
NExt ApplicationS of Quantum Computing

D5.1: Review of state-of-the-art for
Pricing and Computation of VaR

Document Properties

Contract Number 951821

Contractual Deadline M9 (31/05/2021)

Dissemination Level Public

Nature Report

Editors Marı́a Nogueiras, HSBC

Authors Marı́a Nogueiras, HSBC
Gustavo Ordóñez Sanz, HSBC
Carlos Vázquez Cendón, UDC
Álvaro Leitao Rodrı́guez, UDC
Alberto Manzano Herrero, UDC
Daniele Musso, CESGA
Andrés Gómez, CESGA

Reviewers Vedran Dunjko, Leiden University (ULEI)
Antonio Villalpando, Irish Center for Hi-End Computing (ICHEC)

Date 24/05/2021

Keywords (Quantum) Finance, Quantum Amplitude Estimation, QCoin,
Derivatives Pricing, Risk Measures, VaR, CVaR

Status Final

Release 2.0

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement No. 951821

© NEASQC Consortium Partners. All rights reserved. Page 1 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

History of Changes

Release Date Author, Organisation Description of Changes

0.1 02/04/2021 Marı́a Nogueiras, HSBC
Gustavo Ordóñez Sanz, HSBC
Carlos Vázquez Cendón, UDC
Álvaro Leitao Rodrı́guez, UDC
Alberto Manzano Herrero, UDC
Daniele Musso, CESGA
Andrés Gómez, CESGA

First draft version

0.2 11/04/2021 Marı́a Nogueiras, HSBC
Gustavo Ordóñez Sanz, HSBC
Carlos Vázquez Cendón, UDC
Andrés Gómez, CESGA

Review chapter 3.
Rewording of section 4.3.1

0.3 16/04/2021 Marı́a Nogueiras, HSBC
Gustavo Ordóñez Sanz, HSBC
Carlos Vázquez Cendón, UDC
Álvaro Leitao Rodrı́guez, UDC
Alberto Manzano Herrero, UDC
Daniele Musso, CESGA
Andrés Gómez, CESGA

Review of all sections

0.4 22/04/2021 Gustavo Ordóñez Sanz, HSBC Executive summary, introduction
and conclusions

1.0 29/04/2021 Marı́a Nogueiras, HSBC
Gustavo Ordóñez Sanz, HSBC
Carlos Vázquez Cendón, UDC
Álvaro Leitao Rodrı́guez, UDC
Alberto Manzano Herrero, UDC
Daniele Musso, CESGA
Andrés Gómez, CESGA

Final review of all sections

2.0 24/05/2021 Marı́a Nogueiras, HSBC
Gustavo Ordóñez Sanz, HSBC
Carlos Vázquez Cendón, UDC
Álvaro Leitao Rodrı́guez, UDC
Alberto Manzano Herrero, UDC
Daniele Musso, CESGA
Andrés Gómez, CESGA

Revised final review after internal
reviewers feedback

© NEASQC Consortium Partners. All rights reserved. Page 2 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Table of Contents

1. Executive Summary 4

2. Introduction 6

3. Classical methods 8
3.1. Pricing of financial derivatives . 8

3.1.1. Financial derivatives and options . 8
3.1.2. Some models for the value of underlying assets . 10
3.1.3. Pricing methods . 11

3.2. Risk measures for derivatives portfolios . 17
3.2.1. Market risk . 17
3.2.2. Classical risk measures: VaR and CVaR . 19
3.2.3. Credit Portfolio Management . 19
3.2.4. Numerical methods . 21

4. Quantum toolkit for finance 23
4.1. Quantum alternatives to Monte Carlo Algorithms for Applications in Finance 23

4.1.1. Introduction . 23
4.1.2. Quantum amplitude amplification and estimation . 24
4.1.3. Quantum coins . 30
4.1.4. An option pricing example adopting amplitude amplification and estimation 34
4.1.5. Applications to risk analysis . 36

4.2. Other methods with quantum computing . 37
4.2.1. Quantum algorithms to solve the Black-Scholes partial differential equation 37
4.2.2. (Quantum) Machine Learning . 40

4.3. Discussion . 42
4.3.1. The loading problem . 42
4.3.2. Scaling to real-world problems . 48

5. Conclusions 50

List of Acronyms 51

List of Figures 52

List of Tables 53

Bibliography 54

© NEASQC Consortium Partners. All rights reserved. Page 3 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

1. Executive Summary

Quantum Computing commenced in 1980’s with the pioneering work of Paul Benioff (Benioff, 1980) who
proposed a quantum mechanical Turing machine. These ideas were also explored by the likes of Richard
Feynman (Feynman, 1982) and Yuri Manin (Manin, 1980) who suggested that quantum computers could
provide advantage over classical computers in certain tasks, such as the simulation of physical systems. In
1994, Peter Shor (Shor, 1994) published a groundbreaking paper demonstrating that a quantum algorithm
could be used to for large integer factorisation in polynomial time, that is, exponentially faster than the
best known classical algorithms. This was followed by Lov K. Grover who proposed a quantum computing
algorithm that promised a quadratic speed up over database searches (L. K. Grover, 1996).

Advances in Quantum Computing hardware technology in recent years have been accompanied by the
acceleration on the development of quantum computing algorithms with applications across many different
use cases in different industry sectors: Automotive, Energy, Logistics, Pharma, Chemical/Manufacturing
and the Financial Services Industry. One of the use cases in Finance comes from the application of Quan-
tum Computing for Derivative Pricing and Derivative Risk Management. The purpose of this document is to
provide a summary of the “state of the art” for these applications.

However, it is important to note that the currently available quantum computers have limited number of
qubits and these suffer from high levels of “noise” which limits the depth and length of the quantum circuits
that can be implemented in real hardware. Therefore, near-term applications focus on implementations of
quantum algorithms in Noisy Intermediate-Scale Quantum (NISQ) computers (Preskill, 2018).

Derivatives contract form one of the fundamental pillars of modern financial markets and are routinely traded
by both financial institutions and traders with a variety of objectives, such as financial risk hedging. A simple
example of financial derivative is a European stock option. This contract provides the derivative holder with
the right to purchase or sell the stock at some time in the future for a fixed price agreed today. Hence,
providing with potential upside (should the stock increase in price at maturity) while limiting the investor’s
downside.

Derivatives pricing theory is the branch of financial mathematics that covers the fair valuation of financial
derivatives such as options. This framework assumes that the underlying security (e.g. a single stock)
follows some random (stochastic) process. The price of the derivative hence depends on the particular
realisation of such process at a given point in time (e.g. the option maturity). The best known example of
option pricing model is the Black-Scholes model (Black, 1976). This model proves that a fair value of an
option can be derived under certain assumptions (e.g. absence of arbitrage, continuous and unlimited long
and short trading).

However, in general the Black-Sholes model is too simplistic to fit actual quoted prices in the market and
other more complex models are used instead, at the cost of requiring numerical approximations to find the
fair price of the derivative. Two main numerical approaches are currently used in the industry, Monte Carlo-
based simulation techniques and partial differential equation (PDEs) approaches. The key advantage of the
former is that it is easy to implement, very general and scales well with the dimension of the problem. On
the other hand, Monte Carlo simulation tends to converge slowly to the required solution. It is also difficult
to obtain risk sensitivities (i.e. how the derivative price depends on changes to the price underlying) using
Monte Carlo. PDEs approaches are generally faster and permit the easy calculation of risk sensitives,
however it is usually a difficult problem to solve PDEs for more complex derivatives, specially those that
depend on several risk factors (curse of dimensionality). Monte Carlo simulation is therefore the tool of
choice for financial risk management where risk metrics need to be estimated at the portfolio level where
thousands of derivatives need to be covered.

Quantum computing, and in particular the Quantum Amplitude Estimation (QAE) algorithm promises a
potential quadratic speed up over classical Monte Carlo approaches but maintaining its main advantages:
easy of implementation and linear scaling to higher dimensions. This document covers these topics in more
detail and presents some new results, such as the application of the “Quantum Coin” algorithms as an
alternative to QAE.

Despite the highly promising advantages of quantum computing for derivative pricing and risk management,
huge challenges remain open for real-world applications. Some of them are technological, such as the
relative small number of qubits currently available and the fact that these are “noisy” (i.e. not always reliable).

© NEASQC Consortium Partners. All rights reserved. Page 4 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Others are more theoretical, such as the lack of understanding on how to load classical information (such
as probability distributions) to quantum registers, or how to represent relatively complex pay-off functions
with quantum circuits that are as small as possible.

© NEASQC Consortium Partners. All rights reserved. Page 5 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

2. Introduction

NExt ApplicationS of Quantum Computing (NEASQC) project has the main objective of developing industrial
use cases that can work on current Near Intermediate Scale Quantum (NISQ) machines and that can create
a rich set of quantum algorithms and libraries. To achieve this aim, the project proposed 9 uses cases
which are grouped in three different topics: chemistry, machine learning and optimization, and symbolic
AI and graph algorithmics. One of the industrial use cases is Quantum Financial Applications Use Case
(UC5). UC5 aims to develop efficient algorithms that could either substitute or redefine Monte Carlo (MC)
techniques in NISQ computers.

Quantum computing for financial applications is a hot topic, with multiple and varied possibilities (see (Orús
et al., 2019) and (Bouland et al., 2020) for recent reviews). The reason for exploring this field of quantum
computing is because current algorithms used by financial institutions demand a high computing capacity
because many of the models do not have analytical solution, needing High Performance Computing to
achieve a fast response of the numerical approximations. Quantum computing promises for some cases
faster responses that can provide solutions to up-to-now intractable problems. This fact motivates that
quantitative finance explores its usage.

The first set of algorithms to be explored inside UC5 corresponds to pricing of financial derivatives and
Value-at-Risk (VaR) computation. In the first case, the objective is to provide the price of an option that
gives the right to sell or buy an asset in a future date at a fixed price. In the second case, the VaR is a risk
measure so that the objective is to minimize the losses of future operations. This report reviews the main
concepts and classical algorithms to address both mathematical problems, as well as the recent advances
to tackle these problems with quantum computing.

The document is divided into two main parts. The first “Classical Methods” Chapter 3 provides a quick
overview of the approaches currently used to price and manage the risk of financial derivatives. Financial
derivatives are contracts whose pay off depends on a particular underlying asset, say a particular company
stock, a foreign exchange, or a given currency yield curve. A simple example of a derivative contract is
a European Call Option on a single equity stock. This contract gives the holder the right to purchase the
stock at some point in the future for a fixed price agreed today. This means that, if at maturity the stock
price increases, the option holder can make a profit by purchasing the stock at the previously agreed price
and selling it in the market at the current, higher, price.

The chapter starts with a review of some basic derivative contracts and their pay off functions. It continues
with some modelling approaches and finally covers two general numerical approaches for derivative pricing:
Monte Carlo and Partial Differential Equations- PDEs (including machine learning approaches). In the
second part of the chapter financial risk management concepts are covered such as Market Risk and
Credit Portfolio Management, as well as key risk portfolio metrics such as Value-at-Risk and Conditional
Value-at-Risk (or Shortfall). Factor models, a key dimension reduction techniques are also covered. The
chapter ends with a review of some of the most important numerical methods in financial risk management.

The second part of the document “Quantum toolkit for Finance” Chapter 4 is a review of the currently known
approaches to implement derivative pricing and derivative risk management in quantum computers. Special
focus is paid to quantum alternatives to classical Monte Carlo. Despite its relative simplicity, Monte Carlo
approaches are widely used for derivative pricing and derivative risk management in financial institutions
mainly due to their general purpose and larger resilience to the “curse of dimensonality”.

One of the key topics covered is the Quantum Amplitude Estimation (QAE) algorithm which is a well known
quantum alternative to Monte Carlo approaches to derivative pricing and which promises a quadratic speed
up over its classical counterpart. In particular, recent enhancements of this algorithm that make it more
suitable for NISQ quantum technology are covered.

A novel approach proposed by the authors and which represents an alternative to QAE is presented in
Section 4.1.3. This approach maintains the promise of quadratic speed up although with a simpler imple-
mentation at the hardware level.

Later in the chapter, quantum methods for solving the derivative pricing model using PDEs are also dis-
cussed.

The chapter concludes with a review of the key remaining challenges for these types of quantum algorithms

© NEASQC Consortium Partners. All rights reserved. Page 6 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

to deliver on their potential advantage. Namely, the “loading problem”, that is the efficient loading of general
probability distributions and pay-off functions to qubit registers. Finally, the “scaling to real-world problem
size” section briefly covers the remaining challenges on how to implement these types of approaches for
real-world applications.

© NEASQC Consortium Partners. All rights reserved. Page 7 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

3. Classical methods

3.1. Pricing of financial derivatives

3.1.1. Financial derivatives and options

In financial markets, a derivative (with price at time t: vt) is a financial contract with future cash flows
depending on the performance of one of several assets (usually referred as underlying asset, or simply
underlying, St).

Examples of underlying assets are stocks, interest rates, exchange rates, credit spreads ... Depending on
the main underlying risk factor, we have equity derivatives, interest rate derivatives, FX derivatives, credit
derivatives, etc.

Options (or contingent claims, or non linear derivatives) are derivatives whose payoffs are non linear func-
tions of the underlying.

The cash flow of the option, as a function of the underlying asset, is called payoff, and is received by the
option holder at the expiring date of the option contract, or before under certain circumstances. The payoff
is usually defined by a mathematical expression, vT = h(T, ST), where h is a function that depends on the
expiry date T and the price of the underlying at the expiry date ST . At any time 0 < t < T , the option price
vt = V (t, St), where V is a function depending on time t and the price of the underlying St that represents
the premium the buyer has to pay to get the rights associated to the option contract.

In derivative pricing mathematical models define the relationship between underlying asset and option
prices, with the objective of calculating the fair value of the options. Typically, standard (more liquid) options
are used for calibration of the model parameters.

While pricing is related to expected cashflows, risk computation is related to a tail scenarios.

In the following, some of the most popular families of options based on their payoffs are described. Similarly,
some of the mathematical models are defined later with the most common numerical techniques to solve
them.

3.1.1.1. European options

A European vanilla option on a underlying asset gives the right but not the obligation to buy or sell the asset
at a given date in the future (T or expiry date) and for a fixed price (which is commonly known as the strike
price K) (Hull, 1997). When the option confers the right to buy at strike price K at time T it is referred to as
a call option, and when it gives the right to sell it is called a put option.

Denoting St as the underlying asset value at time t with t ∈ [0, T], the payoffs of the call and put options at
expiry (or maturity) date T can be calculated as:

cT = max (ST −K, 0) , pT = max (K − ST , 0) (3.1)

Notice that at maturity date t = T these values are known, since the payoff is deterministic and ST is known.
The option pricing problem is to calculate the fair value of the contracts at t = 0, c0 and p0, that will be a
function of the known underlying value S0 and other model parameters (risk-free rate, time to maturity,...).

For example, in Figure 1 options on HSBC stock with expiry date April 30th, 2021 are shown1. The value
of the HSBC stock at that date was 29.16, The calls marked in blue were in the money on that day since
the strike price is below the current value of the stock, however should the value of the stock fall below the
strike price at maturity these options would expire out the money, i.e. with a value of zero. When the value
of the underlying is exactly that of the strike, the option is known to be at the money. In Figure 1, the last
price column refers to the most recent value of the option in the market.

1Data from Yahoo Financials, consulted on Apr. 2nd, 2021.

© NEASQC Consortium Partners. All rights reserved. Page 8 of 57

https://finance.yahoo.com/quote/HSBC/options

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Figure 1: Options on HSBC stocks (the underlying assets) in Yahoo Financials for expiry date of Apr. 30th,
2021

3.1.1.2. American options

Unlike European options, where the option can only be exercised at expiry date T and receive the payoff
(3.1), American options give the holder the right to exercise the call (put) option, i.e. the right to buy (or sell)
the underlying stoke at the strike value at any time te ∈ [0, T] and receive:

cte = max (Ste −K, 0) , pte = max (K − Ste , 0) , (3.2)

which is referred to as the exercise value of the call or the put. Therefore, the value of an American options
is always greater than or equal to its exercise value:

ct ≥ max (St −K, 0) , pt ≥ max (K − St, 0) , (3.3)

otherwise there would be arbitrage opportunities, since a trader could make a riskless profit by selling (or
buying) American and European calls/puts on the stock. While arbitrage opportunities do exist in financial
markets, these are normally short lived and not usually material, therefore option pricing theory assumes
the absence of arbitrage opportunities.

3.1.1.3. Basket options

In previous sections we introduced examples of options that depend on just one underlying asset. Options
that depend on a set of assets are also traded in the financial markets and are known as basket options.
The payoff of a vanilla basket option depends on the value of a set of assets at maturity, that is:

cT = f c(T, S1
T , . . . , S

d
T), pT = fp(T, S1

T , . . . , S
d
T). (3.4)

© NEASQC Consortium Partners. All rights reserved. Page 9 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Some examples of specific payoffs of basket options are:

Call spread option: F (S1, S2) = max(S1 − S2 −K, 0)

Put spread option: F (S1, S2) = max(K − (S1 − S2), 0)

”Best of” type option: F (S1
T , . . . , S

d
T) = g(max(S1, . . . , SdT))

”Worst of” type option: F (S1, . . . , SdT) = g(min(S1, . . . , SdT))

Note that basket options can be either American or European style options, i.e. they can include early
exercise opportunity or not.

At this introductory level, we are going to focus in vanilla contracts only. For vanilla options, the payoffs
only depend on the value of the underlying at expiry date T . Examples of more complicated options are
Asian, where the payoff is determined by the average underlying value or barrier options, where the payoff
depends on if the underlying option value has or not has passed some limits. These non-vanilla options will
not being considered here.

3.1.2. Some models for the value of underlying assets

One of the key ingredients in option pricing is the choice of the dynamics of the underlying stochastic factors.
Although there are a lot of possible choices of factors and dynamics that could be taken into account, in this
review we will focus on the classical Black-Scholes (Black & Scholes, 1973) and Heston dynamics (Heston,
1993) for the underlying asset evolution. This framework can easily be extended to the values of a set of
assets when dealing with basket options.

Notice that these models and stochastic evolution are popular in the context of the Equity asset class.

3.1.2.1. Black-Scholes model

Black-Scholes model allows to compute the value of a derivative product vt = V (t, St) at time t in terms of
the value of the underlying asset St at time t (Vázquez, 2010). In the Black-Scholes model one assumes
that the dynamics of the underlying value St follows a geometric Brownian motion, so that it satisfies the
following Stochastic Differential Equation (SDE):

dSt = µStdt+ σStdWt, (3.5)

where µ is the drift parameter, σ is the stock volatility and dWt represents the increment of a Wiener
process2, also called a Brownian motion. This Brownian motion is introduced within the frame of a filtered
probability space involving a probability measure P .

In the case of basked options, the Black-Scholes dynamics of each underlying asset satisfies:

dSit = µiSitdt+ σiSitdW
i
t , (3.6)

where µi, σi and W i
t are the corresponding drift, volatility and driving Brownian motion of asset i, for

i = 1, . . . , d. Correlations between assets are captured through correlations between their corresponding
Brownian motions, that is dW i

t dW
j
t = ρijdt, ρij being the instantaneous correlation coefficient between

asset Sit and Sjt . Note that correlation coefficient can be time dependent.

