

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 951821

© NEASQC Consortium Partners. All rights reserved. Page 1 of 12

NExt ApplicationS of Quantum Computing

Initial release of the open-source
libraries

Document Properties

Contract Number 951821

Contractual Deadline M25

Dissemination Level Public

Nature Report

Edited by : Simon Martiel (Atos)

Authors Simon Martiel (Atos)

Reviewers Alfons Laarman (ULEI), Mohamed Hibti (EDF)

Date 30/09/2022

Keywords Open-source, Applications

Status Final

Release 1.2

myQLM specifications to support Hardware platforms
Release - Final

© NEASQC Consortium Partners. All rights reserved.

Page 2 of 12

History of Changes

Release Date Author, Organization Description of Changes

 1.0 07/09/22 Simon Martiel (ATOS) Initial release for review

 1.2 26/09/22 Simon Martiel (ATOS) Implementation of the reviews

myQLM specifications to support Hardware platforms
Release - Final

© NEASQC Consortium Partners. All rights reserved.

Page 3 of 12

Table of Contents

1. EXECUTIVE SUMMARY.. 4

2. CONTEXT ... 5

2.1. PROJECT ... 5

2.2. WORK PACKAGE ... 5

3. PROPOSED LIBRARY STRUCTURE .. 6

3.1. LIBRARY TEMPLATE ... 6

3.2. PACKAGING TOOL – SETUP.PY .. 7

3.3. LINTING AND CODING STANDARDS ... 7

3.4. UNIT TESTING ... 7

4. DOCUMENTATION .. 9

5. UNIT TESTING AND CONTINUOUS INTEGRATION ... 10

6. STATUS OF THE LIBRARIES ... 11

7. LIST OF FIGURES... 12

myQLM specifications to support Hardware platforms
Release - Final

© NEASQC Consortium Partners. All rights reserved.

Page 4 of 12

1. Executive Summary

This report summarizes deliverable 3.3: initial release of open-source libraries. Its goal is to provide an
insight on the rationale behind the release of the open source libraries developed in the project and
provide details on the various steps taken to help and coordinate these releases.

Before diving into the technical details, let us introduce the methodology as specified in the initial
proposal.

1. The libraries will focus on circuit-based programming

2. The programming language will be myQLM python (pyAQASM)

3. Bull will act as the integrator of the libraries, as in Bull will notify developers when new bugs

are introduced due to changes in the core quantum programming library

4. Following the best practice in software engineering, continuous integration (CI) will be used.

The CI platform is in place and operated by Bull.

5. Every 4months, the WP leaders and Bull will synchronize on the UC developments and will

identify candidates for additional libraries, in full agreement with the partners who developed

the code.

6. During the project, the libraries (source codes and compiled) will be made public outside only

once they have reached a correct level of integration quality. By default, no external

contribution will be possible until the end of the project, in order to avoid disorganizing in the

use case developments. External change requests may be allowed, but without any warranty

7. The library source code is required to be documented and accompanied by application

examples, accordingly to the standard coding best practices

Points 6 and 7 are here to ensure best practice and user experience. Points 1 to 5 were decided
during proposal redaction and ensure a uniformity of the released libraries: they are all supposed to
rely on the same core package, thus allowing for interoperability between them.

myQLM specifications to support Hardware platforms
Release - Final

© NEASQC Consortium Partners. All rights reserved.

Page 5 of 12

2. Context

2.1. Project

One of the core objectives of the NEASQC project, is the development of applicative, quantum based,
open-source, software libraries. Each of these libraries develops one range of applications of quantum
computing to industrial use cases.
One of the roles of WP3 is to guide the development and release of these libraries. It gives basic
coding guidelines and support tools to the different partners to achieve a relative homogeneity in the
code and quality of the various libraries. This includes: providing a space to publish the code of the
library (here, a project on github), providing coding guidelines and tools to assess their
implementation, providing automated testing support for regression testing, etc.
This report details the tools put in place to implement all of software engineering aspects of the work
package.

2.2. Work package

As previously introduced WP3 activities serve the project as technical enabl ing activities that need

to happen across the project’s use cases. In addition to the points mentioned before and going in

more detail, Tasks 3.2 and 3.3 deal with the provision of application centric benchmarks and the

software bridge between applications and hardware platforms. On the other side, Task 3.3, is

responsible for the management and standardization of the applicative libraries of the project.

myQLM specifications to support Hardware platforms
Release - Final

© NEASQC Consortium Partners. All rights reserved.

Page 6 of 12

3. Proposed library structure

Let us start by describing the proposed structure (or template) for the open source libraries.
All the libraries are hosted on github under the project named NEASQC. Bull added a template library
to this project, which consortium partners can fork it in order to start the development of their libraries.

The template assumed that the libraries would be developed in Python (as implicitely implied by the
first methodology points). We thus adopted a very standard packaging tool for python called
setuptools, that has the merits of being compatible with pip and thus with the package repository pypi.

3.1. Library template

The template assumed that the libraries would be developed in Python (as implied by the first
methodology points). We thus adopted a standard packaging tool for python called setuptools, that
has the merits of being compatible with pip and thus with the package repository pypi.

The template further stipulates the following directory structure:

Figure 1: directory and file structure of the library template

The doc directory contains the basic files in order to generate a standardized documentation (using
the standard tool sphinx) for the library.

The misc directory is dedicated to files that are not per se part of the library. By default it contains a
single file containing a configuration for the linting tool pylint (see below).

