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Rihards Krišlauks, Tilde
Venkatesh Kannan, ICHEC

Reviewers Vedran Dunjko, ULEI
Andrés Gómez, CESGA
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1. Executive Summary

The NEASQC project aims at demonstrating and advancing the capabilities of NISQ-era devices through
the development of practically-relevant use-cases. Under the category of Symbolic AI and Graph Algorith-
mic algorithms, one of the use-cases that is being developed is for Quantum-enabled Natural Language
Processing (QNLP). The objective of the QNLP use-case in NEASQC is for the investigation, development
and comparison of existing methods in classical NLP with a QNLP approach for encoding and processing
sentences in a hybrid classical-quantum workflow.

For this, deliverable D6.1 “QNLP design and specification” was presented in M6 with an overview of the
background and existing approaches for classical NLP and quantum NLP along with a detailed illustration
of the proposed QNLP software architecture solution and methods for testing and benchmarking the QNLP
implementation.

Deliverable D6.3 “QNLP pre-alpha prototype” is the first version of the QNLP software (pre-alpha prototype)
which is primarily aimed at assessment within the NEASQC project. D6.3 implements a first version of
the modules for generating training datasets (composed of sentences of specific grammatical structures),
quantum circuits for training using single sentences and whole datasets, and classical NLP approaches for
evaluation. This report accompanying D6.3 provides an overview of the currently implemented modules
along with access and usage details of the QNLP pre-alpha prototype.
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2. Background and approach

Following the effectiveness of variational algorithms for NISQ devices, we intend to use methods for state
preparation and encoding of corpus data, along a similar line to that of (Coecke et al., 2021) and (Me-
ichanetzidis et al., 2020). Given the tensor-network-like relationships for describing sentence relationships,
we can aim to take advantage of this formalism by representing the encoding quantum corpus state as a
matrix-product state (MPS), with operations performed to evaluate transforms and contractions using ma-
trix product operators (MPO), as discussed in (Biamonte & Bergholm, 2017)(Orús, 2014)(Huggins et al.,
2019)(Bai et al., 2020).It is important to note that in this case, using high bond dimension states is essential
to leverage quantum advantage.

Operations on the tensor network can be optimised to run well on both classical systems for verification,
analysis and comparison of the methods. For this, we also make effective use of the variational algorithms
that have been offering great promise for NISQ devices, given their tolerance towards noise. As such, by
exploiting the state preparation capabilities of variational models, and with the representability of tensor net-
work models, we expect one can prepare states to offer a large area of exploration and data representation
methods, for NLP and beyond.

2.1. Pregroup grammars

A pregroup grammar is a mathematical model of natural language grammar introduced by Lambek in 1999.
A pregroup is a structure G = (G,≤, ·, l, r, 1) such that (G, ·, 1) is a partially ordered monoid, l and r are
unary operations on the elements of the algebra G, satisfying the inequalities:

al · a ≤ 1 ≤ a · al and a · ar ≤ 1 ≤ ar · a,

for all a ∈ G. The elements al and ar are called the left adjoint and the right adjoint, respectively, of a.

A pregroup grammar is a grammar formalism consisting of a lexicon of words, along with a set of types
which generates a pregroup, and also a mapping that relates words to a set of types.

We have then a set of types (in this case n and s), which generates the preordered algebra G through the
(≤, ·, l, r) operations. This gives as a result a set of categories, in the theoretical sense, that are mapped
to parts of speech. For example, we have nouns assigned to category n, or transitive verbs assigned to
category nr · s · nl.

2.1.1. DisCoCat model

The DisCoCat model, introduced by (Coecke et al., 2010), uses pregroup grammar and category theory to
combine the benefits of two approaches to linguistics: categorial grammar and distributional semantics.

Whereas in classical NLP the distributional approach has been successful, leading to complex models such
as the Transformer (Vaswani et al., 2017), or RNNs, the DiscoCat model uses the structure of quantum me-
chanics to add the insight of categorical grammar to learning models, and not relying only in a distributional
approach.

In the DiscoCat model, words are represented as quantum states. These states can be viewed as tensor
following Penrose notation, their legs given by the categories they represent. The bond dimension is deter-
mined by the parameterization. Then, some contractions are done between the proper legs as shown in the
diagrams, following pregroup grammar partial ordering rules, to form different sentence structures (Coecke
et al., 2020) (Coecke et al., 2010).

