ for a discount factor γ < 1 and by a factor T for γ = 1.

Partially random: the Cliffwalk-DLP environment. One major criticism to the result of Lemma 4 is that it
applies to a very degenerate, fully random RL environment. In the following, we show that similar results can
be obtained in environments based on the same classification problem, but while imposing more temporal
structure and less randomness (such constructions were introduced in Ref. (Dunjko et al., 2017), but for
the purpose of query separations between RL and QRL). For instance, one can consider cliffwalk-type
environments, inspired by the textbook “cliff walking” environment of Sutton & Barto (Sutton, Barto, et al.,
1998). This class of environments differs from the previous SL-DLP environments in its state and reward
structure: in any episode of interaction, experienced states follow a fixed “path” structure (that of the cliff) for
correct actions, and a wrong action yields to immediate “death” (negative reward and episode termination).
We slightly modify this environment to a “slippery scenario” in which, with a δ probability, any action may
lead to a uniformly random position on the cliff. This additional randomness allows us to prove the following
separation:

Lemma 5 (Quantum advantage in Cliffwalk-DLP). There exists a uniform family of Cliffwalk-DLP MDPs
with arbitrary slipping probability δ ∈ [0.86, 1] and discount factor γ ∈ [0, 0.9], each derived from a labeling
function f∗ of the DLP concept class C, for which classical hardness and quantum learnability holds. More
specifically, the performance of any classical learner is upper bounded by Vrand(s0) + 0.1, while that of a
class of quantum agents is lower bounded by Vopt(s0)−0.1 with probability above 2/3 (over the randomness
of their interaction with the environment and noise in their implementation). Since Vrand(s0) ≤ − 1

2 and
Vopt = 0, we always have a classical-quantum separation.

The proof of this lemma is deferred to Appendix A.8 for clarity.

Fully deterministic: the Deterministic-DLP environment. The simplest example of a deterministic RL
environment where separation can be proven is a partially observable MDP (POMDP) defined as follows:
it constitutes a 1-D chain of states of length k + 2, where k is poly(n). We refer to the first k states as
“training states”, and we call the last two states “test” and “limbo” states, respectively. The training states
are of the form (x, fs(x)), i.e., a point uniformly sampled and its label. The actions are +1,−1, and both
lead to the same subsequent state on the chain (since the same (x, fs(x)) can appear twice in the chain,
this is the reason why the environment is partially observable), and no reward is given for the first k states.
In the test state, the agent is only given a point x with no label. A correct action provides a reward of 1 and
leads to the beginning of the chain, while an incorrect action leads to the limbo state, which self-loops for
both actions and has no rewards. In other words, after poly-many examples where the agent can learn the
correct labeling, it is tested on one state. Failure means it will never obtain a reward.

For each concept fs, we define exponentially many environments obtained by random choices of the states
appearing in the chain. In a given instance, call TS = (x0, . . . , xk−1) the training states of that instance,
xk its testing state and l its limbo state. The interaction of an agent with the environment is divided into
episodes of length k + 1, but the environment keeps memory of its state between episodes. This means
that, while the first episode starts in x0, depending on the performance of the agent, later episodes start
either in x0 or in l. For a policy π, we define the value Vπ(s0) as the expected reward1 of this policy in any
episode of length k + 1 with an initial state s0 ∈ {x0, l}. Since the testing state xk is the only state to be
rewarded, we can already note that Vπ(x0) = π(f∗(xk)|TS , xk), that is, the probability of the policy correctly
labeling the testing state xk after having experienced the training states TS . Also, since s0 ∈ {x0, l} and
Vπ(l) = 0, we have Vπ(x0) ≥ Vπ(s0).
With this construction, we obtain the following result:

1Note that we assume here a discount factor γ = 1, but our results would also hold for an arbitrary γ > 0, if we scale the reward of
the testing state to γ−k.

© NEASQC Consortium Partners. All rights reserved. Page 35 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

Lemma 6 (Quantum advantage in Deterministic-DLP). There exists a uniform family of Deterministic-DLP
POMDPs (exponentially many instances for a given concept fs of the DLP classification problem) where:
1) (classical hardness) if there exists a classical learning agent which, when placed in a randomly chosen
instance of the environment, has value Vc(s0) ≥ 1/2 + 1/poly(n) (that is, 1/poly(n) better than a random
agent), with probability at least 0.845 over the choice of environment and the randomness of its learning
algorithm, then there exists an efficient classical algorithm to solve DLP,
2) (quantum learnability) there exists a class of quantum agents that attains a value Vq(s0) = 1 (that is, the
optimal value) with probability at least 0.98 over the choice of environment and randomness of the learning
algorithm.

The proof of this lemma is deferred to Appendix A.9 for clarity.

