

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 951821

© NEASQC Consortium Partners. All rights reserved. Page 1 of 39

NExt ApplicationS of Quantum Computing

Quantum Rule-Based Systems
(QRBS) Models, Architecture and

Formal Specification (D6.2)

Document Properties

Contract Number 951821

Contractual Deadline M08 (30/04/2021)

Dissemination Level Public

Nature Report

Edited by : Vicente Moret-Bonillo

Authors
Vicente Moret-Bonillo (UDC), Eduardo Mosqueira-Rey (UDC), Samuel
Magaz-Romero (UDC), Andrés Gómez-Tato (CESGA)

Reviewers Mohamed Hibti (EDF), Alfons Laarman (ULEI)

Date 15/04/2021

Keywords Models. Architecture. Formal Specification

Status Final

Release 1.5

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 2 of 39

History of Changes

Release Date Author, Organization Description of Changes

1.1 24/02/2021 Vicente Moret, UDC First Draft. Deliverable-6.2, WP-6, Task 6.2

1.2 11/03/2021 Vicente Moret, UDC Second Draft. Deliverable-6.2, WP-6, Task 6.2

1.3 22/03/2021 Vicente Moret, UDC For Review. Deliverable-6.2, WP-6, Task 6.2

1.4 15/04/2021 Vicente Moret, UDC For Review. Deliverable-6.2, WP-6, Task 6.2

1.5 26/04/2021 Vicente Moret, UDC Final version

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 3 of 39

Table of Contents

1. EXECUTIVE SUMMARY.. 5

2. CONTEXT ... 6

2.1. PROJECT ... 6

2.2. WORK PACKAGE ... 6

3. INVASIVE DUCTAL CARCINOMA (IDC) .. 8

3.1. SIGNS AND SYMPTOMS OF INVASIVE DUCTAL CARCINOMA ... 8

3.2. DIAGNOSIS OF INVASIVE DUCTAL CARCINOMA .. 9

3.3. STAGING INVASIVE DUCTAL CARCINOMA SEVERITY .. 9

3.3.1. Stage I ... 9

3.3.2. Stage II .. 9

3.3.3. Stage III ... 10

3.3.4. Stage IV ... 10

3.4. TREATMENT FOR INVASIVE DUCTAL CARCINOMA .. 10

4. MODELLING RULE-BASED SYSTEMS ... 11

4.1. IDENTIFICATION OF THE PROBLEM ... 11

4.2. CONCEPTUALIZATION .. 12

4.3. FORMALIZATION .. 12

4.4. IMPLEMENTATION .. 12

4.5. TESTING .. 12

4.6. USE CASE PROPOSED METHODOLOGY ... 13

4.7. RBS ARCHITECTURE ... 13

5. QUANTUM RULE-BASED SYSTEMS .. 15

5.1. GENERAL ISSUES IN QRBS .. 15

5.2. UNCERTAINTY IN QRBS .. 19

5.2.1. Starting point ... 19

5.2.2. Representing the Uncertainty in QRBS .. 20

6. FORMAL SPECIFICATION APPROACH ... 23

6.1.1. Formal specification of facts and the working memory .. 24

6.1.2. Formal specification of rules and the inference engine ... 26

6.1.3. Functioning of the inference engine ... 29

6.1.4. Uncertainty management ... 30

7. ACRONYMS AND ABBREVIATIONS .. 32

8. LIST OF FIGURES... 33

9. LIST OF TABLES .. 34

10. BIBLIOGRAPHY ... 35

APPENDIX A. EXAMPLES AND SIMULATIONS .. 36

A.1 SIMULATION OF THE Q-AND GATE IN MYQLM .. 36

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 4 of 39

A.2 SIMULATION OF THE Q-OR GATE IN MYQLM .. 36

A.3 SIMULATION OF THE EXAMPLE CIRCUIT .. 37

A.4 DEFINITION OF THE M GATE ... 38

A.5 SIMULATION OF CIRCUITS WITH THE M GATE .. 38

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 5 of 39

1. Executive Summary

This report is the first deliverable of UDC-CESGA, related to task 6.2 of Work Package 6 of the NEASQC
project, UC6. The document incorporates information on the approach to the work carried out so far,
from the project start date to the deadline established for this first deliverable.