This way, we can have sentences embedded as quantum states, and comparing sentences of different
sizes and structure, as they will always be tensor states with legs corresponding to the dimensionality qs of
the sentence category s.

To solve the problem of implementing this model in quantum computers, we rely on variational algorithms
and MyQLM simulator as a backend for the code (Atos, 2021). These algorithms, which are leading the
NISQ era, are widely used given the current limitations of quantum devices in terms of qubits and circuit
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depth (Bharti et al., 2021). They perform the optimization part on classical computers, and use the quantum
machines only to prepare and measure the quantum states (Cerezo et al., 2020).
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3. Proposed NLP task and implementation

In the QNLP pre-alpha prototype, we implement sentence classification into true or false categories which
is also used as the benchmarking task. In this approach, we are also able to select the word that fits best a
sentence with a missing word, as we can compare the level of truthfulness of the sentences when we input
a set of words. This second example is expected to be implemented for the alpha prototype (D6.7 in M20).
The training and test datasets consist of short simple sentences stating facts about some simple domain,
in this case the animal kingdom. We have adapted the dataset used by (Toumi & Koziell-Pipe, 2021) but
supplement it with additional false sentences. The true and false sentences are correspondingly labeled.
We keep the dataset size relatively small — on the order of 100 sentences.

The motivation for using a manually created dataset for the pre-alpha prototype is twofold:

1. It is unlikely that we will be able to filter some existing large datasets, containing a broader class of
sentences, down to something that’s suitable for ingestion by the pre-alpha prototype.

2. It is hard to randomly generate a natural-looking synthetic datasets that wouldn’t invalidate the use of
pre-trained word embeddings.

3.1. Mathematical representation of the problem

Following the philosophy of the DisCoCat model, sentences can be represented graphically as shown in
Figure 1 for a transitive sentence consisting of NOUN-TVERB-NOUN:

Figure 1: Diagram for transitive sentence

While in Figure 1 a simple diagram is shown, Figure 2 illustrates the model for more complex sentences
(an intransitive sentence with a preposition) with a different structure and parts of speech. It can be seen
how the states involved have more tensor legs, the number of contractions needed increase and the word
categories found are more complex for this second example. As will be clear later when we show how
these diagrams are translated to quantum circuits, the number of qubits needed for the sentence increase
as the sentences are longer and more complex. The number of parameters to train becomes large if we use
several qubits for each category and have an extensive vocabulary involved. Also, creating these diagrams
from the sentences will require coding pregroup grammar rules to detect the contractions automatically.
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Figure 2: Diagram for intransitive sentence with a preposition

Here, the triangles pointing upwards are quantum states or kets, and the lines are correspond to tensor legs.
A triangle upside down would be a quantum effect or a bra. The cups, which we refer to as contractions,
are the result of inverting the triangles corresponding to nouns, and applying projective post-processing to
get the desired quantum states. Figures 3 and 4 illustrate these objects in terms of the circuit model of
quantum computing (Meichanetzidis et al., 2020).

Figure 3: The quantum state Ansatz for the DisCoCat model used in our implementation.

Figure 4: A cup or contraction in terms of quantum gates.

3.2. Quantum circuits

With the information above, the quantum circuits for different sentences can be built. Following the Ansatz
presented in Section 3.1, a quantum circuit embedding the transitive sentence shown in Figure 1 would
look as shown in Figure 5.
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Figure 5: Quantum circuit for a transitive sentence.

Here, the part of the circuit to the left of the blue dashed line corresponds to word preparation (or the
triangles in DisCoCat diagrams), and the part to the right corresponds to cup contractions. The orange
dashed lines separate words.Let qx be the number of qubits we use for a certain category x. This will be
the dimensionality of that leg, and it will define how many qubits are needed to encode a word. The image
above corresponds to a choice of qn = 2 and qs = 1.

All the qubits are then measured. We are interested in the output states where all qubits are 0 but the one/s
corresponding to the s leg, as is derived for the shape of the cups in terms of gates. This or these qubits
are the ones carrying the truth value of the sentence, being a False sentence when the value is 0 and a
True sentence for value 1. This output is then compared with the label of the sentence within the dataset.