3.1.2.2. Heston model

Due to some drawbacks in the classical Black-Scholes model to match prices quoted in the markets (or
calibration), stochastic volatility models replace the constant volatility σ assumed in the BS-model. Con-
sidering two separate processes, one for the value St and another one for the instantaneous variance νt,
this provides us with richer dynamics that can fit market observed prices better. One of the most popular

2A Wiener process is any real valued continuous-time stochastic process

© NEASQC Consortium Partners. All rights reserved. Page 10 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

stochastic volatility models is the Heston model, that assumes the following dynamics for the underlying
asset and its variance:

dSt = µStdt+
√
νtStdW

S
t ,

dνt = κ(θ − νt)dt+ χ
√
νtdW

ν
t .

(3.7)

In the fist equation, µ is the drift parameter and
√
νt is the stochastic volatility. In the second equation, κ is

the mean reversion speed, θ is the long term variance also called the level and χ is referred to as the volatility
of the volatility (vol-of-vol). Finally, two correlated Brownian motions WS

t and W ν
t are considered with

correlation coefficient ρ that capture the dependency between asset value and variance, i.e. dWS
t dW

ν
t =

ρdt.

Extension to a multi-assets dynamics with d assets can be addressed by considering 2d processes corre-
sponding to Heston dynamics for each asset.

3.1.3. Pricing methods

In order to compute the value of European options with one underlying asset, we can use Girsanov theorem3

to work in the aslo known as risk neutral probability measure Q so that the dynamics of the underlying asset
under this measure is obtained by replacing the drift µ by the risk free rate r in 3.5. Under measure Q, the
value of the option is a martingale process, that is, the conditional expected value of the discounted value
of the derivative is constant through time. Next, we use Ito lemma4 and the martingale property, so that the
option value vt = V (t, St) can be obtained as a conditional expectation of the form:

V (t, St) = e−r(T−t)EQ[h(T, ST)|Ft], (3.8)

such that St is an stochastic process satisfying any of the previous models. Note that r is the discounting
rate, h is the payoff function and the term Ft, the filtration, represents the market information (which is
assumed to be known) until time t. For further details on probability theory and stochastic calculus we refer
to (Mikosch, 1998).

Regardless the pricing problem formulation (conditional expectation, PDEs or other), and the techniques
of derivation (Girsanov theorem, dynamic hedging and non arbitrage, etc) risk neutral measure is used for
pricing of derivatives.

3.1.3.1. Monte Carlo

The expectation in Equation (3.8) can be written in integral form a risk-neutral valuation formula,

V (t, S) = e−r(T−t)
∫

R
h(T, y)f(y|Ft)dy, (3.9)

with f(·) being the Probability Density Function (PDF) of the asset value process. Many numerical tech-
niques are based on the solution provided by this risk-neutral valuation formula, in particular by taking
advantage of its integral formulation.

As the integral in Equation (3.9) is typically not solvable in analytic form, numerical-based approaches can
be developed. Monte Carlo methods are well-known numerical techniques to evaluate integrals. They are
based on the analogy between probability and volume. Suppose we need to compute an integral

I :=

∫
C

g(x)dx,

and we have a technique to draw M independent and identically distributed samples in C, X1, X2, . . . , XM .

3In probability theory, the Girsanov theorem describes how the dynamics of stochastic processes is modified when the original
measure is changed to an equivalent probability measure. Source: https:en.wikipedia.org/wiki/Girsanov theorem

4A formula to calculate the differential of a time-dependent function of a stochastic process. It is the equivalent in stochastic calculus
to the chain rule in the usual calculus.

© NEASQC Consortium Partners. All rights reserved. Page 11 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

We then define a Monte Carlo estimator (see (Glasserman, 2004), for further details) as

ĪM :=
1

M

M∑
m=1

g(Xm).

If g is integrable over C then, by the strong law of the large numbers,

ĪM → I as M →∞,

with probability one.

Furthermore, if g is square integrable, we can define the standard deviation of g as

sg :=

√∫
C

(g(x)− I)
2
dx.

By the central limit theorem, it is known that the error of the Monte Carlo estimate, i.e. I − ĪM , is normally
distributed with mean 0 and standard deviation sg/

√
M , where, again, M is the number of sample paths.

Therefore, the rate of convergence of the Monte Carlo method is O(1/
√
M), which is considered slow for

many applications.

However, Monte Carlo methods are highly appreciated in computational finance due to their simplicity,
flexibility and easy implementation. One of their most important advantages is that these methods are
easily extendable to multi-dimensional problems without increasing the rate of convergence. Moreover, the
method’s simplicity allows for different convergence improvement techniques, such as variance reduction
techniques (Glasserman, 2004) or multi-level Monte Carlo acceleration (Giles, 2015).

When employing Monte Carlo to approximate an expectation, an essential part of the method is the to
generation of sample paths. Random number generators (RNG) are typically used to generate Monte Carlo
paths and they have been studied for many years. Broadly, they can be subdivided into “true”, pseudo- and
quasi-random generators, and they usually generate uniformly distributed samples. This is key, because
when uniform samples between 0 and 1 are available, samples from any distribution can be obtained as
long as the quantile function, i.e., the inverse of the Cumulative Distribution Function (CDF), is known. The
procedure is then as follows,

FZ(Z)
d
= U thus Zm = F−1

Z (Um),

where FZ is the CDF, d
= means equality in the distribution sense, U ∼ U([0, 1]) and Um is a sample from

U([0, 1]). The computational efficiency highly depends on the cost of calculating F−1
Z .

When the “exact” sample generation is not possible, either because the distribution is not available or the
inversion is computationally unaffordable, intermediate steps in the numerical scenario simulation can be
introduced by means of a time discretization of the associated SDE. Taylor expansion-based discretiza-
tion schemes are widely employed in quantitative finance. The most representative example is the Euler-
Maruyama method, the generalization of the Euler method to SDEs is available in the context of the Itô’s
calculus. Another well-known Itô-Taylor-based simulation scheme is the Milstein method, which presents a
higher order of convergence than the Euler-Maruyama method. See (Kloeden & Platen, 2013) for further
details on numerical methods for SDE.

In order to use Equation (3.8) the expectation of St at time T needs to be estimated. To obtain this, it is
possible to generate trajectories of St from Equation (3.5). These trajectories can be obtained discretizing
Equation (3.5) with an Euler-Maruyama scheme, starting from the given value S0 at t = 0:

Smj+1 = Smj + rSmj ∆t+ σSmj dWj , (3.10)

∆t = T/(J + 1) is the uniform time step, j = 0, . . . , J + 1 is the index for each time step and m = 1, ...,M is
the super index for each trajectory, so that Smj approximates the value at time tj = j∆t on the trajectory m.

Once the trajectories have been obtained, it is possible approximate the option value at t = 0 in expression

© NEASQC Consortium Partners. All rights reserved. Page 12 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

(3.8) by:

v0 = V (0, S0) ≈ exp(−rT)
1

M

M∑
m=1

h(tJ+1, S
m
J+1). (3.11)

It is straight forward to extend Monte Carlo methods to the case of European options on a finite set of corre-
lated assets following the Black-Scholes dynamics (3.6). This can be achieved by computing the trajectories
of all involved assets, taking into account correlations by means of correlated Brownian motions that are
obtained from independent ones and using, for instance, the Cholesky factorization of the correlation matrix
ρ = (ρij) to generate correlated paths. It is also easy to extend Monte Carlo methods for pricing European
options under the Heston model.

The use of Monte Carlo techniques for American options is more complex due to the possibility of early
exercise included in these options which makes the problem path dependent. For American options, the
formulation in terms of expectations involves the so called optimal stopping time. More precisely, in the
case of one underlying asset, the American option value at time t is given by expression:

vt = V (t, St) = max
τ∈[t,T]

e−r(T−τ)EQ[h(τ, Sτ)|Ft], (3.12)

where τ denotes a stopping time. A common approach to pricing American options involves a combination
of Monte Carlo and regression techniques. Longstaff-Schwartz is a classical example of these methods
(Longstaff & Schwartz, 2001).

3.1.3.2. PDEs: Finite differences

The pricing of European options admits an equivalent formulation in terms of Partial Differential Equation
(PDE). This formulation can be obtained leveraging the Feynman-Kac theorem that relates expectations
of stochastic processes with the solution of PDEs. Alternatively, this formulation can also be derived using
dynamic hedging methodologies which involve the use of Ito Lemma, the building of a risk free portfolio and
the consideration of absence of arbitrage hypothesis. Under this formulation the function V , such that vt =
V (t, St) is the value of the European option, satisfies the following Black-Scholes PDE in Ω = (0, T)× R+:

∂V

∂t
+ rS

∂V

∂S
+
σ2S2

2

∂2V

∂S2
− rV = 0. (3.13)

V (T, S) = h(T, S) (3.14)

The final condition at time T is given by function h and depends on the payoff of the specific product. The
solution for this PDE is (Wilmott, 2007)

V (t, S) =
e−r(T−t)

σ
√

2π(T − t)

∫ ∞
0

exp

(
−

(log(S/S′) + (r − σ2

2)(T − t))2

2σ2(T − t)

)
h(t, S′)

dS′

S′
. (3.15)

Note that for the case of European vanilla call or put options, the solution of (3.13) has an analytical expres-
sion, also known as Black-Scholes formulas:

Vc(t, St) = StN (0, 1)(d1)−Ke−r(T−t)N (0, 1)(d2), (3.16)

Vp(t, St) = −StN (0, 1)(−d1) +Ke−r(T−t)N (0, 1)(−d2), (3.17)

with

d1 =
log(S/K) + (r + 1

2σ
2)(T − t)

σ
√
T − t

, (3.18)

d2 =
log(S/K) + (r − 1

2σ
2)(T − t)

σ
√
T − t

= d1 − σ
√
T − t, (3.19)

where N (0, 1)(x) is the CDF of the standard normal distribution. For more general payoffs, it is not always
possible to find closed form solutions like this one and numerical methods are required.

© NEASQC Consortium Partners. All rights reserved. Page 13 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

A common technique to solve PDEs like (3.13) is based on the so called finite differences methods.
To use this approach it is necessary to define a bounded domain for the underlying asset so that the
initial unbounded domain is truncated. A typical choice for the upper bound is S∞ = 4K, so that S ∈ [0, S∞].

The next step is to define a finite differences mesh by choosing two natural numbers J > 1 and
I > 1, so that the constant time and underlying step sizes are ∆t = T/(J + 1) and ∆S = S∞/(I + 1), re-
spectively. Thus, the finite differences mesh nodes are (tj , Si) = (j∆t, i∆S), j = 0, ..., J + 1; i = 0, ...I + 1.
At the mesh nodes, the involved derivatives in the PDE ((3.13)) are approximated as follows:

∂V

∂S
(tj , Si) ≈

V (tj , Si+1)− V (tj , Si−1)

2∆S
, (3.20)

∂2V

∂S2
(tj , Si) ≈

V (tj , Si+1)− 2V (tj , Si) + V (tj , Si−1)

(∆S)2
, (3.21)

∂V

∂t
(tj , Si) ≈

V (tj+1, Si)− V (tj , Si))

∆t
. (3.22)

In order to discretize in time, the second order Crank-Nicolson scheme can be used. Once these approxi-
mations of the derivatives have been introduced and using the notation Vji ≈ V (tj , Si), the discretization of
Equation (3.13) can be written as the following set of I linear equations for j = J, J − 1, . . . , 0:

Vj+1,i − Vj,i
∆t

=

1

2

(
−rSi

Vj,i+1 − Vj,i−1

∆S
− σ2S2

i

2

Vj,i+1 − 2Vj,i + Vj,i−1

(∆S)2
+ rVj,i

)
+

1

2

(
−rSi

Vj+1,i+1 − Vj+1,i−1

∆S
− σ2S2

i

2

Vj+1,i+1 − 2Vj+1,i + Vj+1,i−1

(∆S)2
+ rVj+1,i

)
, i = 1, . . . , I.

(3.23)

Additionally, boundary conditions depending on the specific payoff are imposed to complete the set of
equations. For example, in the case of a call option:

Vj,I+1 = S∞ − e−r(T−tj)K, Vj,0 = 0. (3.24)

Note that for each index j (associated to time tj) we need to solve a linear system, which can be written in
matrix form as AVj = bj , where Vj is the vector of unknowns containing the option values approximation at
time t = tj for the discrete asset values Si, i = 0, . . . , I + 1. Starting from j = J + 1 the system can be
solved sequentially for j = J, J − 1, . . . , 0. Thus, the pricing of European options with one underlying asset
in a PDEs formulation mainly involves the sequential solution of linear systems.

The extension of the finite differences methodology to include the Heston model or European basket options
is straight forward but carry the cost of increasing computational demand with each additional dimension,
the so called curse of dimensionality. In classical computers, the implementation in multi-CPUs or specific
techniques like sparse grids can be used to alleviate this.

In the case of American options, the early exercise opportunity implies the replacement of PDE problem
(3.13) by a linear complementarity problem associated to the Black-Scholes differential operator:

L(V) =
∂V

∂t
+ rS

∂V

∂S
+
σ2S2

2

∂2V

∂S2
− rV.

More precisely, the complementarity problem is written as (see (Vázquez, 2010) and the references therein):

L(V) ≤ 0, V ≥ h, L(V) · (V − h) = 0. (3.25)

There is no known analytical solution to this problem and therfore it needs to be solved numerically. When
discretizing the complementarity problem using the same approximations as in the European options, we
obtain:

AVj ≤ bj , Vj ≥ hj , (AVj − bj)t · (Vj − hj) = 0, (3.26)

where hj = h(tj , .) is the vector of exercise values at time tj in the finite differences asset nodes and
super index t denotes the traspose operation. It is easy to see that problem (3.26) can be expressed as a

© NEASQC Consortium Partners. All rights reserved. Page 14 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

quadratic optimization with inequality constraints of the form:

Vj = arg min
Y≥hj

1

2
Y tAY − btjY. (3.27)

Therefore, numerical methods for solving convex quadratic optimization problems under inequality con-
straints can be used, such as penalization or duality techniques.

3.1.3.3. PDEs: Artificial Neural Network (ANN) and deep learning

Unsupervised deep learning techniques can be used in derivatives pricing, see (Beck et al., 2021) and the
references therein, for applications for solving solving both linear and nonlinear time-dependent PDEs such
as the ones presented above.

A general PDE problem can be written as:

NI(v(t, x)) = 0, x ∈ Ω̃, t ∈ [0, T],

NB(v(t, x)) = 0, x ∈ ∂Ω̃, t ∈ [0, T], (3.28)

N0(v(t∗, x)) = 0, x ∈ Ω̃ and t∗ = 0 or t∗ = T,

where v(t, x) denotes the solution of the PDE, NI(·) is a linear or nonlinear time-dependent differential
operator, NB(·) is a boundary operator, N0(·) is an initial or final time operator, Ω̃ is a subset of RD and ∂Ω̃

denotes the boundary on the domain Ω̃.

As mentioned before, both European and American option pricing using PDEs can be casted in this formu-
lation and, therefore, solved using unsupervised deep learning. The goal is to obtain v̂(t, x) by minimizing a
suitable loss function L(v) over the space of k-times differentiable functions, where k depends on the order
of the derivatives in the PDE, i.e.,

arg min
v∈Ck

L(v) = v̂ , (3.29)

where v̂(t, x) denotes the true solution of the PDE.

The solution of the PDEs is approximated with a deep neural network and the accuracy of this approximation
can be related to value of the cost function used. The deep neural network consists of an input layer with
d neurons, several hidden layers and an ouput layer with a single neuron, representing the entire solution
of the PDE. The ANN should approximate the solution, satisfying the restrictions imposed by the PDE and
the boundary conditions. A general expression for the cost function, defined in terms of the Lp norm with a
given weighting, is defined as follows:

L(v) = λ

∫
Ω

| NI(v(t, x)) |p dxdt

+ (1− λ)

∫
∂Ω

(| NB(v(t, x)) |p + | N0(v(t, x)) |p) dxdt, (3.30)

where Ω = Ω̃× [0, T], ∂Ω the boundary of Ω and operators have the form

NI(v(t, x)) ≡ N(v(t, x))− F (t, x) in Ω ,

NB(v(t, x)) ≡ B(v(t, x))−G(t, x) on ∂Ω̃ , (3.31)

N0(v(t∗, x)) ≡ H(x)− v(t∗, x) in Ω̃× t∗, with t∗ = 0 or t∗ = T,

where N , F , B, G and H are generic functions whose expression depends on the problem at hand.

The parameter λ ∈ (0, 1) in the cost functions represents the relative importance of the interior and boundary
functions in the minimization process.

The integrals of the cost function are often labeled as:

LI(v) ≡
∫

Ω

| NI(v(t, x)) |p dxdt, (3.32)

© NEASQC Consortium Partners. All rights reserved. Page 15 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

and
LB(v) ≡

∫
∂Ω

(| NB(v(t, x)) |p + | N0(v(t, x)) |p) dxdt, (3.33)

which denote the interior and the boundary cost functions respectively.

3.1.3.4. Integration: Fourier based methods

Fourier techniques can be applied in the context of the risk-neutral valuation framework by solving the the
integral in Fourier space. Fourier techniques rely on the availability of the Characteristic function (ChF),
i.e., the Fourier transform of the PDF associated to the asset stochastic process. They form the so-called
Fourier pair, as

f̂(u) =

∫
R

exp(ixu)f(x)dx,

f(x) =
1

2π

∫
R

exp(−ixu)f̂(u)du,

(3.34)

where f̂ denotes a Fourier transformed function, i.e., here, the ChF.

Contrary to the PDF, the ChF can be derived for many models in finance, particularly those that are driven
by Lévy processes5. Therefore, the PDF can be recovered from the ChF via Fourier inversion. Thus, the
PDF can be directly employed within the risk-neutral valuation formula in Equation (3.9). The starting point
is the representation of the unknown PDF in the form of an orthonormal series expansion on a finite interval
[a, b], z ∈ [a, b], as

f(z) =
1

b− a

(
1 + 2

∞∑
k=1

Ak · ψk(z)

)
, (3.35)

where ψk(·) are orthonormal basis functions and the expansion coefficients Ak can be obtained by

Ak := 〈f, ψk〉 =

∫ b

a

f(z)ψk(z)dz. (3.36)

By using Parseval’s identity, i.e., 〈f, ψk〉 = 1
2π 〈f̂ , ψ̂k〉, where f̂ and ψ̂k denote the Fourier transformations of

f and ψk, respectively, the expansion coefficients can be computed based on the ChF,

Ak :=
1

2π
〈f̂ , ψ̂k〉 =

1

2π

∫ b

a

f̂(u)ψ̂k(u)du. (3.37)

Fourier inversion methods usually provide a high accuracy at limited computational cost. However, their
applicability strongly relies on the availability of the ChF. In some cases when a ChF is not directly avail-
able, the ChF can be approximated, but this may hamper the efficiency of the methodology. The curse of
dimensionality in the case of multi-dimensional problems will also be problematic when Fourier techniques
are employed.

Several pricing techniques have been developed based on a Fourier approach, like the Carr and Madan
method (Carr & Madan, 1999), Fang and Oosterlee (Fang & Oosterlee, 2008) and Ortiz-Gracia and Oost-
erlee (Ortiz-Gracia & Oosterlee, 2016).

3.1.3.5. Trinomial trees

The trinomial tree scheme allows us to simulate the SDE (3.5) under the risk neutral measure (Kubo et al.,
2020). In order to do so, we discretize the time as tj = j∆t with j = 0, 1, ..., J and the underlying as
si = i∆s with i = 0, 1, ..., I. Here tJ = T and sI = s∞.

5A general class of processes with independent and stationary increments and continuous in probability. A Brownian motion is an
example of Lévy processes where the increments follow a Gaussian distribution.

© NEASQC Consortium Partners. All rights reserved. Page 16 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Next, we define the transition probabilities as:

pu(s, t) = Prob[St+∆t = s+ ∆s|St = s],

pm(s, t) = Prob[St+∆t = s|St = s],

pd(s, t) = Prob[St+∆t = s−∆s|St = s].