By combining our three lemmas, and taking the weakest separation claim for the cases ii) and iii), we get
Theorem 1. For the interested reader, we list the following remarks, relating to the proofs of these lemmas:

• SL-DLP and Deterministic-DLP are the two closest environments to the DLP classification task of Liu et
al. While the value function in SL-DLP is trivially equivalent to the accuracy of the classification problem,
we find the value function in Deterministic-DLP to be weaker than this accuracy. Namely, a high accuracy
trivially leads to a high value while a high (or non-trivial) value does not necessarily lead to a high (or
non-trivial) accuracy (in all these cases, the high probability over the randomness of choosing the envi-
ronments and of the learning algorithms is implied). This explains why the classical hardness statement
for Deterministic-DLP is weaker than in SL-DLP.

• In Cliffwalk-DLP, it is less straightforward to relate the testing accuracy of a policy to its performance on
the deterministic parts of the environment, which explains why we trivially upper bound this performance
by 0 on these parts. We believe however that these deterministic parts will actually make the learning
task much harder, since they strongly restrict the part of the state space the agents can see. This claim
is supported by our numerical experiments in Sec. 5.2. Also, since we showed classical hardness for
fully deterministic environments, it would be simple to construct a variant of Cliffwalk-DLP where these
deterministic parts would be provably hard as well.

A.8. Proof of Lemma 5

Consider a slippery cliffwalk environment defined by a labeling function f∗ in the concept class C of Liu et
al. This cliffwalk has p − 1 states ordered, w.l.o.g., in their natural order, and correct actions (the ones that
do not lead to immediate “death”) f∗(i) for each state i ∈ Z∗

p. For simplicity of our proofs, we also consider
circular boundary conditions (i.e, doing the correct action on the state p− 1 of the cliff leads to the state 1),
random slipping at each interaction step to a uniformly sampled state on the cliff with probability δ > 0, an
initialization of each episode in a uniformly sampled state i ∈ Z∗

p, and a 0 (−1) reward for doing the correct
(wrong) action in any given state.

A.8.1. Upper bound on the value function

The value function of any policy π which has probability π(i) (we abbreviate π(f∗(i)|i) to π(i)) of doing the
correct action in state i ∈ Z∗

p is given by:

Vπ(i) = π(i)γ

(1− δ)Vπ(i+ 1) + δ

1

p− 1

p−1∑

j=1

Vπ(j)

− (1− π(i)) (A.5)

Since this environment only has negative rewards, we have that Vπ(i) ≤ 0 for any state i and policy π, which
allows us to write the following inequality:

Vπ(i) ≤ π(i)γ

δ 1

p− 1

p−1∑

j=1

Vπ(j)

− (1− π(i))

© NEASQC Consortium Partners. All rights reserved. Page 36 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

We use this inequality to bound the following term:

1

p− 1

p−1∑

i=1

Vπ(i) ≤
1

p− 1

p−1∑

i=1

π(i) γδ

p− 1

p−1∑

j=1

Vπ(j)− (1− π(i))

=

(
1

p− 1

p−1∑

i=1

π(i)

)
 γδ

p− 1

p−1∑

j=1

Vπ(j) + 1

− 1

We note that the first factor is exactly the accuracy of the policy π on the classification task of Liu et al.:

Accπ(f∗) =
1

p− 1

p−1∑

i=1

π(i).

We hence have:
1

p− 1

p−1∑

i=1

Vπ(i) ≤ Accπ(f∗)

γδ 1

p− 1

p−1∑

j=1

Vπ(j) + 1

− 1

which is equivalent to:
1

p− 1

p−1∑

i=1

Vπ(i) ≤
Accπ(f∗)− 1

1− Accπ(f∗)γδ

when Accπ(f∗)γδ < 1.
We now note that this average value function is exactly the value function evaluated on the initial state s0 of
the agent, since this state is uniformly sampled from Z∗

p for every episode. Hence,

Vπ(s0) ≤
Accπ(f∗)− 1

1− Accπ(f∗)γδ
(A.6)

A.8.2. Lower bound on the value function

Again, by noting in Eq. (A.5) that we have Vπ(i) ≤ 0 and π(i) ≤ 1 for any policy π and state i ∈ Z∗
p, we have:

Vπ(i) ≥ γ

(1− δ)Vπ(i+ 1) +

δ

p− 1

p−1∑

j=1

Vπ(j)

− (1− π(i))

We use this inequality to bound the value function at the initial state s0:

Vπ(s0) =
1

p− 1

p−1∑

i=1

Vπ(i)

≥ γ

1− δ
p− 1

p−1∑

i=1

Vπ(i+ 1) +
δ

p− 1

p−1∑

j=1

Vπ(j)

+

1

p− 1

p−1∑

i=1

π(i)− 1

= γ ((1− δ)Vπ(s0) + δVπ(s0)) + Accπ(f∗)− 1

= γVπ(s0) + Accπ(f∗)− 1

by using the circular boundary conditions of the cliffwalk in the third line.
This inequality is equivalent to:

Vπ(s0) ≥
Accπ(f∗)− 1

1− γ (A.7)

when γ < 1.