3.3. Training pipeline

For training the model parameters we rely on the SciPy package. Currently, Atos myQLM does not support
custom cost functions for model training. The ScipyMinimizePlugin is a particular implementation of
the Optimizer class which is capable of optimizing the energy or expected value of an observable given
a set of parameters in a quantum circuit.

The goal of our implementation is different, as we are selecting specific states and calculating the probability
of occurrence of these states against others. As QLM Optimizer is using SciPy under the hood, this different
approach to the learning aspect could eventually open a possibility to contributing to QLM development
including custom cost functions for datasets.

Cross entropy is used for the cost function, as it is commonly used for binary classification tasks. ’False’
sentences will be labelled as 0, and ’True’ sentences labelled as 1.

Let yi be the truth value of the ith sentence, and ŷi be the probability of the sentence qubit being 0 in the
quantum circuit for that sentence. Then, we define the cost function c(y, ŷ) as:

c(y, ŷ)

{
y = False −→ c = − log (ŷ)

y = True −→ c = − log (1− ŷ)

For a dataset consisting of N sentences, the loss function L corresponding to the dataset will be:

L =

∑
i c(yi, ŷi)

N

The objective then is to use a variational method to find the angles that can be used to encode the
words in a way that when running the quantum circuits for a set of sentences, their truth value can
be guessed. The "COBYLA" optimizer has been used for this task, as it has been found to provide

© NEASQC Consortium Partners. All rights reserved. Page 9 of 23



D6.3 WP6 QNLP Pre-Alpha prototype (1.0- Final Review)

the best convergence among all the methods available in SciPy. tol and rhoberg parameters of
scipy.optimize.minimize are adjusted to yield the best convergence, although for larger datasets
it is not always achieved.

© NEASQC Consortium Partners. All rights reserved. Page 10 of 23
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4. Pre-alpha prototype implementation

For D6.3, the focus is on developing a working pipeline to show a proof-of-concept implementation of the
tasks described in Section 3, and in the subsequent prototypes will focus on the QNLP modules that were
outlined on (Villalpando et al., 2020). We believe that the C4 diagram is a good starting point and a
guideline for the development, but the final structure will be determined by the evolution and necessities of
the package.

4.1. GitHub repository

For the internal review, the code for the QNLP pre-alpha prototype is hosted in ICHEC Git repository. The fol-
lowing link is for the current tag proposed for this release: https://git.ichec.ie/neasqc-qnlp/wp6 libtemplate/
-/tree/9959575b8909e193af3c334c642e1c7825379e4a/. This can be downloaded for a local copy as zip
file or using

git clone https://git.ichec.ie/neasqc-qnlp/wp6 libtemplate.git

in a terminal. The files will be then downloaded in the terminal directory. If Git is not installed in your
computer, you may download it from the following link: https://git-scm.com/downloads.

After the review the code for the QNLP pre-alpha prototype will be hosted in the NEASQC GitHub repository,
which still needs to be populated and will be made public at the end of the review process.

4.1.1. Installation guide and dependencies

Instructions for setting up a Python environment to be able to run the developed software are provided in the
README.md file in the project’s repository. The instructions describe software dependency and language
model installation for the project.

4.1.2. C4 diagram and developed modules

Figure 6 presents the proposed software for the QNLP use-case. The modules under development in D6.3
(the pre-alpha prototype) are DataPreparation and Quantum. A first version of SoftwareTesting
and Benchmark will be available following the delivery of D6.3 to test both the Atos GitHub integration
library repository template and the .json file according to the methodology proposed for application-centric
benchmarks in Task 3.3.

4.1.3. Dataset generation

Dataset generation is implemented in the DataPreparation module. It defines 112 sentences which
can optionally be randomized, split into training and test datasets and output to JSON. This functionality is
implemented in the following submodules:

• gen animal dataset.py: It defines the dataset and provides a command line interface to outputing it.

– function generate dataset(seed) : Generates a list of sentences, sentence types and their
truth values. Sentences consist of facts about animals.