(3.38)

To approximate the SDE we choose the transition probabilities between the nodes so that they reproduce
the first and the second moments of the process:

pu(si, tj) =
1

2

(
σ2s2

i

∆s2
+
rsi
∆s

)
∆t,

pd(si, tj) =
1

2

(
σ2s2

i

∆s2
− rsi

∆s

)
∆t,

pm(si, tj) = 1− pu − pd.

(3.39)

These probability transitions allows us to compute the final distribution of the asset f(sT |Ft). To compute
the value of an option we then need to use equation (3.9).

3.2. Risk measures for derivatives portfolios

Pricing and computing risks of financial derivatives are linked problems that share core parts of the formu-
lation and resolution techniques, but with important differences:

• Probability measure:

[Pricing]: Risk neutral probability measure Q is used. In fact, model parameters are calibrated so
that they match the prices of standard options observed in the market; this is called market implied
calibration.

[Risks]: the problems are formulated under real probability P . The real probability usually is
approximated by the historical probability.

For instance in the case of parametric models, as Black-Scholes, parameters are calibrated so that
they match the statistical features observed in the historical time series (historical calibration).

• Measure:

[Pricing]: Computing expectations of a distribution.

[Risks]: Computing tails of a distribution, as quantiles.

• Single trade versus portfolio:

[Pricing]: Prices are computed individually at trade level 6.

[Risks]: It is important to consider portfolios of derivatives, so that netting/hedging effects are
taken into account. Linked to this, very often risk problems are usually highly dimensional.

For the sake of simplicity, we will focus on a couple of important financial risks, market risk and credit risk.
A complete and comprehensive monograph on risk management can be found in (McNeil et al., 2015).

3.2.1. Market risk

Market risk focuses into the losses of a portfolio during a short time interval, due to shocks/movements on
the underlying risk factors.

Let VP (t, S1
t , . . . , S

d
t) denote the value at time t of a derivatives portfolio that depends on the underlying

assets S1, . . . , Sd.

6Except for the XVA adjustments.

© NEASQC Consortium Partners. All rights reserved. Page 17 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

We first define the portfolio value increment during [t, t+ ∆t]

∆VP = VP (t, S1
t+∆t, . . . , S

d
t+∆t)− VP (t, S1

t , . . . , S
n
t), (3.40)

where Sit+∆t is the underlying asset scenario at t + ∆t. Most common measures do not take into account
portfolio ageing, that is why in the definition the underlyings are shocked while the time is fixed.

From the portfolio value increments, the portfolio losses are given by

L := −∆VP (3.41)

Notice that, given a distribution of underlying scenarios, a distribution of portfolio value increments, and
therefore a distribution of losses, can be derived.

3.2.1.1. Delta-Gamma approximation

Although simple in definition, the practical computation of the typical risk measures is a challenging and
computationally expensive problem, especially when the changes in VP cannot be assumed linear in S.
Then, the estimation of such a risk measures is often performed by means of an Monte Carlo method. In
order to find a balance between accuracy and tractability, one of the most employed methodologies is the
so-called Delta-Gamma approximation which combines Monte Carlo path generation (or any other scenario
generation), a second-order Taylor expansion and the sensitivities (derivatives) to reduce the computational
cost and capture the non-linearity in portfolio changes. The delta-gamma approximation of ∆VP (in the case
of only one risk factor) is given by

∆VP ≈
I∑
i=1

wi
∂vi
∂S

∆S +
1

2

I∑
i=1

wi
∂2vi
∂S2

(∆S)2,

with I the number of assets depending on risk factor S, wi and vi the amount and the value of asset i,
respectively. The partial derivatives are evaluated at initial time t. In the case of options contracts, these
partial derivatives correspond to the ∆ = ∂VP /∂S and Γ = ∂2VP /∂S

2 sensitivities.

We can again use a parametric model assuming that the distribution of ∆S is known (normal, Student’s t,
etc); but non parametric alternatives are as well used in practice.

3.2.1.2. Underlying scenario computation

For computing Sit+∆t in (3.40), or equivalently, ∆S for the Delta-Gamma approximation, different alternatives
can be considered:

• A parametric model for S, like Black-Scholes, calibrated to historical data; or directly a parametric
distribution of ∆S like normal, Student’s t, etc

• (Non parametric) Historical multiplicative shocks as:

Sit+∆t = Sit R
i
∆t

with
Ri∆t = Sis/S

i
s−∆t

for s < t an observed historical date.

• Other non parametric approach.

In the following we will be defining specific market risk measures that are no more than statistical measures
of the distribution of L, focusing on the upper tail.

© NEASQC Consortium Partners. All rights reserved. Page 18 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

3.2.2. Classical risk measures: VaR and CVaR

We consider two well-known measures of risk, the Value-at-Risk (VaR) and the Conditional Value-at-Risk
(CVaR) (also known as Expected Shortfall). We introduce the definition of both measures in the following
results.

Definition 1. Given a confidence level α ∈ (0, 1), the portfolio VaR is defined as,

VaRα = inf{l ∈ R : P(L ≤ l) ≥ α} = inf{l ∈ R : FL(l) ≥ α},

where FL is the distribution function of the total loss random variable L (we emphasize the dependence of
VaR with respect to the risk exposures).

The VaR is therefore an estimate of how much one can lose from one’s portfolio over a given time horizon,
with a given degree of confidence (Wilmott, 2007).

Definition 2. Given the loss variable L with E[|L|] <∞ and distribution function FL, the CVaR at confidence
level α ∈ (0, 1) is defined as,

CVaRα =
1

1− α

∫ 1

α

VaRudu.

When the loss variable is integrable with continuous distribution function, then the CVaR satisfies the equa-
tion,

CVaRα = E[L|L ≥ VaRα], (3.42)

or, in integral form,

CVaRα =
1

1− α

∫ +∞

VaRα
xfL(x)dx, (3.43)

where fL is the probability density function of the total loss random variable L. Thus, in the continuous
case, CVaR can be interpreted as the expected loss in the event that VaR is exceeded.

3.2.3. Credit Portfolio Management

Another source of risk, that needs to be measured and managed is the credit risk coming from the risk of
default of a number of obligors. The financial instruments could be simple loans or bonds, or more complex
products such as credit derivatives such as Credit Default Swaps or Credit Loan Obligations. It can also
include credit exposures stemming from other derivative contracts through counterparty credit risk. Given its
complexity and high dimensionality, credit portfolio modelling relies on dimensionality reduction techniques
such as factor models and Principal Component Analysis (PCA).

Let us consider a portfolio of N credit obligations (e.g. loans, bonds, overdrafts, etc) to a number of obligors
or counterparties. Each instrument is characterized by the exposure at default and the loss given default.
The exposure of default is the amount of money that would be due at the time of counterparty default.
The loss given default is the actual loss incurred after the recovery process is concluded (this is bounded
between zero and 100%). In addition, each counterparty has a known probability of default associated to
each credit worthiness. Note that several instruments can be linked to the same counterparty, however
here we will take the simplifying assumption that each counterparty has only one single instrument. While
the first two parameters will be denoted by Ej and Pj , j = 1, . . . , J , the third parameter is assumed to be
100% for all the obligors. These parameters can be estimated from the capital markets, or from historical
credit data.

Assume now that we are in the framework of Merton’s firm-value model (Merton, 1974). In this approach, a
counterparty is assumed to go into default if the value of its assets fall below a given default barrier which
is linked to the value of its liabilities. In other words, if the value of the assets of a company falls bellow
how much the company owns to its creditors, the model assumes that this firm is in default. Therefore, the
combination of asset value and liability barrier determines determines the credit quality of the obligor and
defines its probability of default. Let Vj(t) denote the asset value of instrument j at time t < T , where T
is the time horizon (typically one year). The obligor j defaults when its value at the end of the observation

© NEASQC Consortium Partners. All rights reserved. Page 19 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

period, Vj(T), falls below barrier , τj , i.e, Vj(T) < τj . A default indicator can be defined mathematically as

Dj = 1{Vj(T)<τj} ∼ Be (P (Vj(T) < τj)) ,

where Be(p) is a Bernoulli distribution with probability of success p. Given Dj , the individual loss of obligor
j is defined as,

Lj = Dj · Ej ,

while the total loss in the portfolio reads,

L =

J∑
j=1

Lj . (3.44)

Because the credit quality of the obligors (captured by the asset value in the Merton model) is correlated,
this problem is closely related to the basket option covered earlier, but with the additional complexity of
having different barriers. In addition, banks portfolios would usually comprise several millions of obligors,
and therefore Credit Portfolio models typically relay on Monte Carlo techniques to estimate the probability
distribution of portfolio losses. Once the probability of portfolio losses L has been estimated, it is possible
to compute different risk measures such as those covered later in Section 3.2.2.

Furthermore, the credit portfolio model described above captures losses from default events only (these
types of models are typically called default/no-default models). In reality, credit portfolio models also take
into account losses arising from changes in credit quality and that impact the bank’s profit and loss accounts
(e.g. credit migration for fair valued assets and stage migration under IFRS 9 accounting). In this models,
the probability of migration needs to be considered in addition to the probability of default, for each obligor
the problem changes from the binomial (default/no-default) approach considered above to a multi-nominal
problem.

3.2.3.1. Factor models for portfolio credit risk

A common approach used to reduced the dimensional of the problem is the introduction of Factor models.
In this models the credit quality of each obligor is assumed to be driven by two different components: a set
of factors that is shared by the the obligors and captures the systematic risk and a second that is unique to
each obligor and capture its idiosyncratic risk. Depending on the number of factors of the systematic part,
the model can be classified into the one- or multi-factor class. The power of factor models is that allows us
to reduce the number of parameters needed to capture portfolio correlation to be estimated in the model
from order J2, i.e. pair-wise correlations between each obligor in the portfolio, to one of order J . In the
following section we briefly describe some of the most commonly employed models.

One-factor models

In the one-factor model setting, the credit quality (which in Merton model is defined as the logarithmic return
of the asset value) of obligor j, Xj , at time T is represented by a common, standard normally distributed
single factor Y component and an idiosyncratic Gaussian noise component εj . The dependence structure
between these two latent random variables can be set using copula functions. Thus, these models are also
called one-factor copula models. Two models are usually considered in practice. The Gaussian copula
model is given by:

Xj =
√
ρjY +

√
1− ρjεj , (3.45)

where Y and εj are i.i.d. standard normal random variables for all j = 1, . . . , J . Alternatively, as an extension
of the model in Equation (3.45), the t-copula model was introduced to take into account tail dependence,

Xj =

√
ν

W

(√
ρjY +

√
1− ρjεj

)
, (3.46)

where ε1, · · · , εJ , Y ∼ N (0, 1), W follows a chi-square distribution χ2(ν) with ν degrees of freedom and
ε1, · · · , εJ , Y and W are mutually independent. Scaling the model in Equation (3.45) by the factor

√
ν/W

transforms standard Gaussian random variables into t-distributed random variables with ν degrees of free-
dom. For both models, the parameters ρ1, · · · , ρJ ∈ (0, 1) are the correlation coefficients. In case that

© NEASQC Consortium Partners. All rights reserved. Page 20 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

ρj = ρ, for all j = 1, . . . , J , the parameter ρ is called the common asset correlation.

According to the Merton’s model described above, obligor j defaults when the value of its assets falls below
the barrier τj . The barrier is therefore defined by τj := Φ−1(Pj) or τj := Φ−1

ν (Pj) for the Gaussian and
t-copula models respectively, where Φ−1 denotes the inverse of the standard normal cumulative distribution
function and Φ−1

ν is the corresponding inverse distribution function of the t-distribution (with ν degrees of
freedom).

Multi-factor models

Multi-factor models aim to capture more realistic correlation structures, e.g. obligors in similar industry
sector and geographies would typically be more correlated. For this, we consider the extension to multiple
dimensions of the models presented in Section 3.2.3.1, i.e., the multi-factor Gaussian copula model and
the multi-factor t-copula model.

The d-factor Gaussian copula model assumes that the covariance structure of [V1, . . . , VJ] is determined by
the multi-factor model,

Xj = aTj Y + bjεj , j = 1, · · · , J. (3.47)

where Y = [Y1, Y2, . . . , Yd]
T denotes the systematic risk factors. Note that we represent vectors by bold

symbols throughout this report. Here, aj = [aj1, aj2, . . . , ajd]
T represents the factor loadings satisfying

aTj aj < 1, and εj are standard normally distributed random variables representing the idiosyncratic risks,
independent of each other and independent of Y . The constant bj , being the factor loading of the idiosyn-

cratic risk factor, is chosen so that Vj has unit variance, i.e., bj =

√
1−

(
a2
j1 + a2

j2 + · · ·+ a2
jd

)
, which

ensures that Vj is N (0, 1).

The incentive for considering the multi-factor version of the Gaussian copula model becomes clear when
one rewrites it in matrix form,

X1

X2

...
XJ

 =

a11

a21

...
aJ1

Y1 +

a12

a22

...
aJ2

Y2 + · · ·+

a1d

a2d

...
aJd

Yd +

b1ε1

b2ε2

...
bJεJ

 .
While each εj represents the idiosyncratic factor affecting only obligor j, the common factors Y1, Y2 . . . , Yd,
may affect all (or a certain group of) obligors. Although the systematic factors are sometimes given eco-
nomic interpretations (as industry or regional risk factors, for example), their key role being that they allow
us to model complicated correlation structures in a non-homogeneous portfolio.

Similarly, the multi-factor t-copula model definition reads,

Xj =

√
ν

W

(
aTj Y + bjεj

)
, j = 1, · · · , J, (3.48)

where Y , εj ,aj and bj are defined as before, with W ∼ χ2(ν).

3.2.4. Numerical methods

3.2.4.1. Monte Carlo

Assuming the loss distribution as defined in Equation (3.44) and employing Monte Carlo methods, the VaR
can be computed as follows:

• Generate M samples of L, denoted by L1, L2, . . . , LM .

• Compute the empirical CDF:

F̃L,M (x) =
1

M

M∑
m=1

1{Lm≤x}.

© NEASQC Consortium Partners. All rights reserved. Page 21 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

• Then, we have the estimator,
VaRα ≈ F̃−1

L,M (α).

Practically, the same result can be achieved by first sorting the sample set, obtaining the ordered samples
L1̄, L2̄, . . . , LM̄ and taking

VaRα ≈ min
Lm̄
{m̄ ≥ bαMc} ,

where b·c denotes the nearest integer smaller than the argument.

Given the VaR value, a Monte Carlo estimator for the CVaR can be readily derived,

CVaRα ≈
∑M
m=1 1{Lm̄≥VaRα}L

m̄∑M
m=1 1{Lm̄≥VaRα}

.

Notice that when sampling L, parametric or non parametric distributions can be used.

The VaR (and the CVaR) are intended to prevent extreme events of big losses, so the quantile α is usually
significantly high, between 95% and 99.9% depending on the application. In such regimes, Monte Carlo is
rather inefficient, specially for the CVaR computation, since the number of samples in the area of interest
is usually not sufficient to provide an acceptable precision. In order to mitigate this drawback, several
approaches have been explored in the literature, being the utilization of importance sampling techniques
one of the most successful attempts.

3.2.4.2. Other methodologies based on the integral formulation

Taking advantage of the integral formulation in Equation 3.43, other numerical methodologies can be ex-
plored in this context. For example, in a similar way as for option pricing, the density function fL can be
approximated by an expansion of orthogonal basis functions, which opens the alternative of employing, for
example, Fourier inversion methods. Another approach is to directly approximate the distribution function
FL, which would allow to derive closed-form expressions to compute the VaR and the CVaR values.

3.2.4.3. Principal Component Analysis

Principal Component Analysis is a classical mathematical technique that is widely used in quantitative
finance for dimensionality reduction; not only for both pricing problems (as Section 3.1.1.3)) and in risk
models (as the ones in Section 3.2.3.1), but also for stock value forecasting (usually in combination with
other machine learning techniques).

As we have seen in equation (3.6), a multidimensional problem with N risk factors can be formulated
through a N × N correlation matrix (ρij), and a N volatility vector (σi). Equivalently, it can be formulated
through the Hermitian and positive semi-definite covariance matrix Σ, defined as

Σij = ρijσiσj

The objective is to reduce the dimension of the problem from N to E while still representing the highest
amount of variance. For this:

• First Σ is factorized in terms of its eigenvalues and eigenvectors through the spectral decomposition.

• Then, only the highest (with higher eigenvalues) E (E < N) components are kept, and the N − E
smallest are discarded.

© NEASQC Consortium Partners. All rights reserved. Page 22 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

4. Quantum toolkit for finance

In Chapter 3 we have discussed some of the most widely used techniques in classical finance. Throughout
this chapter we will cover some proposals for their quantum counterparts.
In the first section we will be covering integration techniques (sometimes referred to as Quantum Computing
Monte Carlo (QCMC)1).
In the second section we will be covering alternative quantum algorithms to the ones discussed in the first
section which also have an immediate application to finance.
Finally, in the third section we will discuss some of the challenges and promising research lines emerging
on the subject.

4.1. Quantum alternatives to Monte Carlo Algorithms for Applications in Finance

In this section, we briefly revise the state of the art of the quantum alternatives to Monte Carlo algorithms
for the numerical evaluation of expectation values. Then, we describe some concrete applications to the
financial problem of pricing European vanilla options, as introduced in Section 3.1.1.1, and comment about
the computation of risk indicators (see Section 3.2.2).

4.1.1. Introduction

The possibility of handling Hilbert spaces which grow exponentially in the number of qubits makes quantum
computers an attractive framework where to address function integration over large, multi-dimensional do-
mains. Such exponential growth of the dimension of the Hilbert space suggests that the quantum alternative
can be in a better position with respect to its classical counterpart in dealing with combinatorial explosions
and the curse of dimensionality. However, bringing this hope to practice encounters several bottlenecks,
especially in relation to current or near-term quantum technologies.

We will discuss the state of the art of quantum numerical integration examining the most promising inte-
gration algorithms described in the literature and their implementation. They all belong to the same family
originated from Grover’s search algorithm (L. K. Grover, 1996). As such, they are general-purpose and
entail a theoretical quadratic speed-up. This means that they are not based on any particularly restrictive
assumption on the function to be integrated, thereby encompassing quite generic cases, lying in this regard
on a similar footing as classical Monte Carlo algorithms. In particular, we focus on the problem of the nu-
merical evaluation of expectation values, where the integrand function results from the multiplication of a
probability density distribution and the function whose expected value we want to get.

The quadratic speed-up of quantum algorithms with respect to their classical counterparts means that,
if the precision for classical Monte Carlo sampling generically scales as M−

1
2 , where M is the number

of samples, the quantum algorithms have a theoretical precision scaling as M−1. Roughly, this can be
motivated by the fact that quantum algorithms work at the level of the probability amplitude instead of the
probability, thus gaining a quadratic factor. This intuitive description will be made more precise below.

Figure 2 shows a schematic pipeline of a quantum integration algorithm for the computation of the expected
value of a function f(x) with respect to a Probability Density Function p(x). The processing is divided in
four blocks associated respectively to the loading of p(x), the loading of the function f(x), a quantum
amplification part (relying on Grover’s amplification strategy) and an estimation part which can be per-
formed in different ways, such as an inverse quantum Fourier transform or approximate counting strategies,
possibly followed by classical post-processing.

To avoid unnecessary complications, and to keep the treatment generic, we consider that x spans an
unspecified metric space and we assume to have a procedure (or an oracle) which provides a suitable
discretization, that is able to translate the desired integral into a discrete sum. We henceforth overload
the notations: the symbol x will run over the discretized domain, and the functions p(x) and f(x) are the
appropriate discretized versions of the original functions (possibly taking into account non-trivial measures).