© NEASQC Consortium Partners. All rights reserved. Page 37 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

A.8.3. Bounds for classical hardness and quantum learnability

We use the bounds derived in the two previous sections to prove classical hardness and quantum learn-
ability of this task environment, as stated in Lemma 5.

For this, we start by noting the following expression for the value function of a random policy (one that does
random actions in all states):

Vrand(s0) =
γ

2

1− δ
p− 1

p−1∑

i=1

Vrand(i+ 1) +
δ

p− 1

p−1∑

j=1

Vrand(j)

− 1

2

=
γ

2
Vrand(s0)−

1

2
= − 1

2− γ

again due to the circular boundary conditions of the cliffwalk and the resulting absence of termination
conditions outside of “death”.
As for the value function of the optimal policy, this is trivially Vopt = 0.

A.8.3.1. Proof of classical hardness

For any policy π, we define the function g(x, δ, γ) = V (x, δ, γ) − Vrand(γ), where we adopt the short-hand
notation x = Accπ(f∗) and call V the upper bound on the value function Vπ(s0) of π. The expression of
g(x, δ, γ) (for (x, δ, γ) ̸= (1, 1, 1)) is given by:

g(x, δ, γ) =
x− 1

1− δγx +
1

2− γ (A.8)

To prove classical hardness, it is sufficient to show that x ≤ 0.51 implies g(x, δ, γ) ≤ 0.1 for δ ∈ [δ0, 1], γ ∈
[0, γ1] and a {δ0, γ1} pair of our choosing. To see this, notice that the contraposition gives x = Accπ(f∗) >
0.51 which is sufficient to construct an efficient algorithm that solves DLP. To achieve this result, we show
the three following inequalities, ∀ x ≤ 0.51 and ∀ (δ, γ) ∈ [δ0, 1]× [0, γ1]:

g(x, δ, γ)
(i)

≤ g(0.51, δ, γ)
(ii)

≤ g(0.51, δ0, γ)
(iii)

≤ g(0.51, δ0, γ1)

where δ0 and γ1 are chosen such that g(0.51, δ0, γ1) ≤ 0.1.

Proof of (i). We look at the derivative of g with respect to x:

∂g(x, δ, γ)

∂x
=

1− δγ
(1− δγx)2 ≥ 0 ∀(x, δ, γ) ∈ [0, 1]3\(1, 1, 1)

and hence g is an increasing function of x, which gives our inequality.

Proof of (ii). We look at the derivative of g with respect to δ:

∂g(x, δ, γ)

∂δ
=

γ(x− 1)x

(1− δγx)2 ≤ 0 ∀(x, δ, γ) ∈ [0, 1]3\(1, 1, 1)

and hence g is a decreasing function of δ, which gives our inequality.

Proof of (iii). We look at the derivative of g with respect to γ:

∂g(x, δ, γ)

∂γ
=

δ(x− 1)x

(1− δγx)2 +
1

(2− γ)2 ∀(x, δ, γ) ∈ [0, 1]3\(1, 1, 1)

We have:
∂g(x, δ, γ)

∂γ
≥ 0⇔

(
(δx)2 + δ(x2 − x)

)
γ2 − 2δ(2x2 − x)γ + 4δ(x2 − x) + 1 ≥ 0

© NEASQC Consortium Partners. All rights reserved. Page 38 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

By setting x = 0.51 and δ = 0.86, we find

∂g(0.51, 0.86, γ)

∂γ
≥ 0 ∀γ ∈ [0, 1]

since the roots of the second-degree polynomial above are approximately {−2.91, 2.14} and we have (δx)2+
δ(x− 1)x ≈ −0.0225 < 0.
Hence g(0.51, δ0, γ) is an increasing function of γ, which gives our inequality.

Given that g(0.51, 0.86, 0.9) ≈ 0.0995 < 0.1, we then get our desired result for δ0 = 0.86 and γ1 = 0.9.
Noting that Vπ(s0)− Vrand(γ) ≤ g(x, δ, γ) ≤ 0.1 from Eq. (A.6), we hence have classical hardness ∀ (δ, γ) ∈
[δ0, 1]× [0, γ1].

A.8.3.2. Proof of quantum learnability

Proving quantum learnability is more trivial, since, for Accπ(f∗) ≥ 0.99 and γ ≤ 0.9, we directly have, using
Eq. (A.7):

Vπ(s0) ≥ −0.1 = Vopt − 0.1

To conclude this proof, we still need to show that we can obtain in this environment a policy π such that
Accπ(f∗) ≥ 0.99 with high probability. For that, we use agents that first collect poly(n) distinct samples
(states s and their inferred labels f∗(s)) from the environment (distinct in order to avoid biasing the distribu-
tion of the dataset with the cliffwalk temporal structure). This can be done efficiently in poly(n) interactions
with the environment, since each episode is initialized in a random state s0 ∈ Z∗

p. We then use the learning
algorithm of Liu et al. to train a classifier π with the desired accuracy, with high probability.