The report includes a brief description of invasive ductal carcinoma of the breast (IDC), the methodology
followed for the modeling of a rule-based system for the diagnosis and treatment of IDC, a preliminary
analysis to evaluate the suitability of quantum computing in this domain, a proposal about the quantum
approximation that we want to use, and that we will later have to evaluate, and the analysis about the
formal requirements of the application that we intend to carry out. We also include a quantum proposal
on the uncertainty associated with reasoning in medicine.

A brief summary of the IDC is necessary to place the use case in the context of the project. The
description will range from the initial symptoms that allow the clinician to consider the possibility of IDC,
the diagnostic process, the degree of severity of the IDC, and the possible associated treatments.

The methodological description of the knowledge engineering used is necessary to understand the
architecture of a classical rule-based system, and to be able to formalize the problem in terms of
declarative knowledge, procedural knowledge and inferential circuits.

Next, a qualitative analysis of the problem in terms of quantum logical operators is presented to illustrate
the possibility of converting a conventional rule-based system into a quantum rule-based system.

Finally, the formal requirements of the quantum rule-based system will be mentioned. Also, we will pay
special attention to the imprecision of the information and the uncertainty associated with clinical
practice.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 6 of 39

2. Context

2.1. Project

In the context of the project this document describes the first stages of this use case in which we intend
the development of a quantum rule-based system (QRBS) for Invasive Ductal Carcinoma (IDC)
management. An inherent problem with conventional rule-based systems (RBS) is their great sensitivity
to the number of hypotheses, data and rules of the system itself. More specifically, selecting which rules
are applicable at each moment can greatly slow down the inferential process (Moret-Bonillo,
Fundamentos de la Inteligencia Artificial, 2000). This process, called pattern matching, is an unresolved
issue in Artificial Intelligence (AI).

In this respect the specific characteristics of quantum computing, such as quantum superposition or
entaglement, could increase the computational power of our programs and be useful for AI in general,
and for RBS in particular.

The algorithms and their implementation will be used to build a quantum rule-based system that solves
a specific problem: diagnosing and treating a specific type of breast cancer known as Invasive Ductal
Carcinoma (IDC).

2.2. Work package

In the context of WP6 - "Symbolic AI and graph algorithmics" - the work of the team made up of
researchers from the UDC and CESGA is focused on the fields of artificial intelligence, oncology and
quantum computing.

We focus on a specific type of AI program, the so-called rule-based system (RBS). One of the biggest
problems with RBS is the pattern-matching that is related to the process of rule selection. This makes
RBS very sensitive to the size of the problem and to changing environments, which is at the core of a
very significant increase in computational cost. In the field of artificial intelligence, the most difficult
problems are informally known as AI-complete or AI-hard, implying that the difficulty of these
computational problems, assuming intelligence is computational, is equivalent to that of solving the
central artificial intelligence problem. To call a problem AI-complete reflects an attitude that it would not
be solved by a simple specific algorithm. Current AI systems can solve very simple and/or restricted
versions of AI-complete problems, but never in their full generality. When AI researchers attempt to
"scale up" their systems to handle more complicated, real-world situations, the programs tend to become
excessively brittle without commonsense knowledge or a rudimentary understanding of the situation:
they fail as unexpected circumstances outside of its original problem context begin to appear. When
human beings are dealing with new situations in the world, they are helped immensely by the fact that
they know what to expect: they know what all things around them are, why they are there, what they are
likely to do and so on. Knowledge-based systems are typically AI-hard.

We place special emphasis on the principle of coherent superposition, on the intrinsically parallel
character of quantum computing, on the probabilistic nature of quantum computing, and we describe
some quantum operators that must be reversible. Next, we build a quantum architecture equivalent to a
conventional inferential circuit and analyze the results.

The algorithms and their implementation will be used to build a quantum rule-based system that solves
a specific problem for the field of medicine to support the process of diagnosing and treating a specific
type of breast cancer known as Invasive Ductal Carcinoma (IDC).