1This should not be confused with the general concept of Quantum Monte Carlo, a set of computational methods to calculate complex
quantum systems

© NEASQC Consortium Partners. All rights reserved. Page 23 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Figure 2: Schematic pipeline of a quantum algorithm to compute the expected value of a function

We stress that the discretization procedure is a relevant aspect of the computation which can introduce
approximations, this is however common to classical and quantum algorithms.2 The discretization process
can have some relation to that of the loading of the initial quantum state, see Section 4.3.1 for further
comments on this issue.

4.1.2. Quantum amplitude amplification and estimation

In order to describe the algorithm of quantum amplitude amplification and estimation (see Fig. 2), we
borrow from the abstract of (Brassard et al., 2000), where the algorithm was introduced. We first describe
the amplification part and later the estimation part.

Let us take a Boolean function χ : X → {0, 1} which partitions the set X labelling the elements as good
when χ(x) = 1 and as bad when χ(x) = 0. Let us take also a generic quantum algorithm A (without
measurements) such that

A|0〉 =
∑
x∈X

αx|x〉 . (4.1)

Let us denote with a the probability that an element marked as good is measured on A|0〉. If one repeats
the process of taking |0〉, applying A to it and then measuring, one expects to have to repeat the procedure
on average 1

a times before encountering a marked element. Instead, by means of amplitude amplification,
the expected number of times the experiment needs to be repeated is proportional to 1√

a
. Therefore, we

get a quadratic speed-up.

4.1.2.1. Grover-like amplification

In order to appreciate how the amplitude amplification algorithm works we need to enter into its details.

Let us consider a real function f defined on a discrete set of points labelled in binary notation. As already
commented, this represents a discretized domain where the individual discrete points have a label given by
a binary number. Note that the domain can be multi-dimensional, and we simply give binary “proper names”
(or addresses) to each discrete point. As pointed at the beginning of this section, the function f defined on
the discrete domain can be thought of as a discrete approximation of a more generic function. For technical
reasons that will become evident soon, the function f is required to take values within the real interval [0, 1].
If needed, we can define f by means of a rescaling of the actual function that we want to integrate and then
rescale back at the end of the computation, exploiting the linearity of integration. Hence, there is no loss of
generality in the assumption.3

Thus, we have a function f
f : x ∈ X = {0, 1}n → [0, 1] , (4.2)

and our purpose is to compute the sum4

2A simple example of discretization arises when using a fixed point arithmetic in classical computers.
3It is however important to recall that such rescaling affects the final estimation of errors.
4Recall that, upon the discretization procedure (which we are not specifying to keep the treatment general), the sum in (4.5) corre-

sponds to the discretized version of the original integral we needed to compute. The problem of defining a suitable (and efficient)
discretization procedure, common to classical and quantum algorithms, entails the theory of measure and the choice of optimal

© NEASQC Consortium Partners. All rights reserved. Page 24 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

∑
x∈X

f(x) . (4.5)

We can immediately generalize the problem of integration to that of computing expectation values over a
generic probability distribution p(x), namely, that of computing expressions like∑

x∈X
p(x)f(x) . (4.6)

Even if (4.6) can be rightly regarded as just an integral of the function p(x)f(x), there are technical reasons
to factor explicitly the probability distribution. We will return to the point later. Let us just recall that, being
p(x) a normalized probability distribution, we have∑

x∈X
p(x) = 1 . (4.7)

We assume to be able to implement two operators, P and R, which respectively “load” the probability
density distribution p(x) and the function f(x) to the quantum state respectively. More precisely, their action
is specified by

P|0〉n =

2n−1∑
x=0

√
p(x) |x〉n , (4.8)

and
R|x〉n|0〉 = |x〉n

(√
f(x)|1〉+

√
1− f(x)|0〉

)
. (4.9)

We have indicated with |x〉n the quantum register containing the states associated to the discretization of
the domain5, the label x running over their binary address; n denotes the number of qubits in such register.
In (4.9) there is an extra auxiliary qubit which represents a “flag” denoting the “good” states whose amplitude
corresponds to the function we wanted to load. The operator R can be implemented by means of rotations
controlled by the physical register.

Composing (4.9) and (4.8), we obtain

|Ψ〉 ≡ R (P ⊗ 1) |0〉n|0〉 =

2n−1∑
x=0

√
p(x) |x〉n

(√
f(x)|1〉+

√
1− f(x)|0〉

)
. (4.10)

The probability of getting the auxiliary qubit equal to 1 in a measurement of the state |Ψ〉 is given by

Ex∼p (f) =

2n−1∑
x=0

p(x)f(x) , (4.11)

which is actually the expectation value we want to compute. So far, however, apart from the quantum
implementation, we have no gain: computing Ex∼p (f) by repeating the preparation and measurement of
|Ψ〉 brings no advantage with respect to a classical sampling.

The next steps is where the Grover strategy kicks in, leading to a quantum advantage. The algorithm ex-

mashes. To avoid being too abstract, let us make an explicit example. Consider integrating the function sin(x) over [0, π],

I =

∫ π

0
dx sin(x) . (4.3)

We can choose a uniform discretization x ∈ {nπ/N} for n = 1, ..., N with N some large integer. We have

I ∼
π

N

∑
n

sin(nπ/N) . (4.4)

The coefficient π
N

corresponds to the measure of the discretized intervals and it is important to take it into account in defining the
discretized version of the original function.

5Referred to as the physical register, as opposed to the auxiliary registers.

© NEASQC Consortium Partners. All rights reserved. Page 25 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

ploits similar ideas to the original Grover search algorithm.6 In particular, we want a controlled enhancement
(or amplification) of the probability of getting “good” states by measuring the quantum state. This will make
the integration more efficient.

The path to obtain the amplification consists in some specific manipulations detailed below. First, one
defines the following vectors:

|Ψ1〉 =

2n−1∑
x=0

√
p(x)f(x) |x〉n|1〉 , (4.14)

|Ψ0〉 =

2n−1∑
x=0

√
p(x) (1− f(x)) |x〉n|0〉 . (4.15)

The vectors |Ψ1〉 and |Ψ0〉 belong to the 2n+1 dimensional Hilbert space H. This latter is generated by the
collection of basis states {|x〉n|1〉, |x〉n|0〉} for all values of x (we have 2n such values). More precisely, |Ψ1〉
and |Ψ0〉 indicate two specific directions belonging respectively to the subspaces of H associated to the
values 1 and 0 of the auxiliary qubit. Said otherwise, |Ψ1〉 and |Ψ0〉 generate a plane π ⊂ H.

Notice that, from the definitions (4.14) and (4.15), we have

|Ψ〉 = |Ψ1〉+ |Ψ0〉 , (4.16)

so the state |Ψ〉 belongs to the plane π. One can also define

a ≡ 〈Ψ|Ψ1〉 = 〈Ψ1|Ψ1〉 =

2n−1∑
x=0

p(x)f(x) , (4.17)

1− a ≡ 〈Ψ|Ψ0〉 = 〈Ψ0|Ψ0〉 =

2n−1∑
x=0

p(x) (1− f(x)) , (4.18)

and we remind ourselves that getting an estimation for a, that is the expectation value of f , is our purpose.
For the sake of subsequent manipulations, let us also define the normalized version of (4.14) and (4.15),
namely

|Ψ̃1〉 =
1√
a

2n−1∑
x=0

√
p(x)f(x) |x〉n|1〉 , (4.19)

|Ψ̃0〉 =
1√

1− a

2n−1∑
x=0

√
p(x) (1− f(x)) |x〉n|0〉 , (4.20)

thus, we have
|Ψ〉 =

√
a |Ψ̃1〉+

√
1− a |Ψ̃0〉 . (4.21)

The core idea of the amplification algorithm consists in rotating the state |Ψ〉 in the plane π (spanned by the
vectors |Ψ̃0〉 and |Ψ̃1〉) in order to enhance in a controlled way the amplitude of measuring |Ψ̃1〉. For this

6The original Grover algorithm to search a marked element x̄ chooses

p(x) =
1

N
, (4.12)

which is the uniform sampling (implemented through a Walsh-Hadamard transform) and the oracle is

f(x) = δxx̄ , (4.13)

where δ is a Kronecker delta.

© NEASQC Consortium Partners. All rights reserved. Page 26 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

purpose, we define the Grover amplification operator7

Q ≡ UΨUΨ̃0
, (4.24)

where

UΨ ≡ 1− 2|Ψ〉〈Ψ| , (4.25)

UΨ̃0
≡ 1− 2

1− a
|Ψ0〉〈Ψ0| = 1− 2|Ψ̃0〉〈Ψ̃0| , (4.26)

are specific reflection operators. Indeed, UΨ and UΨ̃0
, when applied to a generic quantum state, flip its

component along |Ψ〉 and |Ψ̃0〉, respectively.

Let us obtain an explicit expressions for the operators UΨ and UΨ̃0
introduced in (4.25) and (4.26). For the

latter, we have

UΨ̃0
= −UΨ̃1

= |Ψ̃1〉〈Ψ̃1| − |Ψ̃0〉〈Ψ̃0| =
(

1 0
0 −1

)
, (4.27)

where the last passage explicitly defines the meaning of the components of the 2 × 2 matrix in the right
hand side.8 In order to get an explicit expression for UΨ, it is convenient to define the angle θ through

〈Ψ|Ψ̃1〉 =
√
a ≡ sin θ , (4.29)

〈Ψ|Ψ̃0〉 =
√

1− a = cos θ . (4.30)

Then, taking into account that

|Ψ〉〈Ψ| =
(√

a|Ψ̃1〉+
√

1− a|Ψ̃0〉
)(√

a〈Ψ̃1|+
√

1− a〈Ψ̃0|
)

=

(
a

√
a(1− a)√

a(1− a) 1− a

)
=

(
sin2 θ sin θ cos θ

sin θ cos θ cos2 θ

)
,

(4.31)

we have

UΨ =

(
1− 2 sin2 θ −2 sin θ cos θ
−2 sin θ cos θ 1− 2 cos2 θ

)
. (4.32)

Combining the matrix expressions for UΨ and UΨ̃0
given in (4.27) and (4.32), we can have an explicit

expression for the Grover operator Q, namely

Q = UΨUΨ̃0
=

(
1− 2 sin2 θ −2 sin θ cos θ
2 sin θ cos θ −1 + 2 cos2 θ

)
=

(
cos2 θ − sin2 θ −2 sin θ cos θ

2 sin θ cos θ cos2 θ − sin2 θ

)
=

(
cos (2θ) − sin (2θ)
sin (2θ) cos (2θ)

)
.

(4.33)

Recall that from (4.29) and (4.30), the “initial state” |Ψ〉 is given by

|Ψ〉 = sin(θ)|Ψ̃1〉+ cos(θ)|Ψ̃0〉 . (4.34)

7Note that the Grover amplifier Q admits the following expression:

Q ≡ −AS0A−1Sf = UΨUΨ̃0
, (4.22)

where
A ≡ R (P ⊗ 1) . (4.23)

The operator S0 flips the sign of the |0〉n component; the operator Sf flips the sign of the states marked by χ = 1, that is to say, it
flips the sign of the “good” states.

8We rely on the completeness relation
|Ψ̃1〉〈Ψ̃1|+ |Ψ̃0〉〈Ψ̃0| = 1 . (4.28)

© NEASQC Consortium Partners. All rights reserved. Page 27 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Thus, we obtain
Q|Ψ〉 = sin(3θ)|Ψ̃1〉+ cos(3θ)|Ψ̃0〉 . (4.35)

Some observations are in order. First, the Grover operator Q actually implements a rotation in the π plane
(generated by the state vectors |Ψ̃1〉 and |Ψ̃0〉); second, an iterated application of Q leads to

Qk|Ψ〉 = sin
(
(2k + 1)θ

)
|Ψ̃1〉+ cos

(
(2k + 1)θ

)
|Ψ̃0〉 , (4.36)

where k denotes a generic integer. If one chooses k in (4.36) such that (2k+1)θ ∼ π
2 , then sin

(
(2k+1)θ

)
∼ 1

and so one maximizes the probability of getting a result along |Ψ̃1〉 upon measurement. We have therefore
reached the initial purpose of amplifying the probability of measuring |Ψ̃1〉, in a way which explicitly depends
on θ (and thereby on a through (4.29)). Said otherwise, by measuring (4.36) we have a more efficient access
to the estimation of a.

4.1.2.2. Amplitude estimation

Once we have the amplified state (4.36), we still need to actually estimate a in the best possible way. As
already implicit in previous comments, (4.36) is the result of rotations due to the Grover operator Q which
are aimed to enhance the probability of the quantum state vector to return |Ψ̃1〉 upon measurement. So, a
sampling by repeated preparations and measurements of (4.36), instead of the original vector |Ψ〉, already
provides an advantage. However, there is room for an improvement in the precision of the estimation of
a, and the path suggested in the original paper (Brassard et al., 2000) is to adopt an inverse quantum
Fourier transform, see Figure 3. The first n qubits are the physical register upon which the block P loads
the probability distribution. The block R applies the function whose expected value we want to compute,
this is assumed to require one auxiliary qubit. The last m qubits are an auxiliary register used for amplitude
estimation; it controls different powers of the Grover amplification block Q. Eventually, an inverse of the
Quantum Fourier transform on the auxiliary register provides the phase estimation, from which one recovers
the amplitude estimation.9

...

... ...

...

...

...

...

... ...

...

|0〉(0)

P
R Q Q2 Q2m−1

|0〉(n)

|0〉

|0〉(0) H

F−1

|0〉(1) H

H

|0〉(m) H

Figure 3: Quantum circuit for amplitude amplification and estimation (Brassard et al., 2000).

9The paper (Montanaro, 2015) is generally regarded as representing the current state of the art in relation to quantum speedups in
Monte Carlo tasks.

© NEASQC Consortium Partners. All rights reserved. Page 28 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

4.1.2.3. Interesting variations on the same theme

Amplitude estimation implemented by an inverse Quantum Fourier transform constitutes a bottleneck for
the amplitude amplification and estimation algorithm (Brassard et al., 2000), especially in relation to current
or near-future technologies due to the heaviness (i.e. required depth and length) of the associated quantum
circuit. For this reason, some algorithms which need less resources have been proposed.

4.1.2.3.1. Quantum amplitude amplification and estimation with Max Likelihood One interesting
possibility to avoid the inverse Quantum Fourier transform has been suggested in (Suzuki et al., 2020)
and it relies on classical post-processing. One collects data corresponding to measuring states amplified
by means of Qk with different k (see Fig.4 for the circuit needed for a specific k); then one compares this
dataset against a suitable classical prior distribution which depends on the angle θ (see (4.36)). Maximizing
the likelihood that the distribution fits the data satisfactorily, provides an estimation of θ, here acting as a
variational parameter. In turns, from the estimation of θ one gets an estimation of the amplitude a through
(4.29).

The classical post-processing adopts standard statistical tools such as Fisher information and the Cramer-
Rao inequality, we refer to (Cover, 2005) for their description. The Max likelihood alternative for amplitude
estimation has been further discussed in subsequent papers. In (Grinko et al., 2020) the authors stress that
the accuracy of the Max likelihood method (Suzuki et al., 2020) has not been precisely assessed, and they
address this question in their appendix. The potential quadratic speedup of quantum amplitude estimation
without quantum phase estimation has been covered in (Aaronson & Rall, 2020).

...

|0〉(0)

P
R Qk

|0〉(n)

|0〉

Figure 4: Quantum circuit for amplitude amplification and estimation with max likelihood (Suzuki et al.,
2020). The circuit depicted refers to a specified value of the amplification exponent k. A collection of

similar circuits for all the desired values of k is needed.

4.1.2.3.2. Iterative quantum amplitude estimation In (Grinko et al., 2020) a different variant of quantum
amplitude estimation is considered, which does not need quantum phase estimation, that is, it avoids the
estimation of θ through an inverse Quantum Fourier transform. As such, the suggested implementation is
able to reduce the number of qubits and gates, making the overall algorithm lighter. The analysis in (Grinko
et al., 2020) focuses on a rigorous study of the quadratic quantum speedup for their algorithm.

To achieve this quadratic speed up, the iterative quantum amplitude estimation algorithm, like the other
amplitude estimation algorithm, loads the square root of the integrand function in the quantum state. An
alternative method, the quantum coin (to be covered in Section 3), instead loads the function to the quantum
state directly rather than its square root (something which is sometimes referred to as direct embedding
(Kubo et al., 2020)). Nevertheless, both methods exploit Grover’s amplification to “stretch” as much as
possible the confidence interval of previous estimations. In other words, given an estimation of the desired
amplitude a and a high confidence interval for it, an iterated application of the Grover operator Q allows to
“zoom-in” and extend the confidence interval to the region where the sine function (4.29) is invertible. Thus,
one can obtain a finer estimation of θ, and thereby of a. Further details on this “zoom-in” approach are
provided in 4.1.3.1.

4.1.2.3.3. Power-law and QoPrime Amplitude Estimation Both Power-law and QoPrime algorithms
have been described in (Giurgica-Tiron et al., 2020). The paper frames the asymptotic trade-off between

© NEASQC Consortium Partners. All rights reserved. Page 29 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

the quantum speedup of an amplitude estimation algorithm and its depth. More precisely, the authors relate
the speedup to the total number of oracle calls N = O

(
1

ε1+β

)
, while the depth is given by the number of

oracle calls that need to be performed sequentially D = O
(

1
ε1−β

)
; ε represent the precision (the additive

error), while 0 ≤ β ≤ 1. The extreme cases when β = 0 and β = 1 are respectively associated to the
standard Quantum Amplitude Estimation algorithm and to classical Monte Carlo. Note that D is inversely
related to the degree of parallelizability, and it is relevant to stress that it represents the asymptotic depth
due the needed sequential calls to the oracle, without taking into account theO(log log(1/ε)) depth overhead
due to the eventual Quantum Fourier transform of the standard Quantum Amplitude Estimation algorithm.
Roughly, Power-law and QoPrime algorithms interpolate between the quantum and classical cases playing
with the trade-off between N and D, at fixed ND = O

(
1
ε

)
.

The Power-law algorithm (sometimes referred to as Kerenidis-Prakash algorithm) refines the Max Likeli-
hood algorithm of (Suzuki et al., 2020). This class of algorithms rely on a sampling schedule (mk, Nk)
where the oracle is called sequentially mk times for Nk iterations. Eventually, the results collected according
to the schedule are post-processed classically. The Power-law algorithm optimizes such sampling sched-
ule, proposing a power-law schedule instead of an alternative exponential or linear schedule as originally
suggested by (Suzuki et al., 2020). These functional forms refer to the dependence of mk on k.

The QoPrime algorithm follows the same trade off between N and D as the Power-law algorithm, however
its strategy is based on a result from number theory, that is known as Chinese Remainder Theorem. This
concerns modular arithmetic and allows to combine a set of low-accuracy samplings in order to obtain a
high accuracy result. The key technical point is to define a schedule based on coprime integers which,
intuitively, provide independent information about the result, analogous to projections on distinct elements
of an orthogonal basis in vector calculus.

4.1.3. Quantum coins

As already mentioned in Subsection 4.1.2.3, the Quantum Fourier transform requires heavy quantum cir-
cuits which are likely incompatible with near-term quantum technologies. The “quantum coin” (Aaronson &
Rall, 2020; Abrams & Williams, 2004; Shimada & Hachisuka, 2020) offers a way to circumvent this issue
which relies on an alternative algorithm, differing from quantum amplitude estimation in some of its basic
aspects. Although belonging to the same family of Grover algorithms, the quantum coin loads the integrand
function (and not its square root) into the quantum state amplitude. We stress that this apparently small
modification can turn in normalization subtleties: in fact, when loading the function instead of its square
root, the normalization of the state does not correspond to the normalization of the function, this being
relevant in dealing with probability density distributions, as we will explicitly see in 4.1.3.2.