A.9. Proof of Lemma 6

A.9.1. Proof of classical hardness

Suppose that a polynomial-time classical agent achieves a value Vc(s0) ≥ 1
2 +

1
poly(n) with probability (1− δ)

over the choice of environment and the randomness of its learning algorithm. We call “success” the event
Vc(s0) ≥ 1

2 + 1
poly(n) and Sδ the subset of the instances S = {T, xk} for which, theoretically, a run of the

agent would “succeed” (this is hence a set that depends on the randomness of the agent).

Note that, on every instance in Sδ, π(f∗(xk)|T, xk) = Vc(x0) ≥ Vc(s0) ≥ 1
2 + 1

poly(n) . Since this probability is
bounded away from 1/2 by an inverse polynomial, this means that we can “boost” it to a larger probability
(1− ε). More specifically, out of the policy π obtained after interacting for k steps with the environment, we
define a classifier fc acting on xk such that we sample O

(
log
(
ε−1
))

-many times from π(a|T, xk) and label
xk by majority vote. For the instances in Sδ, the probability of correctly labeling xk is Pr [fc(xk) = f∗(xk)] ≥
1− ε.
Define P (T) = Pr[T = T] and P (xk) = Pr[xk = xk] the probabilities of sampling certain training states T and
a testing state xk, when choosing an instance of the environment. We now look at the following quantity:

EP (T) [Accfc(T)] =
∑

T

P (T)
∑

xk

P (xk)Pr [fc(xk) = f∗(xk)|T, xk]

=
∑

T,xk

P (T, xk)Pr [fc(xk) = f∗(xk)|T, xk]

≥
∑

T,xk

P (T, xk)Pr
[
success|T, xk

]
× Pr

[
fc(xk) = f∗(xk)|T, xk, success

]

≥ (1− δ)(1− ε)

since Pr [fc(xk) = f∗(xk)|T, xk] ≥ 1− ε for instances in Sδ and
∑
T,xk

P (T, xk)Pr
[
success|T, xk

]
≥ 1− δ by

definition.
In the following, we set 1− ε = 0.999 and 1− δ ≥ 0.845 (the reason for this becomes apparent below), such

© NEASQC Consortium Partners. All rights reserved. Page 39 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

that:
EP (T) [Accfc(T)] ≥ 0.844155 >

5

6
+

1

96
(A.9)

Now, consider the following learning algorithm: given a training set T , construct a Deterministic-DLP envi-
ronment that uses this T and a randomly chosen xk, and define the classifier fc that boosts the π(a|T, xk)
obtained by running our classical agent on this environment (as explained above). We want to show that fc
has accuracy Accfc(T) ≥ 1

2 + 1
poly(n) with probability at least 2/3 over the choice of T and the randomness

of its construction, which is sufficient to solve DLP classically. For that, we show a stronger statement. Call
Tsucc the subset of all instances of training states T = {T} for which Accfc(T) ≥ 1

2 + 1
poly(n) . We prove by

contradiction that |Tsucc| ≥ 2|T |
3 :

Assume |Tsucc| < 2|T |
3 , then

EP (T) [Accfc(T)] =
∑

T

P (T)Accfc(T)

=
1

|T |

 ∑

T∈Tsucc

Accfc(T) +
∑

T /∈Tsucc

Accfc(T)

<
|Tsucc|
|T | × 1 +

|T | − |Tsucc|
|T |

(
1

2
+

1

poly(n)

)

<
5

6
+

1

3poly(n)
< 0.844155

for large enough n, in contradiction with Eq. (A.9).

Hence, with probability at least 2/3 over the choice of training states and the randomness of the learning
algorithm, our constructed classifier has accuracy Accfc(T) ≥ 1

2 + 1
poly(n) . By using Theorem 8, Remark 1

of Liu et al., this is sufficient to construct an efficient classical algorithm that solves DLP.

A.9.2. Proof of quantum learnability

Using the learning algorithm of Liu et al., we can construct a quantum classifier that achieves accuracy
Accq(T) ≥ 0.99 with probability at least 2/3 over the randomness of the learning algorithm and the choice
of training states T , of length |T | = poly(n). Now define instead training states T of length |T | =Mpoly(n),
for M = O

(
log
(
δ′−1

))
(hence |T | is still polynomial in n), and use each of the M segments of T to train M

independent quantum classifiers. Define fq as a classifier that labels xk using a majority vote on the labels
assigned by each of these classifiers. This constructed classifier has accuracy Accfq (T) ≥ 0.99 with now
probability 1− δ′ over the choice of training states T and the randomness of the learning algorithm.