In this proposal we will describe a quantum method to represent the uncertainty that may appear in the
so-called Quantum Rule-Based Systems (QRBS). For this we will consider the following restrictions:

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 7 of 39

1. We will consider that the rules of the knowledge base are written in a categorical way. For example:
A and B → C

2. In the resolution of a problem the facts may be affected by imprecision and the rules of the

knowledge base have to be used to obtain valid inferences. For example: we have the fact A, which

looks like A but it is not exactly A. We also have the fact B, which looks like B but it is not exactly B.
This statement means that, for example, instead of “something is absolutely true” it is “almost sure

it is true”. The question implies the ability of making inferences with facts of the kind A and B, and
with rules A and B → C.

3. Uncertainty arises as a consequence of the propagation of imprecision through the inferential
network.

It is an obvious fact that uncertainty, in the most general sense possible and from any point of view, is
a problem of the first magnitude - still unresolved - in the field of artificial intelligence and, more
specifically, in Rule-Based Systems. There are lots of different terms and kinds of “representation of
inexact knowledge”: probability, subjective probability, imprecision, uncertainty, degrees of belief,
fuzziness… and all of those terms refer to different concepts and are treated with different mathematical
models. Regardless of the completeness of our system, the inherent subjectivity of the uncertainty
associated with the information that is used when trying to solve a real case, has involved the
development of a multitude of approaches and models to try to solve the problems of inexact knowledge
representation and reasoning . The mathematical orientation of the different approaches varies
depending on the model in question. Therefore, different models produce different results. In this context
we can mention, among others:

1. Categorical approaches such as the so-called Differential Interpretation (Ledley & Lusted, 1959)
2. Probabilistic approaches such as Bayesian Networks (Pearl, 1986)
3. Quasi-statistical approaches such as the Certainty Factors Method (Shortliffe & Buchanan,

1975) or Evidential Theory (Shaffer, 1976)
4. Fuzzy methods such as Fuzzy Logic (Zadeh, 1965)

It appears to be clear that we cannot forget the potential of emerging theories and applications, among
which Quantum Computing stands out and it is intrinsically probabilistic. The question is, therefore,
how can we model the subjective uncertainty (here “uncertainty” refers to the strength of the causal
relation between facts.) of rule-based systems and achieve coherent results using the resources
of quantum computing? In short, it is about establishing synergies between artificial intelligence and
quantum computing to solve the problem of uncertainty.

In this context, we will focus the question from the perspective of the Theory of Quantum Circuits. For
this we will builtd the quantum operators equivalent to the classic {and, or} operators. We will also try
to develop a classic inferential circuit and build the equivalent quantum circuit. To model the uncertainty
we propose the use of projections of the corresponding quantum states along the Z axis of the Bloch
sphere and, to model the subjectivity, the parameter DELTA (δ). This approach makes it possible the
construction of a general quantum gate to represent any situation of uncertainty and express it in a
probabilistic manner. The proposed approach will be widely evaluated and verified from different points
of view. We expect that the results obtained after this exhaustive validation process allow us to conclude
that Quantum Computation is an effective and efficient method to solve uncertainty problems in Artificial
Intelligence.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 8 of 39

3. Invasive Ductal Carcinoma (IDC)

Invasive ductal carcinoma, sometimes referred to as infiltrating ductal carcinoma, is the most common
type of breast cancer. About 80% of all cases of breast cancer are invasive ductal carcinomas. Invasive
means that the cancer has "invaded" or spread into the surrounding breast tissues. Ductal means that
the cancer started in the milk ducts, which are the "pipes" that carry milk from the milk-producing lobules
to the nipple. Carcinoma refers to any cancer that begins in the skin or in other tissues that line internal
organs, such as breast tissue. Collectively, "invasive ductal carcinoma" refers to cancer that has
penetrated the wall of the milk duct and has begun to invade the tissues of the breast. Over time, invasive
ductal carcinoma can spread to the lymph nodes and possibly other areas of the body (Figure 1).

Figure 1: Invasive Ductal Carcinoma

Although this carcinoma can affect women of any age, it becomes more common as a woman ages.
According to the American Cancer Society (American Cancer Society, 2019) approximately two-thirds
of women who are diagnosed with invasive breast cancer are 55 years of age or older. Invasive ductal
carcinoma also affects men.

3.1. Signs and Symptoms of Invasive Ductal Carcinoma

Invasive ductal carcinoma may not cause any symptoms at first. An abnormal area often appears on a
screening mammogram (x-ray of the breast), leading to further testing. In some cases, the first sign of
breast cancer is a recent lump or mass in the breast. According to the American Cancer Association
(American Cancer Society, 2019) any of the following unusual changes in the breast can be an indication
of breast cancer, including invasive ductal carcinoma:

• inflammation of the breast or part of it.