4.1.3.1. The original integration algorithm

The core idea is still Grover’s: K out of N elements are marked (“good” states), so that one can define the
Grover angle

θ ≡ arcsin

√
K

N
, (4.37)

and then exploit the “Grover amplification” to speedup the search quadratically. In quantum coins algorithm,
such amplification is implemented as a zoom-in operation of the confidence level (Abrams & Williams, 2004;
Shimada & Hachisuka, 2020). To appreciate this, we need to delve into some details.

Let us consider an initial state
|Ψ0〉 = |0〉n|0〉 , (4.38)

where the second register is an auxiliary qubit, while the first register is composed of n qubits encoding the
(discretized) domain of integration.10 We first apply a Walsh-Hadamard transform on the second register

|Ψ1〉 =
(
H⊗n ⊗ 1

)
|Ψ0〉 =

1

2
n
2

2n−1∑
x=0

|x〉n|0〉 . (4.39)

10Some comments on the discretization and labelling of the integration domain were given at the beginning of 4.1.2.1.

© NEASQC Consortium Partners. All rights reserved. Page 30 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Here our purpose is estimating the integral of a given function f(x). More precisely, we want to compute
(4.5), i.e. ∑

x

f(x) , (4.40)

for x running on the discretization of the domain implemented by the first quantum register in (4.38). Assume
that we are able to define (and implement) a quantum operator which “loads” the function f into a quantum
state. In other words, we suppose to have an “oracle” acting as follows:

|Ψ2〉 = Of |Ψ1〉 (4.41)

=
1

2
n
2

∑
x

[√
1− f(x)2 |x〉n|0〉+ f(x)|x〉n|1〉

]
.

We stress once more that we are loading the function, and not its square root, into the amplitudes featur-
ing the auxiliary qubit on 1. A further application of the Walsh-Hadamard operator “collects” the relevant
contribution coherently into the |0〉n|0〉 component. Explicitly, we have

|Ψ3〉 =
(
H⊗n ⊗ 1

)
|Ψ2〉 (4.42)

=
1

2n

∑
x

[√
1− f(x)2|0〉n|0〉+ f(x)|x〉n|1〉

]
+ ... ,

=

(
1

2n

∑
x

√
1− f(x)2

)
|0〉n|0〉+

(
1

2n

∑
x

f(x)

)
|0〉n|1〉+ ...

where the final ellipsis ... correspond to other quantum states we are not directly interested in. In summary,
the Walsh-Hadamard operation applied in (4.42) leads to a quantum state |Ψ3〉 whose component along
|0〉n|1〉 is given by the integral we want to compute.

The implementation up to (4.42) is a quantum version of tossing a classical coin (being heads and tails
associated to measuring either |0〉n|0〉 on the one side or any other outcome on the other). So far, no
quantum advantage is implied by the quantum implementation. In order to improve it, one can rely again on
Grover’s amplification. More specifically, we first perform an initial estimation with the unamplified Qcoin,
then we rely on Grover amplification to progressively refine the result, as described in the subsections
below.

First estimation

We first observe that the Walsh-Hadamard operator H⊗n, when acting on the initial state, “loads” the
uniform probability distribution as follows

|Ψ〉 = (H⊗n ⊗ 1)|0〉n|0〉 =
1

2
n
2

∑
x

|x〉n|0〉 , (4.43)

where the second label in the quantum state refers to an auxiliary qubit, used later in order to load the
function f(x); n is the number of qubits in the physical register. According to (4.41), we recall that we also
assume to have an oracle loading the function f(x), acting on the individual state |x〉n|0〉 as follows

Of |x〉n|0〉 = f(x)|x〉n|1〉+
[
1− f(x)2

] 1
2 |x〉n|0〉 . (4.44)

From the definition of the state |Ψ〉 in (4.43) and the action of the oracle given in (4.44), we have

Of |Ψ〉 =
1

2
n
2

∑
x

f(x)|x〉n|1〉+
1

2
n
2

∑
x

[
1− f(x)2

] 1
2 |x〉n|0〉 . (4.45)

Applying a Walsh-Hadamard operator on the quantum register (leaving the auxiliary qubit untouched), we
get

|Φ〉 ≡ (H⊗n ⊗ 1)Of |Ψ〉 =
1

2n

∑
x

f(x)|0〉n|1〉+ (4.46)

© NEASQC Consortium Partners. All rights reserved. Page 31 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

The Walsh-Hadamard transform “collected” the value that we want to compute into the amplitude of the
component |0〉n|1〉. The dots refer to other components on which we do not need to focus the attention,
their amplitudes are analogous sums with all the possible combinations of minus and plus signs.

Using
(|0〉|1〉)† = 〈1|〈0| , (4.47)

where we have dropped the subindex n, we have

E (f(x)) =
∑
x

f(x) = 2n 〈1|〈0| |Φ〉 , (4.48)

so from the probability P01 of measuring |0〉n|1〉 in |Φ〉, we can derive the desired result

|E (f(x))| = 2n
√
P01 . (4.49)

Note that we are getting the absolute value of the expected value, losing information about its sign. This
is however not a problem when (as it happens for option pricing tasks) the function to be integrated is
non-negative across its whole domain.11

In order to get a first empirical estimation µ̃ of (4.49) we run the previous quantum computation m times and
assign a confidence interval relying on standard statistical tools, e.g. Chebyshev’s inequality (see 4.1.3.1).
Thus, the result of the first estimation is given by a confidence interval centered about µ̃, namely

[µ̃− ε, µ̃+ ε]. (4.50)

Subsequent iterations

The strategy of the QCoin algorithm is based on two operations:

• A shift of the function f(x) by the lower bound of the (estimated) confidence interval (4.50), so to
get a function f̄(x) for which we expect a positive mean value, which constitutes a refinement of our
previous estimation.

• An enhancement of the probability P01 of getting the |0〉|1〉 state. This is the key step, related to
amplitude amplification. The idea is as follows: by means of Grover amplification we obtain a state
where the probability P̂01 of getting the |0〉|1〉 is

P̂01 = αP01 , (4.51)

for α > 1. An astimation of P̂01 with precision ε corresponds to an estimation of P01 with increased
precision ε

α . See Subsection 4.1.3.1 for details.

To recapitulate, one could apply standard quantum amplitude estimation to get (4.49), but the purpose is
here to avoid all the coherent manipulations needed to implement the inverse Quantum Fourier transform,
namely we aim to obtain the same result with shallower circuits.

Let us first observe that, given a constant c, we have

E (f(x)− c) = E (f(x))− c , (4.52)

where we relied on the normalization of the probability distribution.12 In particular, we want to shift the
original function by the (empirical) lower bound of the confidence interval (4.50), namely

f̄(x) ≡ f(x)− (µ̃− ε) . (4.54)

11Also in more general cases, one can exploit the finiteness of the function f(x) and the linearity of the integral to shift and rescale
f(x) so to pose the problem as the integral of a positive function.

12

E (f(x)− c) =
∑
x

p(x) [f(x)− c] =

[∑
x

p(x)f(x)

]
− c = E (f(x))− c (4.53)

© NEASQC Consortium Partners. All rights reserved. Page 32 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

We assume to know how to shift the function f(x) vertically, namely, being able to build the orcale

Of̄ |x〉n|0〉 = f̄(x)|x〉n|1〉+
[
1− f̄(x)2

] 1
2 |x〉n|0〉 . (4.55)

Thus, we can proceed as before, namely we can evaluate the expected value of f̄(x) as follows:

E
(
f̄(x)

)
= 2n 〈1|〈0| |Φ̄〉 , (4.56)

where
|Φ̄〉 = (H⊗n ⊗ 1)Of̄ |Ψ〉 , (4.57)

in analogy with (4.49). To avoid clutter, in (4.56) and in the following formulæ, we drop the subindex n for
the physical register (i.e. the first of the two kets or the second of the two bras) and accordingly we denote
the Hermitian conjugation of tensor products of generic kets |a〉 and |b〉 as

(|a〉|b〉)† = 〈b|〈a| . (4.58)

For the moment we have not considered any amplification, we have just shifted the function by the lower
bound of the confidence interval, µ̃−ε, so to expect positive refinements. To pursue this direction, we define
the Grover amplificator as usual

Qf̄ = Of̄ R00O
−1
f̄
R01 , (4.59)

where R00 and R01 are the reflection operators given by

R00 = 1− 2|0〉|0〉 〈0|〈0| , (4.60)
R01 = 1− 2|0〉|1〉 〈1|〈0| . (4.61)

Defining
sin(θ) ≡ 〈1|〈0| |Φ̄〉 , (4.62)

we have
〈1|〈0|Qk|Φ̄〉 = sin

(
(2k + 1)θ

)
. (4.63)

The corresponding amplification factor α for the probability of measuring |0〉|1〉 is

α =
sin
(
(2k + 1)θ

)2
sin(θ)2

. (4.64)

In order to maximize α we need to chose k so that

(2k + 1) .
π

2
. (4.65)

Thus, we will collect all the possible measurment outcomes of the quantum circuit, and -having amplified
the probability of getting |0〉|1〉 in a controlled way- we can estimate θ from the measurment statistics. The
acceleration being provided by the amplification (4.64).

To recapitulate, we are here describing an implementation of the approach proposed in (Abrams & Williams,
2004) and further developped in (Shimada & Hachisuka, 2020). Answering to the same question raised in
(Aaronson & Rall, 2020), the algorithm above represents a simplified method to perform amplitude estima-
tion.

Confidence interval

Chebyshev’s inequality bounds the probability for the empirical mean value of deviating from the true mean
value by more than ε,

Pr
(∣∣∣∣∑iXi

n
− µ

∣∣∣∣ ≥ ε) ≤ σ2

nε2
, (4.66)

where µ is the true mean value, σ2 is the true variance, n is the number of sampling and Xi (the samples)
are i.i.d. random variables. Consider them to be Bernoullian variables with Pr(Xi = 1) = p. Thus the

© NEASQC Consortium Partners. All rights reserved. Page 33 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

variance is
σ2 = p(1− p) ≤ 1

4
, (4.67)

bounded by the case where p = 1
2 , i.e. the fair coin. Using inequality (4.67), we can attribute confidence

intervals according to the following weakened version of Chebyshev’s inequality

Pr
(∣∣∣∣∑iXi

n
− µ

∣∣∣∣ ≥ ε) ≤ 1

4nε2
. (4.68)

This will be a conservative method, liable to possible refinements. Suppose we fix an error ε and a confi-
dence level w (i.e. the probability of falling within ±ε of the correct result), then the required number of trials
goes as

n ∼ 1

4(1− w)ε2
(4.69)

Recalling that we have
P̂01 = αP01 , (4.70)

with α > 1, the confidence interval is shrunk according to[
P̂01 − ε, P̂01 + ε

]
→

[
P01 −

ε

α
, P01 +

ε

α

]
. (4.71)

A couple of additional comments:

• The algorithm described above relies on a similar strategy as the quantum iterative amplitude estima-
tion (Grinko et al., 2020).

• The analysis done on the basis of Chebyshev’s inequality can be possibly refined relying on Chernoff
bound (Cover, 2005; Hoeffding, 1963) or Clopper-Pearson bound (Clopper & Pearson, 1934; Scholz,
2008)

4.1.3.2. Generalization to a non-uniform distribution

In order to apply the Qcoin method to an option pricing model, it needs to be generalized to the case of a
non-uniform distribution. Said otherwise, we need to compute the expectation of a payoff function f(x) with
respect to a generic distribution p(x),

E (f(x)) =
∑
x

p(x)f(x) . (4.72)

The reason why such generalization is necessary, and we cannot just apply the Qcoin to the entire integrand
function p(x)f(x), derives from the fact that it is difficult to define an oracle for the product function p(x)f(x).
This is currently work in progress for the WP5.

4.1.4. An option pricing example adopting amplitude amplification and estimation

As presented Equation in (3.8), the option pricing problem can be formulated as the computation of the
expected value of a payoff function with respect to a probability distribution.13 The simplest use-cases are
provided by vanilla European options (see Section 3.1.1.1, for details) and are considered in the literature
as a first benchmark, or better proof-of-concept, for quantum implementation, see for example (Kaneko
et al., 2020b; Ramos-Calderer et al., 2020; Rebentrost et al., 2018; Stamatopoulos et al., 2020).

We follow (Stamatopoulos et al., 2020). We need to define an operator A such that a in (4.17) corresponds
to the expected value of the payoff function f(x),

a =

2n−1∑
x=0

f(x)p(x) = E (f(x)) , (4.73)

13This is true also in path dependent cases, but one must refer to the probability distribution defined on the path space.

© NEASQC Consortium Partners. All rights reserved. Page 34 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

and compute a by means of amplitude estimation (Brassard et al., 2000).

Vanilla options have piece-wise linear payoff functions f(x). By means of controlled Y rotations, one can
efficiently load the linear function f(x) to a quantum state. Suppose that f(x) = f1x + f0. Consider the
operator

Of ≡ Ry (f0)

n∏
i=1

cRy
(
|x(i)〉, |aux〉; 2i

)
, (4.74)

where cR (|A〉, |B〉, ϕ) implements a rotation by an angle ϕ on the qubit |B〉 controlled by the qubit |A〉; with
x(i) we have denoted the i-th digit in the binary representation of x. Thus, we have

Of |x〉|0〉 = |x〉
[

cos (f(x)) |0〉+ sin (f(x)) |1〉
]
. (4.75)

Note that we have loaded the function into the argument of the sine in the amplitudes of the “marked” qubits,
so we need to linearize it. To this purpose, consider the following deformed function

f̃(x) ≡ c
[
2
f(x)− fmin

fmax − fmin
− 1

]
+
π

4
, (4.76)

where c is a rescaling parameter that we will want to keep small,

c

∣∣∣∣2f(x)− fmin

fmax − fmin
− 1

∣∣∣∣
max
� π

4
. (4.77)

The deformed function f̃ takes values in the interval [π4 − c,
π
4 + c]. We build the operator Of̃ in analogy to

(4.75).

Consider an arbitrary probability distribution and load it to a quantum state,

|ψ0〉 =
∑
x

√
p(x) |x〉|0〉 . (4.78)

By applying Of̃ we get

Of̃ |ψ0〉 =

2n−1∑
x=0

√
p(x) |x〉

[
cos
(
f̃(x)

)
|0〉+ sin

(
f̃(x)

)
|1〉
]
. (4.79)

The probability of measuring a good state is given by

P1 =

2n−1∑
x=0

p(x) sin2
(
f̃(x)

)
, (4.80)

which can be approximated as follows

P1 ≈
2n−1∑
x=0

p(x)

{
c

[
2
f(x)− fmin

fmax − fmin
− 1

]
+

1

2

}
(4.81)

= 2c
E [f(x)]− fmin

fmax − fmin
− c+

1

2

when (4.77) holds.

To implement a piece-wise linear function, we need extra auxiliary qubits to label the intervals where the
function is linear. In the case of two regions we need just one extra auxiliary qubit. This is the case for the
payoff of a vanilla European call option

f(x) = max(x−K, 0) (4.82)

© NEASQC Consortium Partners. All rights reserved. Page 35 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

The splitting into two regions can be realized by means of a comparator (see (Cuccaro et al., 2004)) we get

|ψ1〉 =
∑
x<K

√
p(x) |x〉|0〉+

∑
x≥K

√
p(x) |x〉|1〉 . (4.83)

Then we upload the linear pieces as shown below. Specifically we upload the function

g(x) = h0 + [g0 + g1(x−K)] Θ (x−K) , (4.84)

whose parameters h0, g0 and g1 are to be specified below, while Θ (x−K) is vanishing for K ≥ x and equal
to 1 for K < x (Θ is a Heaviside function). We have

Og|ψ1〉|0〉 =
∑
x<K

√
p(x) |x〉|0〉 [cos(h0)|0〉+ sin(h0)|1〉] (4.85)

+
∑
x≥K

√
p(x) |x〉|1〉 [cos(h0 + g0 + g1x)|0〉+ sin(h0 + g0 + g1x)|1〉] .

The probability of getting 1 for the last qubit by measuring the state Og|ψ1〉|0〉 is given by

P1 =
∑
x<K

p(x) sin2(h0) +
∑
x≥K

p(x) sin2(h0 + g0 + g1x) . (4.86)

Comparing the specific payoff given in (4.82) with the case for generic f(x), (4.76), we have

2c
x−K

xmax −K
− c+

1

2
= h0 + g0 + g1x , (4.87)

and

g1 =
2c

xmax −K
, (4.88)

g0 = −2c
K

xmax −K
, (4.89)

h0 =
π

4
− c . (4.90)

We refer to (Stamatopoulos et al., 2020) for further details.

4.1.5. Applications to risk analysis

As described in Section 3.2, some of the tools used for options pricing can be leveraged for financial risk
analysis.

In particular, both in the pricing and in the risk assessment arena, Monte Carlo methods (see Sections
3.1.3.1 and 3.2.4.1) play a predominant role. Nevertheless, risk analysis problems require a precise es-
timation of the tail of a distribution, which constitute a more demanding regime in terms of Monte Carlo
samplings. On top of that, the problem usually is highly dimensional, as portfolios of derivatives are consid-
ered.

Classical mitigation strategies resort to importance sampling, but, also after such mitigation, the problem
remains usually very heavy in terms of needed resources. Because of this state of affairs, a possible
improvement in efficiency due to a quantum algorithm results particularly interesting in the field of financial
risk assessment.

A generally important technical ingredient both in option pricing and in risk assessment is given by the
computation of expected values above (or below) a pre-specified bound. For instance, vanilla European
options with a specified strike price K, feature a payoff function which “activates” above/below it, depending
whether we are considering a call or put option. As already seen in Section 4.1.4, such a discontinuous
activation can be implemented by means of a quantum comparator circuit, see (Cuccaro et al., 2004) for
details.

© NEASQC Consortium Partners. All rights reserved. Page 36 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

In risk assessment one can be interested in estimating the probability of experiencing a future loss exceed-
ing a pre-determined value, according to, for example, the definition of the V aR and th CV aR risk measures
as in Section 3.2.2. Such a question can again be addressed by means of a comparator. More often, one is
interested in fixing a (high) confidence level α and ask which maximal loss corresponds to it. This question
can be addressed combining a comparator with a binary search algorithm (Egger, Gutiérrez, et al., 2020;
Egger & Woerner, 2019).

As a final remark on quantum-enhanced Monte Carlo techniques, we refer to (An et al., 2020) for the
quantum generalization of the classical multi-level Monte Carlo strategy (Giles, 2015). This latter consists
in an optimized sampling which favours the collection of many low-precision/low-cost samples and entails
the collection of just a few high-precision/high-cost samples. Such multi-level strategy is encoded in a
telescopic sum where each term represents a Monte Carlo sub-problem. The idea of (An et al., 2020) is to
apply a quantum circuit to solve each Monte Carlo sub-problem.

4.2. Other methods with quantum computing

4.2.1. Quantum algorithms to solve the Black-Scholes partial differential equation

Following (Gonzalez-Conde et al., 2021), the quantum approaches rely on the observation that the financial
PDEs can be mapped into the propagation according to an appropriate Hamiltonian operator.

For this purpose, the first step is to consider appropriate changes of variable and/or unknown in the Black-
Scholes equation (3.13). Note that this is the usual way to reduce this equation to a PDE with constant
coefficients or to a heat equation. Also, this technique is used in European vanilla options to obtain the
Black-Scholes formula.