* Parameters:

· seed: Optional[int] = None if a seed is provided, the returned list is shuffled; the seed is
used to initialize the random number generator

* Return: list[tuple[str, str, bool]] the dataset – a list of sentence, sentence type, sentence truth
value tuples

• gen train test split json.py: provides a command line interface to randomize and split the dataset
into train and test subsets; outputs the result as JSON.
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Figure 6: C4 architecture of the package

4.1.4. Quantum Computing

The Quantum module, corresponding to Quantum Computing module in the diagram, has the goal of re-
ceiving the files generated by the data preparation module and processing the data to write the corpus as
quantum states and train a model to solve the selected NLP task, in this case assert the veracity of a set of
sentences. The full model optimization is coded under this module. The classical optimization of the circuit
and the implementation of the DisCoCat model, despite not being fully quantum related, are implemented
here. The following components have been developed for the quantum computing module:

• dictionary.py: It contains all the grammar-related information. The categories and words supported,
the number of qubits used for the model, and the assignation of word to categories are here.

– class PartOfSpeech(part,cats) : An object containing the information about the parts of
speech and how to map them to a set of categories for the DisCoCat model.

* Parameters:

· parts: list[str] Parts of speech supported. Examples are "NOUN", "TVERB",
"PREP",...

· cats: list[str] Categories for each part of speech. Example: ["nr", "s", "nl"]

– class QuantumDict(qn,qs) : An object containing the words used in the model and useful
information about word properties.

– Parameters:

* qn: int Number of qubits per n category.

* qs: int Number of qubits per s category.

* partsOfSpeech: obj: PartOfSpeech The parts of speech associated with the words in the
dictionary.

* dictionary: dict A dictionary of with the words in the dataset. It can contain either
QuantumWord objects or regular words. Word parameters and number of qubits are in-
cluded in this dictionary.

© NEASQC Consortium Partners. All rights reserved. Page 12 of 23
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* nlp: Obj: Spacy language model The English NLP model used to parse the tokens if pro-
vided

– class QuantumWord(token,wordstring, wordtype)

– Parameters:

* token: Obj: Spacy token Spacy token of the word we want to create.

* wordstring: str String of the word we want to create. Provide instead of a Spacy token.

* wordtype: str Part of speech corresponding to the word. Provide if a string is given, not a
token.

• sentence.py: Through this file is processed all the information regarding the sentences in a dataset.
Its methods are used to build the quantum circuits correctly according to sentence structure and the
words involved.

– class Sentence(sentence,dataset, dictionary, label, stype)

– Parameters:

* sentence: str The sentence string.

* dictionary: dict A dictionary with the words in the sentence. These words have the relevant
information for building the quantum circuits.

* qubitsarray: list A list with the qubits needed for creating the circuit in a specific shape
according to word distribution.

* categoriesarray: list A list with the categories needed for creating the circuit in a specific
shape according to word distribution.

* catqubits: list a list with the qubits associated with each category.

* stype: int A code to provide the sentence structure.

* label: int The truth value of the sentence.

• circuit.py: It is an interface between Atos simulator backend and thee DisCoCat implementation for
grammar. It takes care of building the circuits, submitting the jobs and processing the results.

– class CircuitBuilder(layers,parameterization, random)

– Parameters:

* layers: int Number of parameterization layers in the circuits. Only 1 is implemented.

* parameterization: str The shape of the Ansatz. Only ’Simple’ is implemented.

* result: Obj: Result A QLM Result object with the outcome of submitting the job to the
backend.

* qlmprogram: Ob: Program A QLM Program object with the circuit for a sentence.

* random: bool Either we want to initialize parameters randomly or loading for a file. Only
random = True is implemented.

• optimizer.py: It takes care of the classical optimization. SciPy is used under the hood to train the
model, and the custom cost functions and criteria for the optimization is provided here.

– class ClassicalOptimizer(optimizer, tol maxiter)

– Parameters:

* optimizer: str The name of the SciPy optimizer to use.

* tol: float tol parameter for the SciPy optimizer.

* maxiter: int The maximum number of iterations.

* itercost: list A list that records the cost function value for each iteration.

© NEASQC Consortium Partners. All rights reserved. Page 13 of 23
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* iteration: int A index of the current iteration

• loader.py: Although not fully related with the quantum algorithms, it is needed to process the output
files from the DataPreparation module. It creates Pandas.DataFrame objects so the dataset
can be easily processed for the training.

© NEASQC Consortium Partners. All rights reserved. Page 14 of 23
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5. Examples and Results

The modules and examples implemented in D6.3 are a first version of the targeted QNLP implementation.
There is a large margin of improvement in the subsequent updates:

1. Refactoring the code to leverage the speedup of libraries such as NumPy or Numba is essential.

2. Refactoring the code for better maintainability in the future is also needed.

3. A more general implementation of pregroup grammars and category theory is recommended for better
generalization, instead of providing the rules for building specific sentence structures.