We then note that, by calling “success” the event Accfq (T) ≥ 0.99, we have:
∑

T,xk

P (T, xk)Pr
[
Vq(x0) = 1|T, xk

]

≥
∑

T

P (T)
∑

xk

P (xk)Pr
[
success|T

]
× Pr

[
Vq(x0) = 1|T, xk, success

]

=
∑

T

P (T)Pr
[
success|T

]∑

xk

P (xk)× Pr
[
fq(xk) = f∗(xk)|T, xk, success

]

=
∑

T

P (T)Pr
[
success|T

]
Accfq (T)

≥ (1− δ′)× 0.99

which means that our constructed agent achieves a value Vq(x0) = 1 (which also implies Vq(s0) = 1)
with probability at least (1 − δ′) × 0.99 over the choice of environment and the randomness of the learning
algorithm. By setting (1− δ′) = 0.98/0.99, we get our statement.

© NEASQC Consortium Partners. All rights reserved. Page 40 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

A.10. Construction of a PQC agent for the DLP environments

In the two following appendices, we construct a PQC classifier that can achieve close-to-optimal accuracy
in the classification task of Liu et al. (Y. Liu et al., 2021) (see Appendix A.6), and can hence also be used
as a learning model in the DLP environments defined in Sec. 5.1.

A.10.1. Implicit v.s. explicit quantum SVMs

To understand the distinction between the quantum learners of Liu et al. and the PQC policies we are
constructing here, we remind the reader of the two models for quantum SVMs defined in Ref. (Schuld &
Killoran, 2019): the explicit and the implicit model. Both models share a feature-encoding unitary U(x) that
encodes data points x into feature state |ϕ(x)⟩ = U(x) |0⊗n⟩.
In the implicit model, one first evaluates the kernel values

K(xi, xj) = |⟨ϕ(xi)|ϕ(xj)⟩|2 (A.10)

for the feature states associated to every pair of data points {xi, xj} in the dataset, then uses the resulting
kernel matrix in a classical SVM algorithm. This algorithm returns a hyperplane classifier in feature space,
defined by its normal vector ⟨w| = ∑i αi ⟨ϕ(xi)| and bias b, such that the sign of |⟨w|ϕ(x)⟩|2 + b gives the
label of x.
In the explicit model, the classifier is instead obtained by training a parametrized |wθ⟩. Effectively, this
classifier is implemented by applying a variational unitary V (θ) on the feature states |ϕ(x)⟩ and measuring
the resulting quantum states using a fixed observable, with expectation value |⟨wθ|ϕ(x)⟩|2.

In the following sections, we describe how the implicit quantum SVMs of Liu et al. can be transformed
into explicit models while guaranteeing that they can still represent all possible optimal policies in the DLP
environments. And in Appendix A.11, we show that, even under similar noise considerations as Liu et al.,
these optimal policies can also be found using poly(n) random data samples.

A.10.2. Description of the PQC classifier

As we just described, our classifier belongs to a family of so-called explicit quantum SVMs. It is hence
described by a PQC with two parts: a feature-encoding unitary U(x), which creates features |ϕ(x)⟩ =
U(x) |0⊗n⟩ when applied to an all-0 state, followed by a variational circuit V (θ) parametrized by a vector θ.
The resulting quantum state is then used to measure the expectation value ⟨O⟩x,θ of an observable O, to be
defined. We rely on the same feature-encoding unitary U(x) as the one used by Liu et al., i.e., the unitary
that creates feature states of the form

|ϕ(x)⟩ = 1√
2k

2k−1∑

i=0

∣∣x · gi
〉

(A.11)

for k = n − t log(n), where t is a constant defined later, under noise considerations. This feature state can
be seen as the uniform superposition of the image (under exponentiation s′ 7→ gs

′
) of an interval of integers

[logg(x), logg(x)+2k−1] in log-space. Note that U(x) can be implemented in Õ(n3) operations (Y. Liu et al.,
2021).

By noting that every labeling functions fs ∈ C to be learned (see Eq. (A.3)) is delimiting two equally-sized
intervals of log

(
Z∗
p

)
, we can restrict the decision boundaries to be learned by our classifier to be half-space

dividing hyperplanes in log-space. In feature space, this is equivalent to learning separating hyperplanes
that are normal to quantum states of the form:

|ϕs′⟩ =
1√

(p− 1)/2

(p−3)/2∑

i=0

∣∣∣gs′+i
〉
. (A.12)

Noticeably, for input points x such that logg(x) is away from some delimiting regions around s and s+ p−3
2 ,

we can notice that the inner product |⟨ϕ(x)|ϕs⟩|2 is either ∆ = 2k+1

p−1 or 0, whenever x is labeled +1 or

© NEASQC Consortium Partners. All rights reserved. Page 41 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

−1 by fs, respectively. This hence leads to a natural classifier to be built, assuming overlaps of the form
|⟨ϕ(x)|ϕs′⟩|2 can be measured:

hs′(x) =

{
1, if |⟨ϕ(x)|ϕs′⟩|2/∆ ≥ 1/2,

−1, otherwise
(A.13)

which has an (ideal) accuracy 1−∆ whenever s′ = s.