First, by using the change of variable S = ex, equation (3.13) becomes

∂V

∂t
+

(
µ− σ2

2

)
∂V

∂x
+
σ2

2

∂2V

∂x2
− µV = 0 , (4.91)

which can be written as
∂V

∂t
= −iĤBS V , (4.92)

where

ĤBS = i
σ2

2
p̂2 −

(
σ2

2
− µ

)
p̂+ iµ1 , (4.93)

and we have defined the momentum operator

p̂ = −i ∂
∂x

. (4.94)

Note that (4.92) is a Schrödinger-like equation. However, it is important to stress that the Hamiltonian ĤBS
defined in (4.93) is not Hermitian. Therefore, the associated evolution operator

Û(t, t0) = e−iĤBS(t−t0) , (4.95)

is not unitary. For implementing the evolution operator (4.95) into a quantum circuit, i.e. through unitary
operations, one can consider an enlarged system.14 In (Gonzalez-Conde et al., 2021), Û(t, t0) is embedded
into a doubled unitary operator where the doubling is implemented at the price of adding an auxiliary qubit
with respect to which one needs to post-select.

An interesting alternative is followed in (Fontanela et al., 2021). Instead of doubling the systems, one can
perform an additional change of variable τ = σ2(T − t) and consider a new unknown v(x, τ) = exp(−ax −
bτ)V (t, s), with appropriate constant values of a and b (see (Vázquez, 2010) for details) so that (4.91) maps
into the heat equation

14This is a standard technique followed in quantum mechanics (and quantum field theory) when dealing with a subsystem in contact
with an external environment. For instance, to consider a quantum system in contact with a thermal bath or when one want to
consider dissipation.

© NEASQC Consortium Partners. All rights reserved. Page 37 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

∂v

∂τ
=

1

2

∂2v

∂x2
. (4.96)

Next, using the Wick rotation τ̃ = −iτ , which maps real time to imaginary time, the heat equation (4.96)
turns into a Schrödinger-like one, namely

∂v

∂τ̃
= −ĤHE v , (4.97)

with
ĤHE = − i

2
q̂2 , q̂ = −i ∂

∂x
. (4.98)

This leads to a purely anti-Hermitian Hamiltonian operator. Said otherwise, (4.97) encodes a Hamiltonian
evolution along imaginary time, that is, the Wick rotated version of a normal real-time propagation. Intu-
itively, imaginary-time propagation transforms oscillations into dampings, so that (4.97) can be associated
to a non-unitary (read dissipative) cooling evolution. These observations are relevant in practice, espe-
cially because they allow to connect to an area where similar problems have been thoroughly investigated,
namely that of finding the ground state of quantum system. This is a central problem in condensed matter
physics and in chemistry, which also connects to optimization.

We briefly revise the two approaches just described above separately, commenting the associated literature.

4.2.1.1. Propagating with ĤBS

In (Gonzalez-Conde et al., 2021) they consider the Hamiltonian (4.93) and exploit the fact that it is diagonal
in momentum space. Thus, by means of a quantum Fourier transform, and its inverse, they are able to
work with a diagonal propagator, which admits an efficient decomposition in the Cartan basis. They study
the possibility of truncating the Hamiltonian retaining just a polynomial number of interactions and, on this
basis, they claim an exponential speedup in the Hamiltonian propagation subroutine. Nevertheless, an
overall exponential speedup for the entire pipeline would require efficient loading of the uncertainty model
and of the pay-off function. These issues remain as open problems. A schematic depiction of the algorithm
is given in Fig.5.

Figure 5: Schematic pipeline of the quantum algorithm described in (Gonzalez-Conde et al., 2021). The
acronym QFT stands for Quantum Fourier Transform.

There are two relevant drawbacks of the method, one theoretical and the other one practical. The former is
related to the fact that the diagonalization in momentum space of the Hamiltonian is a “delicate” condition,
spoiled when considering interest rates or volatilities which depend on the underlying asset value. That is, it
is difficult to generalize the method to models which are not just Black-Scholes ones. On the practical level,
the quantum Fourier transform (and its inverse too) are gate-wise demanding and easily incompatible with
actual implementation in NISQ devices.

Two technical aspects of the analysis in (Gonzalez-Conde et al., 2021) are worth stressing. The first is that
they double the spatial direction on which they solve the Black-Scholes equation, so that they mitigate the
possible spurious effects arising from the borders. The doubling is carried out by the addition of an extra
auxiliary qubit. The second technical aspect is that the Hamiltonian that they consider can be expressed

© NEASQC Consortium Partners. All rights reserved. Page 38 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

using only the diagonal Pauli matrices σ0 and σz (i.e. the generators of the SU(2) Cartan subalgebra) and
there is no need to take a Trotter approximation for non-commuting terms.

4.2.1.2. Imaginary-time propagation with ĤHE

A quantum algorithm for imaginary-time propagation has been developed in the field of quantum chemistry
(McArdle et al., 2019).15 It assumes to deal with a Hamiltonian

Ĥ =
∑
i

λiĥi , (4.99)

given by a polynomial number of terms where the coefficients λi are real and the operators ĥi are observ-
ables which admit an expression in terms of tensor products of Pauli operators. In (Fontanela et al., 2021)
such assumption is imported into the financial application domain, although it is not discussed in detail.

The imaginary-time evolution of the quantum state needs special care due to its lack of unitarity. In (McArdle
et al., 2019) they address this aspect by means of a suitable normalization factor.

The quantum state is then approximated with a parametric circuit, like in the variational quantum eigensolver
approach (VQE). Nevertheless, as opposed to this latter, the parameters Θ of the circuit are not optimized.
In fact, the idea of the imaginary-time propagation method is essentially to trade an optimization with a
cooling (or annealing) driven by a Hamiltonian evolution. Specifically, if the initial state overlaps with the
ground state, and if the circuit ansatz is able to represent the ground state, then the imaginary-time evolution
leads the system to eventually land on the ground state. The approach is attractive because it avoids the
circuit optimization, whose hardness and scaling properties are difficult to assess. Nevertheless, some
difficulties are translated into the choice of the ansatz and to its capability of expressing and reaching the
ground state efficiently.

More technically, the imaginary-time method entails considering a McLachlan variational principle

δ

∣∣∣∣∣∣∣∣(∂

∂τ
+ Ĥ + E

)
|ψ(Θ(τ))〉

∣∣∣∣∣∣∣∣ = 0 , (4.100)

where we remind the reader that Θ are the parameters of the circuit ansatz. The coefficient E is related to
the above-mentioned normalization issue, see (McArdle et al., 2019) for details.

The evolution of the parameters is derived from the linear system of differential equations associated to the
variational principle (4.100), namely ∑

j

Aij θ̇j = bi , (4.101)

where θ̇j = ∂θj/∂τ and

Aij = Re
[
∂〈ψ|
∂θi

|∂ψ〉
∂θj

]
, (4.102)

bi = −Re

[∑
a

λa
∂〈ψ|
∂θi

ĥa|ψ〉

]
. (4.103)

The matrix Aij and the vector bi are claimed to be efficiently computable with a quantum subroutine em-
bedded in the overall, hybrid quantum/classical algorithm.

Also this approach presents some drawbacks. First, the transformation to a pure heat equation, (4.96),
occurs for the Black-Scholes model but is expected not to hold when generalizing it. Secondly, the evolution
of the parameter is governed by (4.101) which is solved with classical computing techniques. Its efficiency
and scaling properties have not been assessed thoroughly.

It is interesting to explore the possibility of solving (4.101) still within the quantum circuit, possibly im-
plementing the Harrow-Hassidim-Lloyd (HHL) algorithm (Harrow et al., 2009) or its refinements (see for

15For related discussions we refer to (Tan, 2020) and (Hirofumi Nishi & Matsushita, 2020).

© NEASQC Consortium Partners. All rights reserved. Page 39 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

example (Carrera Vazquez et al., 2020)). For further discussions about solving partial differential equations
in quantum computers we refer to (Garcı́a-Molina et al., 2021) and (Kyriienko et al., 2021).

4.2.2. (Quantum) Machine Learning

As for many other scientific disciplines, in the last decade machine learning techniques have been in-
tensively applied to diverse problems in quantitative finance. Regression-based pricing methods, PDE
resolution and optimal stochastic control problems are prominent examples. For that reason, the recent
advances in the so-called Quantum Machine Learning (QML) can have a great impact when employed on
pricing derivatives and risk management or other relevant tasks for the financial industry. The QML ex-
plores how to devise and implement quantum algorithms that outperform classical computers on machine
learning tasks (Biamonte et al., 2017). Multiple machine learning classical components have been recently
adapted to quantum systems, opening this way a full range of novel applications. Although these new QML
algorithms have not been widely employed, so far, for financial applications (to the best of the authors’
knowledge), they deserve to be considered in the near future.

In the following, we summarised the most promising developments in the QML area, which could be po-
tentially applied to problems appearing in the financial sector, particularly the ones described in Chapter 3.
Note however that most quantum machine algorithms working with classical data assume the availability
of a Quantum Random Access Memory (QRAM), which are not expected to be physically realizable in the
near future (Bouland et al., 2020). For a discussion about the relation among quantum machine learning
and kernel methods we refer to (Schuld, 2021).

4.2.2.1. Quantum Principal Component Analysis

In Section 3.2.4.3 we have briefly described the usage of the PCA algorithm in finance. The basic objective
behind PCA is to calculate the eigenvalues of the covariance matrix Σ ∈ RN × RN , which is Hermitian
positive semi-definite. For this purpose, one possibility is to use the Quantum Phase Estimation (QPE)
algorithm to obtain the eigenvalues. However, two problems arise in this case: an initial state has to be
initialized which includes all the eigenvectors of the covariance matrix and the covariance matrix must be
decomposed on a summation of Pauli strings (which needs N2 classical operations). Taking into account
that Σ is usually a dense matrix , there is no guarantee of obtaining a radical speed-up as could be achieved
in other algorithms like HHL, for example.

Another possibility is to work with the covariance matrix Σ as a density matrix (usually represented as ρ),
and make a Quantum Principal Component Analysis (QPCA). The initial proposal of this approach is due
to (Lloyd et al., 2014), who describe an algorithm to obtain the exponential of a density matrix using several
copies (C) of it. One example of this technique is the QPCA, which was implemented by (Abhijith et al.,
2020) in the case N = 2, with C = 2. Having enough resources, it theoretically runs exponentially faster.
Other refined versions have been proposed later (He et al., 2021; Lin et al., 2019).

Recently, (Xin et al., 2021) suggested to calculate the eigenvalues and eigenvectors of Σ by using a varia-
tional algorithm, by using the density matrix expansion

ρ =

N−1∑
j=0

λj |ψj〉〈ψj |, (4.104)

where {ψj} represents an orthogonal basis. Thus, it is possible to find a unitary transformation such that:

ρf = Ug(Θ)ρU(Θ)†g =

N−1∑
j=0

λj |j〉〈j|, (4.105)

where {|j〉} is the usual computational basis and Θ = {θi} is the set of angles that define the operator U .
This unitary operator is searched for by optimizing the parameters Θ using variational hybrid algorithms.
Once U(Θ)g is known, the eigenvalues can be computed directly by measuring probabilities on the compu-
tational basis. However, it is not clear yet if U(Θ) is an efficient operator for the general case.

© NEASQC Consortium Partners. All rights reserved. Page 40 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

The workflow to use these density-matrix-based QPCA algorithms should include several steps (Abhijith
et al., 2020):

• Convert Σ in a density matrix ρ. For this purpose, two characteristics of the density matrix must be
fulfilled: it must be Hermitian positive semi-definite and its trace must be equal to 1 (tr(ρ) = 1). As
the covariance matrix Σ is Hermitian and positive semi-definite, only a division by its trace is needed
(ρ = Σ/tr(Σ)) to convert it into a density matrix. This step consumes N2 classical operations.

• As Quantum Computers can only work with pure states, in general, ρ must be purified because it can
represent mixed states. This means that to load ρ into a quantum circuit, n = 2 log(N) qubits and
additional classical preprocessing are required.

• This purified state must be loaded in the states, which could need a large number of gates (see 4.3.1
section for a discussion about the loading problem).

In general, these facts limit the scalability of such QPCA to O(N2) operations. However, it could exhibit still
better performance than the general classical complexity of O(N3).

4.2.2.2. Regression

Classical and more advanced (neural networks-based) regression methodologies are greatly appreciated
in derivatives pricing problems, in particular for options with early exercise, like American options (see
3.1.1.2), when they are priced by Monte Carlo methods. The plain regression algorithms rely on solving
linear systems, a task of enormous interest in quantum computation. The HHL algorithm proposed in
(Harrow et al., 2009) is a first relevant representative one for solving linear systems, allowing to diagonalize
some special matrices with exponential speedup. Then, the HHL algorithm was employed to perform a
regression on a quantum computer in (Wiebe et al., 2012). Some related works in this field are (Schuld
et al., 2016; Wang, 2017). A more involved approach is presented in (Reddy & Bhattacherjee, 2021), where
the authors tested several existing quantum (machine learning) regression algorithms tailored to a specific
problem in chemistry, like Quantum radial basis function neural network (Shao, 2020) or Quantum Neural
Networks (Beer et al., 2020) (and the references therein). Other quantum-based techniques like Quantum
Kernel Estimation (Egger, Gambella, et al., 2020) and QML with Gaussian processes (Zhao et al., 2019)
have been recently proposed.

4.2.2.3. (Quantum) Neural Networks and deep learning

The drastic increase of the computational power has enabled the use of deep ANN for general purpose
applications, giving rise to the so-called deep learning techniques. Within this framework, we can identify
supervised learning, unsupervised learning, reinforcement learning, convolutional networks, etc. As it is
the case for many other disciplines, computational finance greatly benefits from this new computational
paradigm, with successful developments on numerical solutions for PDEs or Backward Stochastic Differ-
ential Equations (BSDE), inverse option pricing problems, counterparty credit risk computations, etc. In
Section 3.1.3.3, we have presented a PDE-based problem formulation suitable to be solved by unsuper-
vised ANN approach.

In the context of deep learning and ANN, the quantum advantage can be exploited from different points of
view. The first and most obvious contribution is achieved by improving the training procedure employing
quantum computers. The use of, for example, quantum algorithms can have a positive impact on increasing
the training computational efficiency and/or avoiding possible undesirable malfunctioning (local minima) with
respect to the classical alternatives (stochastic gradient descent, backpropagation, etc.). The advances
on training the so-called Boltzmann machines (particularly the Restricted Boltzmann Machine (RBM)) are
specially relevant. Some representative works in this area of interest are (Adachi & Henderson, 2015;
Alcazar et al., 2020; Job & Adachi, 2020; Vinci et al., 2020).

Another research line consists of the algorithms based on a fully Quantum Neural Network (QNN). In the
last few years, many works on QNN advanced training have been proposed, among which we highlight
(Beer et al., 2020; Coyle et al., 2021). One of the main applications of QNNs is the function (or distribution)
loading. For its great importance in the financial problems, we devote a specific section to this particular
aspect (see Section 4.3.1).

© NEASQC Consortium Partners. All rights reserved. Page 41 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

4.3. Discussion

4.3.1. The loading problem

Loading the necessary state into a quantum register in order to initialize the algorithm constitutes in many
cases the main bottleneck. For example, in Grover Amplification (see section 4.1.2.1), this initial state (P)
is included in the operator A which has to be used k times. This state of affairs is not difficult to grasp. A
quantum register of n qubits has the capacity of storingN = 2n states, this corresponding to the exponential
storing capability of a quantum register. However, the complexity of a generic state (and therefore of the
algorithm responsible for its loading) typically scales with the Hilbert space volume itself, that is to say,
exponentially. This is usually referred to as being “inefficient”, reserving the attribute “efficient” for cases
where the loading complexity is at maximum polynomial in n.

The formulation of the quantum circuit initialization problem in terms of the complexity of the loading al-
gorithm reveals its connections to the theory of complexity and to the theory of approximation. In fact, in
order to seek for efficient loading algorithms, we can explore the possibility of approximating the state to
be loaded, considering thereby a trade-off between the accuracy and the resources necessary to load the
state.

The generic idea of loading an approximated version of the state, aiming to have an efficient process, can
take different practical paths. Two classes of strategies are particularly interesting: the “machine learning”
approach and the “generation approach”. Note that this classification can be handy to clarify the ideas but
it is by no means strict, variational circuits –for instance– belong to both classes.

Figure 6: Distribution of ST of 500 trajectories starting at S0 = 100

In the quantum integration algorithms presented in the previous sections, the first step is to load a probability
distribution. Figure 7 shows the distribution of the prices of the HSBC bank in the New York Exchange
market from April 2020 to April 2021. This is an example of the distribution to load for VaR calculations,

© NEASQC Consortium Partners. All rights reserved. Page 42 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Figure 7: Distribution of HSBC share prices from Apr. 2020 to Apr. 2021 in the New York Exchange Market

which has to achieve a great accuracy. However, for the option pricing, a typical distribution of the final
values after simulation of the trajectories looks like Figure 6, which requires less precision for the calculation
of the expected values.

In both cases, loading the distribution means that it is necessary to create a circuit for a unitary operation
P such as:

|P 〉 = P|0〉 , (4.106)

|P 〉 =

N−1∑
i=0

√
Pi|i〉 , (4.107)

N−1∑
i=0

Pi = 1 . (4.108)

Take into account that P is diagonal, which can simplify some techniques. In fact, Montanaro (Garcı́a-Ripoll,
2021; Montanaro, 2015) shows that in QCMC the time of calculation is dominated by the asymptotic time
to load the probability distribution as

TQMC = O

(
TP
ε

)
, (4.109)

being TQMC the time cost of the ideal amplitude estimation algorithm, TP the time for implementing P and
ε the desired sampling precision.

There are different approaches to load this distribution:

1. Use a general method to convert unitary operators to circuits (Goubault de Brugière, 2020).

© NEASQC Consortium Partners. All rights reserved. Page 43 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

2. Use specific methods to initilize the amplitudes to a normalized vector (Kaye & Mosca, 2004; Shende
et al., 2006; Soklakov & Schack, 2006).

3. Use the properties of the probability distribution to create an efficient circuit (L. Grover & Rudolph,
2002).

4. Create an ad-hoc circuit using Parameterized Quantum Circuit (PQC) which approximates the ampli-
tudes (Nakaji et al., 2021).

5. Using Tensor Networks techniques (Garcı́a-Ripoll, 2021; Holmes & Matsuura, 2020; Ran, 2020) (see
Section 4.3.1.3 for further comments).

The first two methods present the problem highlighted at the beginning of this section: the poor scalability.
The minimum number of gates to load the distribution has a complexity of O(N), which is too large for the
current NISQ computers when the number n of qubits increases. So, the other methods seem to be the
right approach to load an approximate probability distribution to the states. We review them in the next
subsections.

However, as (Bouland et al., 2020) pointed out, these distributions are only initial prospects of the real
pricing computational problem. They are generated using complex Monte Carlo models, that are really
the bottleneck in the classical arena. For example, to generate the distribution of Figure 6, hundreds of
simulated paths of the value of the asset have been simulated using a simple model, as shown in Figure
8. In order to have a real gain from the usage of Quantum Computers, a method to make such Monte
Carlo method with them that keeps the superposition of the underlying evolution model and the payoff is
needed, because P and R have to be applied several times. If such P exists, and is fast, it will substitute
the computational expensive classical Monte Carlo.