For these reasons, we are not focusing on benchmarking or performing noisy simulations yet, and just give
an overview of how the over algorithm and workflow is intended.

Two example workflows and their results are available in two notebooks under misc/notebooks direc-
tories. Here, it is considered that qn = qs = 1, as the number of parameters for the chosen Ansatz and
implementation become large and the training is harder. These restriction can be changed when creating
the QuantumDict object.

5.1. Quantum sentence training

Now, we discuss the results of training single sentences and datasets. These examples can be found in
more detail in the Jupyter notebooks at misc/notebooks. We need to optimize the values of the rotations
found in the Ansatz, that will be our model parameters so the truth values of sentences can be predicted
running the corresponding quantum circuit. The cost function and other details are in section 3.

5.1.1. Single Sentence training

First, the training of a single sentence with the structure NOUN-IVERB-PREP-NOUN is shown. The chosen
sentence is sentence is ”dog barking at cat”, which corresponds to the structure in figure 2. For the number
of qubits qn = qs = 1, which results in a total of 9 qubits for building the sentence circuit. Figure 7 shows
the evolution of the cost function where cross entropy was used.

The shape of the cost function may be different for different runs of the algorithms, as the seed for randomly
generating the parameters is changing and the initial value of the cost function may vary. In any case, for
one sentence convergence is fast and always successful.

5.1.2. Training of whole datasets

The datasets used for the training are generated using the DataPreparation module. The output is a
.json file that is processed to create DataFrames. Several of them are available under the Datasets folder.
This example can be seen in more detail in the notebook called Dataset example.ipynb.

Expanded Transitive dataset.json consists of sentences of type:

• NOUN-TVERB-NOUN

• NOUN-IVERB

• NOUN-IVERB-PREP-NOUN

A sample of the sentences shown in Figure 8.

Another dataset used in the example is available in Expanded Transitive dataset.json. For this, the
vocabulary and possible sentences are slightly modified, trying to improve the performance of the algorithm
making it easier to train the model. Only transitive sentence are included in this dataset. A sample of this
dataset is shown in Figure 9.
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Figure 7: Evolution of the cost function with the iterations. At the end of the training, the sentence has a
high probability of yielding a ”False” result, as was expected

Figure 8: DataFrame of the full dataset with all the sentence types supported.

Once the model have been trained, we update the parameters and see if the sentences labeling is correct.
It is found that for the training dataset most of the sentences are correctly assigned the True or False
category, but we are not that successful with the test dataset.

The difference between the evolution of the cost function for each dataset shows the big impact that the
chosen sentences have in the performance of the model. This suggests that it is worth further investigating
how to create big consistent datasets that can be efficiently trained.

This point is illustrated in Figure 11, where is displayed how well the algorithm performed in assigning the
label to the sentences in the training and test datasets, respectively.

This may be a case of overfitting due to a series of circumstances, that include:

• the high dimensionality of the model parameters vector for the small number of words considered,
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Figure 9: DataFrame with transitive sentences and modified vocabulary.

(a) Evolution of the cost function for the transitive only
dataset.

(b) Evolution of the cost function for the full dataset

Figure 10: Cost evolution for two sentences dataset

(a) Algorithm success for the transitive only dataset. (b) Algorithm success for the full dataset.

Figure 11: Algorithm success for two different sentence datasets.

• the quality of the dataset considered,

• the chosen Ansatz, or

• the classical optimizer used and its fine tuning.

© NEASQC Consortium Partners. All rights reserved. Page 17 of 23



D6.3 WP6 QNLP Pre-Alpha prototype (1.0- Final Review)

5.2. Classical NLP approach

In order to have a baseline to compare against, a classical approach should also be implemented.

The envisaged classical approach for solving the chosen problem consists of two parts:

1. The sentences are vectorized in word embedding representation using some pretrained word embed-
ding model.

2. A classical classifier, such as neural network, is trained on top of these embeddings.

Word embeddings can be generated in two different forms – on word level or on sentence level. The former
approach outputs a vector for each word in a sentence. The latter outputs one vector for the whole sentence.

As a first approach, a sentence vector can be generated by simply taking the average of vectors of each
of the words in the sentence. This approach has the obvious drawback that the sentence embedding does
not depend on the word order.