To complete the construction of our PQC classifier, we should hence design the composition of its variational
part V (θ) and measurement O such that they result in expectation values of the form ⟨O⟩x,θ = |⟨ϕ(x)|ϕs′⟩|2.
To do this, we note that, for |ϕs′⟩ = V̂ (s′) |0⟩, the following equality holds:

|⟨ϕ(x)|ϕs′⟩|2 =
∣∣∣
〈
0⊗n

∣∣ V̂ (s′)†U(xi)
∣∣0⊗n

〉∣∣∣
2

= Tr
[∣∣0⊗n

〉 〈
0⊗n

∣∣ ρ(x, s′)
]

where ρ(x, s′) = |ψ(x, s′)⟩ ⟨ψ(x, s′)| is the density matrix of the quantum state |ψ(x, s′)⟩ = V̂ (s′)†U(xi) |0⊗n⟩.
Hence, an obvious choice of variational circuit is V (θ) = V̂ (s′), combined with a measurement operator
O = |0⊗n⟩ ⟨0⊗n|. Due to the similar nature of |ϕ′s⟩ and |ϕ(x)⟩, it is possible to use an implementation for
V̂ (s′) that is similar to that of U(xi) (take xi = gs

′
and k ≈ n/2).2 We also note that, for points x such that

logg(x) is (p − 1)∆/2 away from the boundary regions of hs′ , the non-zero inner products |⟨ϕ(x)|ϕs′⟩|2 are
equal to ∆ = O(n−t). These can hence be estimated efficiently to additive error, which allows to efficiently
implement our classifier hs′ (Eq. (A.13)).

A.10.3. Noisy classifier

In practice, there will be noise associated with the estimation of the inner products |⟨ϕ(x)|ϕs′⟩|2, namely due
to the additive errors associated to sampling. Similarly to Liu et al., we model noise by introducing a random
variable eis′ for each data point xi and variational parameter gs

′
, such that the estimated inner product is

|⟨ϕ(xi)|ϕs′⟩|2 + eis′ . This random variable satisfies the following equations:

eis′ ∈ [−∆,∆]

E[eis′] = 0

Var[eis′] ≤ 1/R

where R is the number of circuit evaluations used to estimate the inner product. We hence end up with a
noisy classifier:

h̃s′(xi) =

{
1, if

(
|⟨ϕ(xi)|ϕs′⟩|2 + eis′

)
/∆ ≥ 1/2,

−1, otherwise

The noise has the effect that some points which would be correctly classified by the noiseless classifier have
now a non zero probability of being misclassified. To limit the overall decrease in classification accuracy,
we focus on limiting the probability of misclassifying points xi such that logg(xi) is (p−1)∆/2 away from the
boundary points s′ and s′ + p−3

2 of gs′ . We call Is′ the subset of Z∗
p comprised of these points. For points in

Is′ , the probability of misclassification is that of having |eis′ | ≥ ∆/2. We can use Chebyshev’s inequality to
bound this probability:

Pr
(
|eis′ | ≥

∆

2

)
≤ 4

∆2R
(A.14)

since E[eis′] = 0 and Var[eis′] ≤ 1/R.

2Note that we write V̂ (s′) and Us′ to be parametrized by s′ but the true variational parameter here is gs
′
, since we work in input

space and not in log-space.

© NEASQC Consortium Partners. All rights reserved. Page 42 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

A.11. Proof of trainability of our PQC agent in the SL-DLP environment

In this Appendix, we describe an optimization algorithm to train the variational parameter gs
′

of the PQC
classifier we defined in Appendix A.10. This task is non-trivial for three reasons: 1) even by restricting
the separating hyperplanes accessible by our classifier, there are still p − 1 candidates, which makes an
exhaustive search for the optimal one intractable; 2) noise in the evaluation of the classifier can potentially
heavily perturb its loss landscape, which can shift its global minimum and 3) decrease the testing accuracy
of the noisy classifier. Nonetheless, we show that all these considerations can be taken into account for
a simple optimization algorithm, such that it returns a classifier with close-to-optimal accuracy with high
probability of success. More precisely, we show the following Theorem:

Theorem 3. For a training set of size nc such that c ≥ max
{
logn(8/δ), logn

(
log(δ/2)

log(1−2n−t)

)}
for t ≥

max {3 logn(8/δ), logn(16/ε)} in the definition of ∆, and a number of circuit evaluations per inner product
R ≥ max

{
4n2(t+c)

δ , 128ε3

}
, then our optimization algorithm returns a noisy classifier h̃s′ with testing accuracy

Acch̃s′
(fs) on the DLP classification task of Liu et al. such that

Pr
(

Acch̃s′
(fs) ≥ 1− ε

)
≥ 1− δ.