Figure 8: Simulated trajectories of one asset using the BS model starting at value 100

4.3.1.1. Specific methods to load probability distributions

(L. Grover & Rudolph, 2002) proposed a general methodology to load integrable probability distributions
into the states efficiently. The basic idea is to discretize it in 2n regions iteratively, splitting in each step one
region in two. In the first step, the initial state is prepared to:

|0〉 ⊗ |0〉n−1 → (
√
pl|0〉+

√
pr|1〉)⊗ |0〉n−1 , (4.110)

© NEASQC Consortium Partners. All rights reserved. Page 44 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

where pr and pl are the probabilities that x lies on the right or on the left of the middle point, respectively. At
each iteration step, one additional qubit is added. This doubles the state space and it is necessary to store
the extra information coming from dividing each region into two equally spaced subregions. If xiR and xiL
are the right and left boundaries of a region i, it is necessary to apply a θi rotation controlled by the state |i〉
on the new qubit, where θi is given by

θi = arccos
(√

f(i)
)
, with f(i) =

∫ xiR+xiL
2

xiL
p(x)dx∫ xiR

xiL
p(x)dx

, (4.111)

where f(i) represents the probability of being to the left of the middle point of the region i conditioned by
being in that region.

Summarizing, one full iteration consists in the following passages:

2m−1∑
i=0

√
p

(m)
i |i〉m|0〉(n−m)|0〉q (4.112)

−→
2m−1∑
i=0

√
p

(m)
i |i〉m|0〉(n−m)|θi〉 (4.113)

−→
2m−1∑
i=0

√
p

(m)
i |i〉m(cos(θi)|0〉+ sin(θi)|1〉)|0〉(n−m−1)|θi〉 (4.114)

−→
2m−1∑
i=0

√
p

(m)
i |i〉m(cos(θi)|0〉+ sin(θi)|1〉)|0〉(n−m−1)|0〉q (4.115)

−→
2m+1−1∑
j=0

√
p

(m+1)
j |j〉m+1|0〉(n−m−1)|0〉q . (4.116)

In the first passage, a unitary transformation Ui loads θi into the auxiliary register, Ui|0〉q = |θi〉. The
auxiliary register is composed by q qubits and we indicate this explicitly when the register is in its state 0;
q corresponds to the precision with which we encode θi. Then, a rotation controlled by |θi〉 encodes the
left/right conditioned probabilities for region i into the qubit m+ 1. Finally, the initial Ui operation is uncom-
puted, thus resulting in a state with the probabilities for each 2m+1 regions mapped into the amplitudes of
the states. Thus, by iterating the passages from (4.112) to (4.116), the probabilities of the 2n regions are
eventually mapped into the corresponding amplitudes as desired.

The method could consume less resources in the case in which some parallelization strategy is encoun-
tered. However, only an approximation to Ui is known that does not scale for m < 7 (Kaneko et al.,
2020a) and, in fact, some recent works dispute the claim about the speed-up when used for Monte Carlo
(Chakrabarti et al., 2020; Herbert, 2021). Similar algorithms which use the conditioned probabilities are
presented by (Kaye & Mosca, 2004).

It is important to stress that these methods rely on the knowledge of an analytic expression for the PDF
(in general with some further assumptions on it such as log-concavity). When dealing with empirical data,
such those ones presented in Fig.6 and Fig.7, the calculation of the conditioned probabilities, (4.111), is
straightforward and it can be implemented by means of a simple circuit with controlled Ry gates using
binary trees (He et al., 2021; Kerenidis & Prakash, 2017). In both cases, the actual possibility of an overall
quantum advantage is still debated in the literature.

4.3.1.2. Parameterized Quantum Circuits

With PQC we loosely refer to all methods which rely on a parametric ansatz whose parameters are opti-
mized by means of a machine learning process (Benedetti et al., 2020). The optimization can be either
classical, giving rise to a hybrid algorithm, or quantum and directly embedded into the quantum circuit. At
any rate, we are here in the domain of approximation theory tackled with optimization algorithms. Within
this wide family we stress two (overlapping) groups of approaches:

© NEASQC Consortium Partners. All rights reserved. Page 45 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

1. Variational circuits. In this case, a specific circuit is constructed to approximate the unitary operation
U of (4.106). An initial unitary V (Θ) is created, usually based on basic one and two qubits operations
which depend on a set of k parameters Θ = {θ1, . . . , θk}. The final values of these parameters are
selected by optimization, trying to minimise a cost function as the fidelity or the distance between
the initial vector and the final amplitudes. For example, (Nakaji et al., 2021) proposed the algorithm
Approximate Amplitude Encoding (AAE) which can load the components of a real-valuated vector
into the amplitudes of a quantum state, including their sign. In this case, the complexity of the final
quantum algorithm could be of O(poly(n)) as desired.

2. Quantum Generative Adversarial Network (QGAN) has been proposed by (Romero & Aspuru-Guzik,
2021) and (Zoufal et al., 2019). It is based on the classical concept proposed by (Goodfellow et al.,
2014), where two deep learning models are trained simultaneously using the input data. One model
G, called generator, try to generate data that are checked by a second model D (the discriminator).
This model try to distinguish if the data come from a real distribution or not. For the quantum case, G
is also a PQC which is trained to fake the discriminator, that can be a classical deep learning model.
Once the generator is trained, it can be used alone to load the desired distribution in the states. the
discriminator could be a quantum circuit or a classical deep learning model. In fact, G is a parametric
circuit G(Θ) that transforms an initial PDF (coined as latent space) to the final and desired one. The
initial distribution is not predefined, and can be an uniform, normal, random or whatever. So, the final
model is:

|P 〉 = G(Θ)U |0〉 (4.117)

where U loads the initial distribution and G(Θ) transforms it to the final one. In the case that the initial
distribution could be the uniform one, this can be implemented using a Walsh-Hadamard operation
which applies a Hadamard gate to all the qubits. In the case of a random distribution, it can be
implemented easily applying random rotations to them. However, if the needed distribution is the
standarized normal PDF, the problem is not resolved. For example, Zoufal et al. (Zoufal et al., 2019)
used this technique to make an experiment to solve the option pricing problem. In the experiment, the
normal PDF had the best Kolmogorov-Smirnov distance. In the case of Romero et al, the circuit has
a different mechanism to take into account the latent space. In this case, the initial random numbers
(z) are drawn from a classical PDF and are encoded into the circuit using a small encoding part of
one-qubit gates. In this case, the final model is:

|P 〉 = G(Θ)U(f(z))|0〉 (4.118)

However, training a circuit to reproduce a general PDF is not an easy task, even in the classical
paradigm for 1-dimension, as shown by (Zaheer et al., 2017).

Using both methods is not a clear path for getting the needed full speed-up, due to the uncertainty created
by the training of the models (Chakrabarti et al., 2020). For each data distribution, a training is needed which
needs time and consumes resources and it is a hard work. However, one can assume that after having an
initial model for one asset, it should not change a lot from one day to another, and only an automatic small
retraining is needed daily.

4.3.1.3. Tensor networks

Tensor networks have been developed in condensed matter physics in order to define convenient ansatzes
for the ground state of highly-entangled systems. The ansatz is generically expressed in terms of a product
of matrices (or tensors) which have different kinds of indexes: physical indexes spanning the Hilbert space
and virtual indexes which are associated with an auxiliary space. The dimensionality and characteristics
of the auxiliary space can be adapted to different situations. Intuitively, the auxiliary space helps in disen-
tangling the quantum state providing a more explicit representation which is easy to handle and interpret,
though in a bigger space. Through suitable contraction operations on the virtual indexes, the tensor network
reduces to the physical quantum state, with only physical indexes.

Tensor networks can be useful to address the problem of initial loading for quantum circuits if one is able to
efficiently encode the desired quantum state into a suitable tensor network ansatz. Such encoding would
in general entail multi-qubit operations, which can be traded-off with a deeper circuit composed only by 1-
and 2-qubit states, see (Ran, 2020).

© NEASQC Consortium Partners. All rights reserved. Page 46 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Matrix product states (MPS) constitute a widely used class of tensor network ansatzes. These have been
long studied in the context of quantum computation (Schön et al., 2005) and have been recently claimed to
allow for an efficient and scalable encoding of explicit amplitude functions with a high fidelity, relying just on
linear-depth quantum circuits (Holmes & Matsuura, 2020).

Tensor network techniques have been studied also in the quantum-inspired realm of classical algorithms.
Two relevant example applications are the efficient classical simulation of Shor’s factorization algorithm
(Dang et al., 2019) and generic multi-variate analysis (Garcı́a-Ripoll, 2021) (e.g. expected value, Fourier
transform, interpolation and solving PDE). In fact, in (Garcı́a-Ripoll, 2021) the author presents an algorithm
to efficiently use MPS techniques to encode smooth, differentiable multivariate functions in quantum reg-
isters, as PDF are. Although being a promising method, the extension to a general empirical data-based
probability as presented in Figure 7 is not, up to our knowledge, known yet and need further research. He
extends the case for multi-dimensional encoding.

4.3.1.4. Generative approach, n-nomial trees and quantum walks

With “generative approach” we refer to the actual simulation (or approximated simulation) of the stochastic
processes at discrete times which generate the desired distribution. The discrete stochastic approach is
particularly important when the underlying asset SDE does not admit an analytical formulation, or when the
option is path dependent (thus requiring the knowledge of the distribution of the underlying at intermediate
times before maturity). As a simple example, we can consider the Black and Scholes distribution associated
to the multiplicative Brownian motion problem (3.5) and generate the distribution from the actual stochastic
process by means of an n-nomial tree approximation, see Section 3.1.3.5.

In the class of generative models we find the variational quantum simulation (Endo et al., 2020), imple-
mented –for example– by means of trinomial trees (Kubo et al., 2020).16 Note that we can see the n-nomial
approach as a way to address the quantum numerical solution of a partial differential equation (Fontanela
et al., 2021; Garcı́a-Ripoll, 2021; Gonzalez-Conde et al., 2021) (see Section 4.2.1). In (Kubo et al., 2020)
the up/down transition probabilities (3.38) for the trinomial tree approximation are implemented by means of
ladder operators. These are built from the cyclic permutation operators, suitably combined with the identity.
Thus, the strategy proposed by (Kubo et al., 2020) relies on the linear combination of unitaries (Childs &
Wiebe, 2012).

It is relevant to underline that the algorithm in (Kubo et al., 2020) works with the so-called direct embedding,
where quantum amplitudes encode probabilities instead of encoding their square roots. This is the same
embedding considered in the QCoin approach, therefore it is an interesting future perspective to consider
the trinomial approach of (Kubo et al., 2020) as a loading circuit for a QCoin integration.

In (Carrera Vazquez & Woerner, 2021) they extend the idea of using the transition probabilities and propose
an algorithm to keep not only the final distribution but also the probabilities of each possible path. Further
considerations about this approach are described in (Chakrabarti et al., 2020).

Another interesting member of the class is given by quantum walks (Ambainis et al., 2005; An et al.,
2020; Magniez et al., 2011; Montanaro, 2015), especially as quantum alternatives to classical Monte Carlo
techniques based on multiple-stage Markov chains. For similar ideas aimed at embedding risk models into
the quantum circuit, we refer to (Braun et al., 2021).

One interesting (though somewhat speculative) purpose of quantum walks is to provide a model for financial
dynamics which is aware of (or just inspired to) the cognitive dynamics which contributes to drive it (as a pro-
cess of decision making modeled through superpositions and collapses). In this regard, the superposition
and interference among quantum states are aimed to model what can be intuitively described as inhibitory
and excitatory interactions among possible parallel paths (Orrell, 2020). The co-operative/competitive inter-
actions among paths are possibly a crucial device for a richer modelization of the financial dynamics which
is (usually) not taken into account in classical stochastic modelling. In fact, it requires expensive classical
parallelizations, these are however natural in a quantum setup.

To clarify the ideas it is useful to focus on the technical differences among classical random walks and
quantum walks. The former are stochastic processes where each discretized step is taken according to
some random procedure (e.g. the toss of a coin). On the contrary, an ideal quantum walk represents a class

16(Hao et al., 2019) contains a study on the quantum implementation of the binomial tree approach.

© NEASQC Consortium Partners. All rights reserved. Page 47 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

of deterministic evolutions for a wave function. Here the stochasticity is given just by the stochastic nature of
the eventual quantum measurement, at least in the cases where decoherence and dissipation phenomena
are absent. Actually, suitable consideration of decoherence allows to interpolate between classical random
walks and quantum walks (Orrell, 2020). This can be understood as follows. The quantum state of a
quantum walk has an auxiliary qubit which controls the decision about the step, similarly to a classical coin
which determines if the step is taken upward or downward in a binomial classical random walk. The auxiliary
qubit is sometimes called a “quantum coin”17 and it evolves, for instance, with a Hadamard operation at each
discrete time step. The Hadamard evolution for the auxiliary qubit represents the quantum version of a fair
coin where an up or down state is evenly mapped to up and down at the next step. Yet, we stress once
again, the ideal evolution of the quantum state is here deterministic. Unless we consider deviations from
ideality and introduce some decoherence and, for instance, go to the extreme non-ideal case in which
decoherence is pushed to its maximum, where the “quantum coin” is measured at each time step. In this
extreme situation the Hadamard quantum coin reduces to a classical fair coin.

4.3.1.5. Loading the payoff function

The task of computing the expectation value of a payoff function with respect to a probability distribution,
see Eq.(4.6), requires that both be loaded into the quantum circuit, accordingly to the pipeline depicted
in Fig.2. As already commented below Eq.(4.6), the probability distribution and the payoff function are in
general loaded separately. Nevertheless, they can be loaded simultaneously (Carrera Vazquez & Woerner,
2021).

The payoff functions for European vanilla options, see Eq.(3.1), are relatively easy to implement by means
of a comparator circuit, as described explicitly in section 4.1.4. As long as the payoff function is piecewise
linear, one can generalize the approach implemented for the European vanilla contracts. Nonetheless, this
would already entail an increased level of complexity in the quantum circuit; for instance, any separation
point between two linear regions would require a comparator circuit.18

In a completely general case, i.e. for arbitrary payoff, its loading problem can be even more complicated
than that of the probability distribution function. In fact, one needs to load the payoff on a quantum state
which already encodes the probability distribution. On the contrary, one in general loads the probability
distribution starting from a standard reference quantum state (e.g. |0〉n).

For small size examples, the payoff can be loaded point-wise. However this is clearly an approach which
scales inefficiently and cannot be planned for real applications. However in practice is the main approach
used.

4.3.2. Scaling to real-world problems

The loading problem commented in Subsection 4.3.1 provides a concrete example about possible issues
encountered in designing full quantum algorithms able to reach a quantum advantage. An exponential
speedup concentrated in a subroutine of an overarching inefficient algorithm, however interesting, is not
sufficient to reach quantum advantage.

We are here implicitly referring (as it often happens) to quantum advantage in terms of scaling of the
execution time. This is only a part of a bigger picture which needs to involve other variables such as the
energy consumption and cost. Strangely enough, this wider picture is usually not analyzed in the quantum
finance literature.

Many ideal algorithm studied in the literature are not viable on current or near-future quantum technology.
They usually require either an exceedingly large number of qubits or involve too deep a circuit with respect
to the realistic coherence time, or both. The theoretical analysis of algorithms should be always accompa-
nied by a critically explored awareness of current and future technological limitations. In this perspective,
an important (negative) claim has been described in (Babbush et al., 2021), where it is argued that a
quadratic speedup is not sufficient to obtain a quantum advantage, mainly due to the -constant but large-
resource overheads (mainly needed for error correction). An important overarching suggestion emerging

17Not to be confused with the quantum coin algorithm we have introduced for integration.
18See (Cuccaro et al., 2004) for the construction of a quantum comparator circuit as a modification of a ripple adder.

© NEASQC Consortium Partners. All rights reserved. Page 48 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

from (Babbush et al., 2021) is that the complexity scaling is in general not enough to properly define an
actual threshold for quantum advantage.

In (Chakrabarti et al., 2020) the authors analyze the resources to attain a practically valuable quantum
advantage in derivative pricing. They refer to benchmark, path-dependent cases, specifically to autocallable
options and target accrual redemption forward contracts. They argue that the complexity of the pricing task
implied by path dependence is a necessary ingredient to find a regime where quantum technologies can
lead to an advantage with respect to their classical counterparts. However, the benchmark cases are
showed to need 7.5k logical qubits and a depth of 46 million T-gates and a clock-rate of 10MHz (current
quantum technologies moves on the order of 10kHz). These are recognized as markedly prohibitive for the
moment, yet they set an order-of-magnitude scenario, useful to frame further research and strategy. An
important technical aspect of the paper consists in basing the computation on returns instead of levels of
the underlying asset value. This is sometimes necessary, e.g. when performances of the underlying assets
are defined in terms of returns.

The discussions about realistic implementations of quantum algorithms for finance cannot, at least so far,
be addressed in a hardware-independent fashion. Connectivity of the actual computing architecture or even
the kind of technology they are based upon are significant factors in discussing the concrete viability of a
quantum algorithm.

© NEASQC Consortium Partners. All rights reserved. Page 49 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

5. Conclusions

In recent years we have seen significant advances in quantum algorithms with application to financial math-
ematical problems. While this progress is very encouraging, further work will be required to prove that
Quantum Computing can deliver real-world advantage to the areas of derivative pricing and financial risk
management. Especially if this advantage ought to be delivered on Noisy Intermediate-Scale Quantum
technology with limitations to both the number of logical qubits and the width of quantum circuits.

Recent achievements in Quantum Amplitude Estimation, which can be used to replace classical Monte
Carlo approaches, show that the theoretical quadratic speed up can be delivered while avoiding resource-
demanding Quantum Fourier Transforms, providing grounds for optimism. A novel candidate algorithm in
this regard has been presented here which relies on the QCoin algorithm 4.1.3.

Further theoretical work is needed in order to find efficient (ideally optimal) ways to load probability distri-
butions to quantum registers, as well as efficient mathematical representations of pay-off functions using
unitary transforms that can be easily implemented in a quantum circuit.

An area that is also showing some interesting results is the solution of PDEs using quantum computers
with applications to derivative pricing and risk management. While exciting, these approaches have not yet
been able to prove whether quantum algorithms can provide an advantage over their classical counterparts.
Lastly, relatively recent advances in both classical and Quantum Machine Learning algorithms for solving
PDEs are also exciting, especially because it has been shown that QML can be robust when implemented
in noisy hardware. Furthermore, QML algorithms can present some interesting theoretical advantages
over their classical counterparts, see for example (Huang et al., 2021), where the authors introduce the
concept of ”projected quantum kernel” to show numerical results that promise a quantum advantage in
learning algorithms. These kernels work by projecting the quantum states to an approximate classical
representation, helping reduce the dimensionality of the problem, however for real world examples the
dimension would be still too large to be handled efficiently using a classical computer. Quantifying quantum
advantage for ML algorithms is however not straightforward and should be approached carefully.

In summary, research into financial applications of quantum computing is accelerating with new ideas
emerging at rapid pace and while important breakthroughs across the technology stack will be needed
to make the approach viable, the recent accelerated publication of important results is encouraging.