The word embeddings can be static or contextual, meaning that either the vector for a word depends only on
the given word, or it takes into account a larger context (in this case – the whole sentence) when generating
embedding for a word, respectively.

The approach described above is implemented in a notebook in the misc/notebooks/classical/ di-
rectory. Two different methods of vectorizing are implemented – using BERT (Devlin et al., 2019) and
fastText (Bojanowski et al., 2017) word embedding models. BERT word embeddings are contextual, but
fastText word embeddings are static. Currently, BERT vectorization can output word embeddings only for
the whole sentence and fastText vectorization can output only vectors for the individual words.

For the classification part, a shallow feedforward neural network and a convolutional network are imple-
mented. The architectures of the networks are chosen fairly arbitrary, since in this stage the focus is on
establishing the processing pipeline. Additionally, a non-parametrized classifier which uses the label from
the sentence of the training set which is the closest to the sentence which is currently being tested (i.e.,
1-nearest neighbor algorithm) is implemented.

The results for the different classical algorithms can be seen in Figure 12.

Figure 12: Train and test accuracy of the on the animal dataset. Results for the nearest neighbor, neural
network (NN) and convolutional neural network (CNN) classifiers are shown. BERT/fastText indicates the

vectorisation method used.
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For the sake of comparison, the accuracy of the quantum algorithm can be seen in the image below to
contrast with the classical methods considered below.

Figure 13: Accuracy for the train and test datasets using the quantum algortihm.
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6. Conclusions

While this is an early release, our first implementation of the most popular quantum NLP model, the DisCo-
Cat model, is presented. Preliminary results are shown, that include quantum and classical approaches for
solving the proposed task of true/false classification. This allowed for targeting complications that need to
be solved, evaluating the tools available that we can apply specifically to this problem, and see which are
the points that we can elaborate or improve for future releases.

When comparing the classical and quantum approach, we do not expect to give a quantitative answer yet.
In the notebooks can be seen that the classical algorithm is delivering a better accuracy score for the test
dataset, as the success of the quantum approach when labelling these instance is little. Furthermore,
slight differences to the dataset used in the classical part were introduced to investigate how the number
of sentences, their structure, and the vocabulary used affect the performance of the quantum approach. In
this sense, although we are not contrasting numerically these results, this is a first comparison to build the
classical/quantum benchmark on.

6.1. Limitations

Quantum natural language processing is a fairly new field with no established paradigm. This opens up the
possibility for innovation, but as a small research community the field is not as active as others.

Among the limitations and issues we have found when developing the package, are:

1. Programming pregroup grammars following category theory: In the current implementation, the struc-
ture of the sentence must be provided and the qubits contractions are calculated following rules that
are structure-specific rather than general for any sentence.

2. Creating datasets that are coherent, with a balanced diversity of vocabulary and sentence structures,
keeping a high number of sentences but at the same time not creating ambiguity with confusing
labeling.

3. Running algorithms with higher number of qubits become unfeasible with MyQLM limitations. We
must move to QLMaaS and to the actual simulator device to perform faster and useful simulations.

4. The QLM does not offer a huge number of options for training quantum circuits as other quantum
machine learning platforms such as PennyLane or Tensorflow Quantum do.

5. Although for the pre-alpha prototype we were looking for a functional working code, we are conscious
that refactoring the code would improve the performance dramatically.

6.2. Further work

While we follow the ideas proposed by the DisCoCat model, different approaches are possible that may
have an impact in complex classical NLP algorithms. The application of quantum computing in Transformer
models or recurrent neural networks are exciting topics that we would like to explore (Sipio, 2021) (Bausch,
2020). Next work items for the current implementation and to be solved in shorter-term include:

1. Automatically detect the proper DisCoCat diagram for any sentence, which may require a deeper
understanding of category theory and how to bring that knowledge to actual code.

2. Not relying only in QLM plugins or Scipy but creating optimization methods from scratch that give
more freedom for parameter bounds, tolerance, and so forth. Simultaneous Perturbation Stochastic
Approximation (Bhatnagar, 2013) is one of the targets in that sense.