The proof of this Theorem is detailed below.

Given a training set X ⊂ X polynomially large in n, i.e., |X| = nc, define the training loss:

L(s′) = 1

2|X|
∑

x∈X
|hs′(x)− fs(x)|

and its noisy analog:

L̃(s′) = 1

2|X|
∑

x∈X

∣∣∣h̃s′(x)− fs(x)
∣∣∣

Our optimization algorithm goes as follows: using the noisy classifier h̃s′ , evaluate the loss function
L̃
(
logg(x)

)
for each variational parameter gs

′
= x ∈ X, then set

gs
′
= argminx∈X L̃(logg(x)).

This algorithm is efficient in the size of the training set, since it only requires |X|2 evaluations of h̃s′ .
To prove Theorem 3, we show first that we can enforce argminx∈X L̃(logg(x)) = argminx∈XL(logg(x)) with
high probability (Lemma 7), and second, that this algorithm also leads to s′ close to the optimal s in log-
space with high probability (Lemma 8).

Lemma 7. For a training set of size nc such that c ≥ logn(8/δ), a t ≥ 3c in the definition of ∆, and a number
of circuit evaluations per inner product R ≥ 4n2(t+c)

δ , we have

Pr
(

argmin
x∈X

L̃(logg(x)) = argmin
x∈X

L(logg(x))
)
≥ 1− δ

2

Proof. In order for the minima of the two losses to be obtained for the same x ∈ X, it is sufficient to ensure
that the classifiers hlogg(xi) and h̃logg(xi) agree on all points xj , for all (xi, xj) ∈ X. This can be enforced by
having:

⋂

i,j
i̸=j

xi ∈ Ilogg(xj)

 ∩

⋂

i,s′

|ei,s′ | ≤
∆

2

that is, having for all classifiers hlogg(xj) that all points xi ∈ X, xi ̸= xj , are away from its boundary regions
in log-space, and that the labels assigned to these points are all the same under noise.

© NEASQC Consortium Partners. All rights reserved. Page 43 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

We bound the probability of the negation of this event:

Pr

⋃

i,j
i̸=j

xi /∈ Ilogg(xj) ∪
⋃

i,s′

|ei,s′ | ≥
∆

2

 ≤ Pr

⋃

i,j
i̸=j

xi /∈ Ilogg(xj)

+ Pr

⋃

i,s′

|ei,s′ | ≥
∆

2

using the union bound.
We start by bounding the first probability, again using the union bound:

Pr

⋃

i,j
i̸=j

xi /∈ Ilogg(xj)

 ≤

∑

i,j
i̸=j

Pr
(
xi /∈ Ilogg(xj)

)

=
∑

i,j
i̸=j

∆

2
≤ n2c∆

2

By setting t ≥ 3c, we have ∆ ≤ 4n−t ≤ 4n−3c, which allows us to bound this first probability by δ/4 when
c ≥ logn(8/δ).
As for the second probability above, we have

Pr

⋃

i,s′

|ei,s′ | ≥
∆

2

 ≤

∑

i,s′

Pr
(
|ei,s′ | ≥

∆

2

)

≤ 4n2c

∆2R

using the union bound and Eq. (A.14). By setting R ≥ 4n2(t+c)

δ ≥ 16n2c

∆2δ (since ∆ ≥ 2n−t), we can bound this
second probability by δ/4 as well, which gives:

Pr
(

argmin
x∈X

L̃(logg(x)) = argmin
x∈X

L(logg(x))
)
≥ 1− Pr

⋃

i,j
i̸=j

xi /∈ Ilogg(xj) ∪
⋃

i,s′

|ei,s′ | ≥
∆

2

≥ 1− δ/2

Lemma 8. For a training set of size nc such that c ≥ logn

(
log(δ/2)
log(1−2ε)

)
, then s′ = logg

(
argminx∈XL(logg(x))

)

is within ε distance of the optimal s with probability:

Pr
(|s′ − s|
p− 1

≤ ε
)
≥ 1− δ

2

Proof. We achieve this result by proving:

Pr
(|s′ − s|
p− 1

≥ ε
)
≤ δ

2

This probability is precisely the probability that no logg(x) ∈ logg(X) is within ε distance of s, i.e.,

Pr

(⋂

x∈X
log(x) /∈ [s− ε(p− 1), s+ ε(p− 1)]

)

As the elements of the training set are all i.i.d., we have that this probability is equal to

Pr (log(x) /∈ [s− ε(p− 1), s+ ε(p− 1)])
|X|

Since all the datapoints are uniformly sampled from Z∗
p, the probability that a datapoint is in any region