© NEASQC Consortium Partners. All rights reserved. Page 50 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

List of Acronyms

Term Definition
ANN Artificial Neural Network
AAE Approximate Amplitude Encoding
BSDE Backward Stochastic Differential Equations
CDF Cumulative Distribution Function
ChF Characteristic function
CVaR Conditional Value-at-Risk
HHL Harrow, Hassidim and Lloyd algorithm
i.i.d. independent and identically distributed
MC Monte Carlo
NEASQC NExt ApplicationS of Quantum Computing
NISQ Near Intermediate Scale Quantum
PCA Principal Component Analysis
PDE Partial Differential Equation
PDF Probability Density Function
PQC Parameterized Quantum Circuit
QFT Quantum Fourier Transform
QGAN Quantum Generative Adversarial Network
QCMC Quantum Computing Monte Carlo
QML Quantum Machine Learning
QNN Quantum Neural Network
QPCA Quantum Principal Component Analysis
QPE Quantum Phase Estimation
QRAM Quantum Random Access Memory
RBM Restricted Boltzmann Machine
RNG Random number generators
SDE Stochastic Differential Equation
UC5 Quantum Financial Applications Use Case
VaR Value-at-Risk

Table 1: Acronyms and Abbreviations

© NEASQC Consortium Partners. All rights reserved. Page 51 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

List of Figures

Figure 1.: Options on HSBC stocks (the underlying assets) in Yahoo Financials for expiry date
of Apr. 30th, 2021 . 9

Figure 2.: Schematic pipeline of a quantum algorithm to compute the expected value of a function 24
Figure 3.: Quantum circuit for amplitude amplification and estimation (Brassard et al., 2000). . . 28
Figure 4.: Quantum circuit for amplitude amplification and estimation with max likelihood (Suzuki

et al., 2020). The circuit depicted refers to a specified value of the amplification expo-
nent k. A collection of similar circuits for all the desired values of k is needed. 29

Figure 5.: Schematic pipeline of the quantum algorithm described in (Gonzalez-Conde et al.,
2021). The acronym QFT stands for Quantum Fourier Transform. 38

Figure 6.: Distribution of ST of 500 trajectories starting at S0 = 100 42
Figure 7.: Distribution of HSBC share prices from Apr. 2020 to Apr. 2021 in the New York

Exchange Market . 43
Figure 8.: Simulated trajectories of one asset using the BS model starting at value 100 44

© NEASQC Consortium Partners. All rights reserved. Page 52 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

List of Tables

Table 1.: Acronyms and Abbreviations . 51

© NEASQC Consortium Partners. All rights reserved. Page 53 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Bibliography

Aaronson, S., & Rall, P. (2020). Quantum approximate counting, simplified. Symposium on simplicity in
algorithms (pp. 24–32). SIAM.

Abhijith, J., Adedoyin, A., Ambrosiano, J., Anisimov, P., Bärtschi, A., Casper, W., Chennupati, G., Coffrin, C.,
Djidjev, H., Gunter, D., Karra, S., Lemons, N., Lin, S., Malyzhenkov, A., Mascarenas, D., Mniszewski,
S., Nadiga, B., O’Malley, D., Oyen, D., . . . Lokhov, A. Y. (2020). Quantum algorithm implementations
for beginners [arXiv:1804.03719].

Abrams, D. S., & Williams, C. P. (2004). Fast quantum algorithms for numerical integrals and stochastic
processes [arXiv:quant-ph/9908083].

Adachi, S. H., & Henderson, M. P. (2015). Application of quantum annealing to training of deep neural
networks [arXiv:1510.06356].

Alcazar, J., Leyton-Ortega, V., & Perdomo-Ortiz, A. (2020). Classical versus quantum models in machine
learning: Insights from a finance application. Machine Learning: Science and Technology, 1(3),
035003.

Ambainis, A., Kempe, J., & Rivosh, A. (2005). Coins make quantum walks faster. Proceedings of the Six-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1099–1108.

An, D., Linden, N., Liu, J.-P., Montanaro, A., Shao, C., & Wang, J. (2020). Quantum-accelerated
multilevel Monte Carlo methods for stochastic differential equations in mathematical finance
[arXiv:2012.06283].

Babbush, R., McClean, J. R., Newman, M., Gidney, C., Boixo, S., & Neven, H. (2021). Focus beyond
quadratic speedups for error-corrected quantum advantage. PRX Quantum, 2, 010103.

Beck, C., Hutzenthaler, M., Jentzen, A., & Kuckuck, B. (2021). An overview on deep learning-based approx-
imation methods for partial differential equations [arXiv:2012.12348].

Beer, K., Bondarenko, D., Farrelly, T., Osborne, T. J., Salzmann, R., Scheiermann, D., & Wolf, R. (2020).
Training deep quantum neural networks. Nature Communications, 11(808).

Benedetti, M., Lloyd, E., Sack, S., & Fiorentini, M. (2020). Parameterized quantum circuits as machine
learning models. Quantum Science and Technology, 5(1), 019601.

Benioff, P. (1980). The computer as a physical system: A microscopic quantum mechanical Hamiltonian
model of computers as represented by turning machines. Journal of Statistical Physics, 22(5),
563–591.

Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine
learning. Nature, 549, 195–202.

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy,
81(3), 637–654.

Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics, 3(1), 167–179.
Bouland, A., van Dam, W., Joorati, H., Kerenidis, I., & Prakash, A. (2020). Prospects and challenges of

quantum finance [arXiv:2011.06492].
Brassard, G., Hoyer, P., Mosca, M., & Tapp, A. (2000). Quantum amplitude amplification and estimation.

AMS Contemporary Mathematics Series, 305.
Braun, M. C., Decker, T., Hegemann, N., Kerstan, S. F., & Schäfer, C. (2021). A quantum algorithm for the

sensitivity analysis of business risks [arXiv:2103.05475].
Carr, P., & Madan, D. B. (1999). Option valuation using the fast Fourier transform. Journal of Computational

Finance, 2, 61–73.
Carrera Vazquez, A., Hiptmair, R., & Woerner, S. (2020). Enhancing the quantum linear systems algorithm

using Richardson extrapolation [arXiv:2009.04484].
Carrera Vazquez, A., & Woerner, S. (2021). Efficient state preparation for quantum amplitude estimation.

Physical Review Applied, 15, 034027.
Chakrabarti, S., Krishnakumar, R., Mazzola, G., Stamatopoulos, N., Woerner, S., & Zeng, W. J. (2020). A

threshold for quantum advantage in derivative pricing [arXiv:2012.03819].
Childs, A. M., & Wiebe, N. (2012). Hamiltonian simulation using linear combinations of unitary operations.

Quantum Information & Computation, 12(11–12), 901–924.
Clopper, C. J., & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the

binomial. Biometrika, 26(4), 404–413.
Cover, T. M. (2005). Elements of information theory (2nd ed.). Wiley.
Coyle, B., Henderson, M., Le, J. C. J., Kumar, N., Paini, M., & Kashefi, E. (2021). Quantum versus classical

generative modelling in finance. Quantum Science and Technology, 6(2), 024013.

© NEASQC Consortium Partners. All rights reserved. Page 54 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Cuccaro, S. A., Draper, T. G., Kutin, S. A., & Petrie Moulton, D. (2004). A new quantum ripple-carry addition
circuit [arXiv:quant-ph/0410184].

Dang, A., Hill, C. D., & Hollenberg, L. C. L. (2019). Optimising matrix product state simulations of Shor’s
algorithm. Quantum, 3, 116.

Egger, D. J., Gambella, C., Marecek, J., McFaddin, S., Mevissen, M., Raymond, R., Simonetto, A., Woerner,
S., & Yndurain, E. (2020). Quantum computing for finance: State-of-the-art and future prospects.
IEEE Transactions on Quantum Engineering, 1, 1–24.

Egger, D. J., Gutiérrez, R. G., Mestre, J. C., & Woerner, S. (2020). Credit risk analysis using quantum
computers. IEEE Transactions on Computers.

Egger, D. J., & Woerner, S. (2019). Quantum risk analysis. Quantum Information, 5(1).
Endo, S., Sun, J., Li, Y., Benjamin, S. C., & Yuan, X. (2020). Variational quantum simulation of general

processes. Physical Review Letters, 125(1).
Fang, F., & Oosterlee, C. W. (2008). A novel pricing method for European options based on Fourier-cosine

series expansions. SIAM Journal on Scientific Computing, 31, 826–848.
Feynman, R. P. (1982). Simulating Physics with Computers. International Journal of Theoretical Physics,

21(6/7).
Fontanela, F., Jacquier, A., & Oumgari, M. (2021). A quantum algorithm for linear PDEs arising in finance

[arXiv:1912.02753].
Garcı́a-Molina, P., Rodrı́guez-Mediavilla, J., & Garcı́a-Ripoll, J. J. (2021). Solving partial differential equa-

tions in quantum computers.
Garcı́a-Ripoll, J. J. (2021). Quantum-inspired algorithms for multivariate analysis: From interpolation to

partial differential equations. Quantum, 5, 431.
Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica, 24, 259–328.
Giurgica-Tiron, T., Kerenidis, I., Labib, F., Prakash, A., & Zeng, W. (2020). Low depth algorithms for quantum

amplitude estimation [arXiv:2012.03348].
Glasserman, P. (2004). Monte Carlo methods in financial engineering. Springer.
Gonzalez-Conde, J., Rodrı́guez-Rozas, Á., Solano, E., & Sanz, M. (2021). Pricing financial derivatives with

exponential quantum speedup [arXiv:2101.04023].
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y.

(2014). Generative adversarial networks [arXiv:1406.2661].
Goubault de Brugière, T. (2020). Methods for optimizing the synthesis of quantum circuits (Theses). Uni-

versité Paris-Saclay.
Grinko, D., Gacon, J., Zoufal, C., & Woerner, S. (2020). Iterative quantum amplitude estimation. Quantum

Information, 7 (52).
Grover, L., & Rudolph, T. (2002). Creating superpositions that correspond to efficiently integrable probability

distributions [arXiv:quant-ph/0208112].
Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-

Eighth Annual ACM Symposium on Theory of Computing, 212–219.
Hao, W., Lefèvre, C., Tamturk, M., & Utev, S. (2019). Quantum option pricing and data analysis. Quantitative

Finance and Economics, 3(3), 490–507.
Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Physical

Review Letters, 103, 150502.
He, C., Li, J., Liu, W., & Wang, Z. J. (2021). A low complexity quantum principal component analysis algo-

rithm [arXiv:2010.00831].
Herbert, S. (2021). The problem with Grover-Rudolph state preparation for quantum Monte Carlo

[arXiv:2101.02240].
Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and

currency options. Review of Financial Studies, 6, 327–343.
Hirofumi Nishi, T. K., & Matsushita, Y.-i. (2020). Implementation of quantum imaginary-time evolution

method on nisq devices: Nonlocal approximation.
Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the Ameri-

can Statistical Association, 58(301), 13–30.
Holmes, A., & Matsuura, A. Y. (2020). Efficient quantum circuits for accurate state preparation of smooth,

differentiable functions [arXiv:2005.04351].
Huang, H.-Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., & McClean, J. R. (2021).

Power of data in quantum machine learning.
Hull, J. (1997). Options, futures, and other derivatives (3. ed., internat. ed). Prentice Hall.

© NEASQC Consortium Partners. All rights reserved. Page 55 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Job, J., & Adachi, S. (2020). Systematic comparison of deep belief network training using quantum anneal-
ing vs. classical techniques [arXiv:2009.00134].

Kaneko, K., Miyamoto, K., Takeda, N., & Yoshino, K. (2020a). Quantum pricing with a smile: Implementation
of local volatility model on quantum computer [arXiv:2007.01467].

Kaneko, K., Miyamoto, K., Takeda, N., & Yoshino, K. (2020b). Quantum speedup of Monte Carlo integration
in the direction of dimension and its application to finance [arXiv:2011.02165].

Kaye, P., & Mosca, M. (2004). Quantum networks for generating arbitrary quantum states [arXiv:quant-
ph/0407102].

Kerenidis, I., & Prakash, A. (2017). Quantum recommendation systems. In C. H. Papadimitriou (Ed.), 8th in-
novations in theoretical computer science conference (itcs 2017) (49:1–49:21). Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

Kloeden, P. E., & Platen, E. (2013). Numerical solution of stochastic differential equations. Springer Science
& Business Media.

Kubo, K., Nakagawa, Y. O., Endo, S., & Nagayama, S. (2020). Variational quantum simulations of stochastic
differential equations [arXiv:2012.04429].

Kyriienko, O., Paine, A. E., & Elfving, V. E. (2021). Solving nonlinear differential equations with differentiable
quantum circuits. Physical Review A, 103(5).

Lin, J., Bao, W.-S., Zhang, S., Li, T., & Wang, X. (2019). An improved quantum principal component analysis
algorithm based on the quantum singular threshold method. Physics Letters A, 383(24), 2862–
2868.

Lloyd, S., Mohseni, M., & Rebentrost, P. (2014). Quantum principal component analysis. Nature Physics,
10, 631–633.

Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation. A simple least-squares
approach. Review of Financial Studies, 14, 113–147.

Magniez, F., Nayak, A., Roland, J., & Santha, M. (2011). Search via quantum walk. SIAM Journal on Com-
puting, 40(1), 142–164.

Manin, Y. (1980). Computable and Uncomputable (in Russian). Sovetskoye Radio.
McArdle, S., Jones, T., Endo, S., Li, Y., Benjamin, S. C., & Yuan, X. (2019). Variational ansatz-based quan-

tum simulation of imaginary time evolution. Quantum Information, 5(75).
McNeil, A. J., Frey, R., & Embrechts, P. (2015). Quantitative risk management: concepts, techniques and

tools (revised). Princeton University Press.
Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of

Finance, 29(2), 449–470.
Mikosch, T. (1998). Elementary stochastic calculus : With finance in view. World Scientifc.
Montanaro, A. (2015). Quantum speedup of Monte Carlo methods. Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 471(2181), 20150301.
Nakaji, K., Uno, S., Suzuki, Y., Raymond, R., Onodera, T., Tanaka, T., Tezuka, H., Mitsuda, N., & Yamamoto,

N. (2021). Approximate amplitude encoding in shallow parameterized quantum circuits and its ap-
plication to financial market indicator [arXiv:2103.13211].

Orrell, D. (2020). A quantum walk model of financial options. Econometric Modeling: Capital Markets - Asset
Pricing eJournal.

Ortiz-Gracia, L., & Oosterlee, C. W. (2016). A highly efficient Shannon wavelet inverse Fourier technique
for pricing European options. SIAM Journal on Scientific Computing, 38(1), 118–143.

Orús, R., Mugel, S., & Lizaso, E. (2019). Quantum computing for finance: Overview and prospects. Reviews
in Physics, 4, 1–13.

Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79.
Ramos-Calderer, S., Pérez-Salinas, A., Garcı́a-Martı́n, D., Bravo-Prieto, C., Cortada, J., Planagumà, J., &

Latorre, J. I. (2020). Quantum unary approach to option pricing [arXiv:1912.01618].
Ran, S.-J. (2020). Encoding of matrix product states into quantum circuits of one- and two-qubit gates.

Physical Review A, 101, 032310.
Rebentrost, P., Gupt, B., & Bromley, T. R. (2018). Quantum computational finance: Monte Carlo pricing of

financial derivatives. Physical Review A, 98(2).
Reddy, P., & Bhattacherjee, A. B. (2021). A hybrid quantum regression model for the prediction of molecular

atomization energies. Machine Learning: Science and Technology, 2(2), 025019.
Romero, J., & Aspuru-Guzik, A. (2021). Variational quantum generators: Generative adversarial quantum

machine learning for continuous distributions. Advanced Quantum Technologies, 4(1), 2000003.
Scholz, F. (2008). Confidence bounds and intervals for parameters relating to the binomial, negative bino-

mial, poisson and hypergeometric distributions with applications to rare events.

© NEASQC Consortium Partners. All rights reserved. Page 56 of 57

D5.1 Review of state-of-the-art for Pricing and Computation of VaR (2.0- Final)

Schön, C., Solano, E., Verstraete, F., Cirac, J. I., & Wolf, M. M. (2005). Sequential generation of entangled
multiqubit states. Physical Review Letters, 95(11).

Schuld, M. (2021). Supervised quantum machine learning models are kernel methods.
Schuld, M., Sinayskiy, I., & Petruccione, F. (2016). Prediction by linear regression on a quantum computer.

Physical Review A, 94, 022342.
Shao, C. (2020). Data classification by quantum radial-basis-function networks. Physical Review A, 102,

042418.
Shende, V., Bullock, S., & Markov, I. (2006). Synthesis of quantum-logic circuits. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 25(6), 1000–1010.
Shimada, N. H., & Hachisuka, T. (2020). Quantum coin method for numerical integration [arXiv:1910.00263].
Shor, P. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings 35th

Annual Symposium on Foundations of Computer Science, 124–134.
Soklakov, A. N., & Schack, R. (2006). Efficient state preparation for a register of quantum bits. Physical

Review A, 73, 012307.
Stamatopoulos, N., Egger, D. J., Sun, Y., Zoufal, C., Iten, R., Shen, N., & Woerner, S. (2020). Option pricing

using quantum computers. Quantum, 4, 291.
Suzuki, Y., Uno, S., Raymond, R., Tanaka, T., Onodera, T., & Yamamoto, N. (2020). Amplitude estimation

without phase estimation. Quantum Information Processing, 19(2).
Tan, K. C. (2020). Fast quantum imaginary time evolution.
Vázquez, C. (2010). An introduction to Black-Scholes modeling and numerical methods in derivatives pric-

ing. MAT-Serie A, Universidad Austral, 17.
Vinci, W., Buffoni, L., Sadeghi, H., Khoshaman, A., Andriyash, E., & Amin, M. H. (2020). A path towards

quantum advantage in training deep generative models with quantum annealers. Machine Learning:
Science and Technology, 1(4), 045028.

Wang, G. (2017). Quantum algorithm for linear regression. Physical Review A, 96, 012335.
Wiebe, N., Braun, D., & Lloyd, S. (2012). Quantum algorithm for data fitting. Physical Review Letters, 109,

050505.
Wilmott, P. (2007). Paul Wilmott introduces quantitative finance (2nd ed.). Wiley-Interscience.
Xin, T., Che, L., Xi, C., Singh, A., Nie, X., Li, J., Dong, Y., & Lu, D. (2021). Experimental quantum principal

component analysis via parametrized quantum circuits. Physical Review Letters, 126, 110502.
Zaheer, M., Li, C.-l., Póczos, B., & Salakhutdinov, R. (2017). GAN connoisseur: Can GANs learn simple 1D

parametric distributions?
Zhao, Z., Fitzsimons, J. K., & Fitzsimons, J. F. (2019). Quantum-assisted Gaussian process regression.

Physical Review A, 99, 052331.
Zoufal, C., Lucchi, A., & Woerner, S. (2019). Quantum generative adversarial networks for learning and

loading random distributions. Quantum Information, 7 (103).

© NEASQC Consortium Partners. All rights reserved. Page 57 of 57

	1 Executive Summary
	2 Introduction
	3 Classical methods
	3.1 Pricing of financial derivatives
	3.1.1 Financial derivatives and options
	3.1.2 Some models for the value of underlying assets
	3.1.3 Pricing methods

	3.2 Risk measures for derivatives portfolios
	3.2.1 Market risk
	3.2.2 Classical risk measures: VaR and CVaR
	3.2.3 Credit Portfolio Management
	3.2.4 Numerical methods

	4 Quantum toolkit for finance
	4.1 Quantum alternatives to Monte Carlo Algorithms for Applications in Finance
	4.1.1 Introduction
	4.1.2 Quantum amplitude amplification and estimation
	4.1.3 Quantum coins
	4.1.4 An option pricing example adopting amplitude amplification and estimation
	4.1.5 Applications to risk analysis

	4.2 Other methods with quantum computing
	4.2.1 Quantum algorithms to solve the Black-Scholes partial differential equation
	4.2.2 (Quantum) Machine Learning

	4.3 Discussion
	4.3.1 The loading problem
	4.3.2 Scaling to real-world problems

	5 Conclusions
	List of Acronyms
	List of Figures
	List of Tables
	Bibliography