3. Exploring the effect of noise, gate fidelity and the number of shots in the performance.

4. Refactoring the coding dropping unnecessary methods, loops and any possible duplicity. Also, as
has been stated above, incorporating libraries such as NumPy or Numba would improve the speed
dramatically.
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List of Acronyms

Term Definition
NEASQC NExt ApplicationS of Quantum Computing
QLM Quantum Learning Machine
RNN Recurrent Neural Networks
QNLP Quantum Natural Language Processing
NISQ Noisy Intermediate-Scale Quantum
MPS Matrix Product State
MPO Matrix Product Operator
RNN Recurrent Neural Network
DisCoCat Distributionak Compositional Categorial

Table 1: Acronyms and Abbreviations

© NEASQC Consortium Partners. All rights reserved. Page 21 of 23



D6.3 WP6 QNLP Pre-Alpha prototype (1.0- Final Review)

List of Figures

Figure 1.: Diagram for transitive sentence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2.: Diagram for intransitive sentence with a preposition . . . . . . . . . . . . . . . . . . . 8
Figure 3.: The quantum state Ansatz for the DisCoCat model used in our implementation. . . . 8
Figure 4.: A cup or contraction in terms of quantum gates. . . . . . . . . . . . . . . . . . . . . . 8
Figure 5.: Quantum circuit for a transitive sentence. . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 6.: C4 architecture of the package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 7.: Evolution of the cost function with the iterations. At the end of the training, the
sentence has a high probability of yielding a ”False” result, as was expected . . . . . 16

Figure 8.: DataFrame of the full dataset with all the sentence types supported. . . . . . . . . . 16
Figure 9.: DataFrame with transitive sentences and modified vocabulary. . . . . . . . . . . . . . 17
Figure 10.: Cost evolution for two sentences dataset . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 11.: Algorithm success for two different sentence datasets. . . . . . . . . . . . . . . . . . 17
Figure 12.: Train and test accuracy of the on the animal dataset. Results for the nearest neigh-

bor, neural network (NN) and convolutional neural network (CNN) classifiers are
shown. BERT/fastText indicates the vectorisation method used. . . . . . . . . . . . . 18

Figure 13.: Accuracy for the train and test datasets using the quantum algortihm. . . . . . . . . . 19

© NEASQC Consortium Partners. All rights reserved. Page 22 of 23



D6.3 WP6 QNLP Pre-Alpha prototype (1.0- Final Review)

Bibliography

Atos. (2021). Myqlm documentation. https://myqlm.github.io/
Bai, G., Yang, Y., & Chiribella, G. (2020). Quantum compression of tensor network states. New Journal of

Physics, 22(4), 043015.
Bausch, J. (2020). Recurrent quantum neural networks. arXiv preprint arXiv:2006.14619.
Bharti, K., Cervera-Lierta, A., Kyaw, T. H., Haug, T., Alperin-Lea, S., Anand, A., Degroote, M., Heimonen,

H., Kottmann, J. S., Menke, T., et al. (2021). Noisy intermediate-scale quantum (nisq) algorithms.
arXiv preprint arXiv:2101.08448.

Bhatnagar. (2013). Stochastic recursive algorithms for optimization. simultaneous perturbation methods.
Springer.

Biamonte, J., & Bergholm, V. (2017). Tensor networks in a nutshell. arXiv preprint arXiv:1708.00006.
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information.

Transactions of the Association for Computational Linguistics, 5, 135–146.
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., McClean, J. R., Mitarai, K.,

Yuan, X., Cincio, L., et al. (2020). Variational quantum algorithms. arXiv preprint arXiv:2012.09265.
Coecke, B., de Felice, G., Meichanetzidis, K., & Toumi, A. (2020). Foundations for near-term quantum

natural language processing. arXiv preprint arXiv:2012.03755.
Coecke, B., de Felice, G., Meichanetzidis, K., & Toumi, A. (2021). How to make qubits speak. arXiv preprint

arXiv:2107.06776.
Coecke, B., Sadrzadeh, M., & Clark, S. (2010). Mathematical foundations for a compositional distributional

model of meaning. arXiv preprint arXiv:1003.4394v1.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional trans-

formers for language understanding. Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), 4171–4186.

Huggins, W., Patil, P., Mitchell, B., Whaley, K. B., & Stoudenmire, E. M. (2019). Towards quantum machine
learning with tensor networks. Quantum Science and technology, 4(2), 024001.

Meichanetzidis, K., Toumi, A., de Felice, G., & Coecke, B. (2020). Grammar-aware question-answering on
quantum computers. arXiv preprint arXiv:2012.03756.
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