© NEASQC Consortium Partners. All rights reserved. Page 44 of 45

D5.2 Specification of QRL algorithm for inventory management (1.1- Final)

of size 2ε(p − 1) is just 2ε. With the additional assumption that |X| = nc ≥ log1−2ε(δ/2) (and assuming
ε < 1/2), we get:

Pr
(|s′ − s|
p− 1

≥ ε
)
≤ (1− 2ε)log1−2ε(δ/2) =

δ

2

Lemma 7 and Lemma 8 can be used to prove:

Corollary 1. For a training set of size nc such that c ≥ max
{
logn(8/δ), logn

(
log(δ/2)
log(1−2ε)

)}
, a t ≥ 3c in the

definition of ∆, and a number of circuit evaluations per inner product R ≥ 4n2(t+c)

δ , then our optimization
algorithm returns a variational parameter gs

′
such that

Pr
(|s′ − s|
p− 1

≤ ε
)
≥ 1− δ

From here, we notice that, when we apply Corollary 1 for ε′ ≤ ∆
2 , our optimization algorithm returns an s′

such that, with probability 1− δ, the set Is′ is equal to Is and is of size (p− 1)(1− 2∆). In the event where
|s′ − s|/(p− 1) ≤ ε′ ≤ ∆

2 , we can hence bound the accuracy of the noisy classifier:

Acch̃s′
(fs) =

1

p− 1

∑

x∈X
Pr
(
h̃s′(x) = fs(x)

)

≥ 1

p− 1

∑

x∈Is
Pr
(
h̃s′(x) = fs(x)

)

≥ (1− 2∆) min
xi∈Is

Pr
(
|ei,s′ | ≤

∆

2

)

≥ (1− 2∆)

(
1− 4

∆2R

)

= 1−
(
2∆

(
1− 4

∆2R

)
+

4

∆2R

)

with probability 1− δ.
We now set t ≥ max {3 logn(8/δ), logn(16/ε)}, ε′ = n−t and R ≥ max

{
4n2(t+c)

δ , 128ε3

}
, such that 2ε′ =

2n−t ≤ ∆ ≤ 4n−t ≤ ε
4 ,
(
1− 4

∆2R

)
≤ 1 and 4

∆2R ≤ ε
2 .

Using these inequalities, we get
Acch̃s′

(fs) ≥ 1− ε

with probability 1− δ, which proves Theorem 3.

© NEASQC Consortium Partners. All rights reserved. Page 45 of 45

	1 Executive Summary
	2 Introduction
	2.1 Contributions
	2.2 Related work

	3 Parameterised quantum policies: definitions and learning algorithm
	3.1 Quantum computation: a primer
	3.2 The raw-PQC and softmax-PQC policies
	3.3 Learning algorithm
	3.4 Efficient policy sampling and policy-gradient evaluation

	4 Performance comparison in benchmaking environments
	4.1 raw-PQC v.s. softmax-PQC
	4.2 Influence of architectural choices

	5 Quantum advantage of PQC agents in RL environments
	5.1 Quantum advantage of PQC policies over any classical learner
	5.1.1 SL-DLP
	5.1.2 Cliffwalk-DLP
	5.1.3 Deterministic-DLP

	5.2 Quantum advantage of PQC policies over DNN policies
	5.3 PQC-generated environments
	5.4 Performance comparison

	6 Applicability to inventory management and other industrial problems
	7 Conclusions
	List of Figures
	List of Tables
	Bibliography
	A Appendix
	A.1 Derivation of the log-policy gradient
	A.2 Efficient implementation of softmax-PQC policies
	A.2.1 Efficient approximate policy sampling
	A.2.2 Efficient estimation of the log-policy gradient

	A.3 The role of trainable observables in softmax-PQC policies
	A.3.1 Training the eigenbasis and the eigenvalues of an observable
	A.3.2 The power of universal observables

	A.4 Environments specifications and hyperpameters
	A.5 Deferred plots and shape of policies learned by PQCs v.s. DNNs
	A.5.1 Influence of architectural choices on raw-PQC agents
	A.5.2 Shape of the policies learned by PQCs v.s. DNNs
	A.5.3 Additional numerical simulation on the CognitiveRadio environment

	A.6 Supervised learning task of Liu et al.
	A.7 Proof of Theorem 1
	A.8 Proof of Lemma 5
	A.8.1 Upper bound on the value function
	A.8.2 Lower bound on the value function
	A.8.3 Bounds for classical hardness and quantum learnability

	A.9 Proof of Lemma 6
	A.9.1 Proof of classical hardness
	A.9.2 Proof of quantum learnability

	A.10 Construction of a PQC agent for the DLP environments
	A.10.1 Implicit v.s. explicit quantum SVMs
	A.10.2 Description of the PQC classifier
	A.10.3 Noisy classifier

	A.11 Proof of trainability of our PQC agent in the SL-DLP environment