The my_lib directory is a place-holder for the main directory of the library that will later contain the
source code. It is initialized with a basic library template (the __init__.py and test_my_lib.py files).

The tests directory contains the unit tests of the library.

https://github.com/
https://github.com/NEASQC
https://pypi.org/
https://pypi.org/

myQLM specifications to support Hardware platforms
Release - Final

© NEASQC Consortium Partners. All rights reserved.

Page 7 of 12

The README.md file contains a description of the linting requirement and build procedure (see
below).

The setup.py file contains the package declaration (i.e. name, version, authors, dependencies, build
procedure, etc).

3.2. Packaging tool – setup.py

As mentioned above, we rely on a, now standard, tool called setuptools. This tools is a python library
that contains all the necessary routines in order to build a python package from a collection of source
files.
It can build different type of achives or packages, and even, if necessary, trigger compilation of C or
C++ dependencies of the Python library. Moreover, the standard Python package management tool
pip can use setuptools configurations to intall a library directly from the sources. As such, this is the
obvious choice for Python library packaging.

Our setup.py file is minimalistic by covers installation and testing of the library. Figure 1
shows the default content of this file. The setup method contains all the meta data of the library (pretty
explicitly), while the PyTest class is a helper class addition a new recipe to the tool in order to
automatically run all tests present in the project. This allows the developer to either include the unit
tests in the tests directory, or directely in the source code of the library (as advised in some modern
approach of software engineering).

3.3. Linting and coding standards

In order to improve the quality of the code across the libraries, we also provided advice and support to
the library developers on the coding standards to adopt via some regular meetings with the different
partners. This was done mainly via the usage of a linting tool. This type of tool is used to specify to the
user which portion of the code is seemingly of bad quality. The linting tool we advised is called pylint.
It follows a certain number of community standards, detect transgression, and provides a detailed
report and a global grade (between 0 and 10).
The typical rules enforce variable naming style (CaML case vs. snake case), the presence of
documentation, the number of local variables used, the length of the declared functions, etc.

We recommended the developers to reach a grade of 9/10 which guarantees a decently good code
(we usually require 9.9 or 10 for industrial grade code).
Of course, this grade is only indicative and does not necessarily correlate with direct code quality,
however, for inexperienced developers, it constitutes a faithful indicator.

3.4. Unit testing

As mentioned above, we required the library to be package with unit tests. This ensures an efficient
detection of regressions, especially for applicative libraries that usually rely on many different libraries.
We implemented a basic testing class using the setuptools and pytest libraries. It can automatically
detect tests present in the source files or in the tests directory (see Figure 1).

myQLM specifications to support Hardware platforms
Release - Final

© NEASQC Consortium Partners. All rights reserved.

Page 8 of 12

Figure 2: default setup.py content

myQLM specifications to support Hardware platforms
Release - Final

© NEASQC Consortium Partners. All rights reserved.

Page 9 of 12

4. Documentation

We created a repository, called neasqc.github.io in the NEASQC github project dedicated to
generating a common documentation for the libraries. This repository hosts the generated html
documentation for the libraries. These html files are updated by actions located in the libraries
repositories (see next section).

Figure 3: structure of the html documentation

The documentation contains a trivial index.html, and additional directories for each of the libraries that
provides documentation.

myQLM specifications to support Hardware platforms
Release - Final

© NEASQC Consortium Partners. All rights reserved.

Page 10 of 12

5. Unit testing and continuous integration

To facilitate regressions and bugs detection, the template library was also equipped with a basic
continuous integration action, directly handled by github.
This action is triggered every time a new version of the code is pushed. It consists in running two
linting tools to provide a quality grade for the repo, and then running the unit tests of the repository via
the “test” recipe implemented via the setuptools library.
Another action builds the documentation and updates the main documentation repository.

These actions are specified via .yaml configuration files (as required by github).

Having the unit testing embedded in an automated action allows to avoid regressions in the typical
situation where a developer makes changes and run tests in its private environment, failing to detect
bugs due to missing or outdated dependencies.

myQLM specifications to support Hardware platforms
Release - Final

© NEASQC Consortium Partners. All rights reserved.

Page 11 of 12

6. Status of the libraries

As of today, the NEASQC github project hosts 7 different repositories:

- The library template “lib_template”
- The documentation content “neasqc.github.io”
- 5 released libraries

The currently released libraries are the following:

- NEASQC/FinancialApplications
- NEASQC/Variational_Algorithms
- NEASQC/ft-2-quantum-sat (corresponding to D6.6: QPSA Divide and quantum open source

software)
- NEASQC/D4.2 (corresponding to D4.2: QCCC Alpha)
- NEASQC/WP6_QNLP (corresponding to D6.7: QNLP alpha prototype)

These mostly correspond to pre-releases (or alpha prototypes). Most of these repository meet all the
requirements described in this document and constitute solid milestones to the final releases.

https://github.com/NEASQC/FinancialApplications
https://github.com/NEASQC/Variationals_algorithms
https://github.com/NEASQC/ft-2-quantum-sat
https://github.com/NEASQC/D4.2
https://github.com/NEASQC/WP6_QNLP

myQLM specifications to support Hardware platforms
Release - Final

© NEASQC Consortium Partners. All rights reserved.

Page 12 of 12

7. List of Figures

Figure 1: directory and file structure of the library template .. 6

Figure 2: default setup.py content ... 8

Figure 3: structure of the html documentation ... 9