• skin irritation or pitting.

• breast pain, nipple pain or nipple inversion.

• redness, scaling, or thickening of the nipple or breast skin.

• a nipple discharge other than milk.

• a lump in the armpits.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 9 of 39

3.2. Diagnosis of Invasive Ductal Carcinoma

The diagnosis of invasive ductal carcinoma usually includes a combination of procedures, physical
examinations and imaging studies and PET.

• Physical examination of the breasts: The physicians may notice a small lump in the breast during
the physical examination. They will also feel the lymph nodes under the armpit and above the
collarbone to check for swelling or other abnormalities.

• Mammogram: Invasive ductal carcinoma is usually found with a mammogram, a test that takes
X-ray images of the breast. Mammograms are performed in apparently healthy women to detect
early signs of breast cancer. A key feature of invasive breast cancer is the presence of spiculated
margins, which means that on the mammography the physician sees an abnormality that presents
projecting finger-like projections. These projections reveal the "invasion" of the cancer into other
tissues. If a screening mammogram highlights a suspicious area, additional mammograms are
usually done to gather more information about the area in question. Mammography is done on both
breasts.

• Ultrasounds: Sound waves from the breast to obtain additional images of the tissue. This study can
be used to complement mammography.

• Breast MRI: MRI uses magnetic fields, radio waves, and a computer to generate images of tissues
inside the body. In certain cases, the physician may use breast MRI to gather more information
about a possibly affected area.

• Biopsy: If the results of a mammogram or other imaging test suggest an abnormality, the physician
will probably want to do a biopsy. A biopsy involves removing some or all of the abnormal-looking
tissue so that a pathologist (a doctor trained to diagnose cancer from biopsy samples) can look at it
under a microscope.

3.3. Staging Invasive Ductal Carcinoma Severity

Staging is the process used to estimate the extent of invasive ductal carcinoma spread from its original
location. The stage of the cancer is based on three pieces of information:

• the size of the tumor

• whether the cancer has spread to the lymph nodes and, if so, to what degree

• whether the cancer has spread to other parts of the body

Invasive ductal carcinoma is described on a scale from stage I (the earliest stage) to stage IV (the most
advanced stage).

3.3.1. Stage I

Stage I describes invasive breast cancer (cancer cells take in or invade the normal breast tissue around
them). Stage I is divided into subcategories, known as IA and IB.

Stage IA describes invasive breast cancer in which the tumor is up to 2 cm and the cancer has not
spread beyond the breast; no lymph nodes are affected.

Stage IB describes invasive breast cancer in which: there is no tumor in the breast; in contrast, small
groups of cancer cells greater than 0.2 mm but less than 2 mm are observed in the lymph nodes or
there is a breast tumor smaller than 2 cm and small groups of cancer cells larger than 0.2 mm but
smaller than 2 mm in the lymph nodes.

3.3.2. Stage II

Stage II is divided into subcategories IIA and IIB.

Stage IIA describes invasive breast cancer in which: there is no tumor in the breast, but cancer cells
(larger than 2mm) are found in 1-3 axillary lymph nodes (under the arm) or in lymph nodes near the

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 10 of 39

breastbone (found during a sentinel node biopsy) or the tumor is 2 cm or smaller and has spread to the
axillary lymph nodes or the tumor is 2 to 5 cm and has not spread to the axillary lymph nodes.

Stage IIB describes invasive breast cancer in which: the tumor is between 2 and 5 cm, and small groups
of cancer cells larger than 0.2 mm but smaller than 2 mm are seen in the lymph nodes or the tumor is 2
to 5 cm, and the cancer has spread to 1-3 axillary lymph nodes or lymph nodes near the breastbone
(found during a sentinel node biopsy) or the tumor is larger than 5 cm but has not spread to the axillary
lymph nodes.

3.3.3. Stage III

Stage III is divided into subcategories IIIA, IIIB, and IIIC.

Stage IIIA describes invasive breast cancer in which: there is no tumor in the breast or the tumor may
be any size, and cancer was found in 4-9 axillary lymph nodes or lymph nodes near the breastbone
(found during imaging studies or physical examination) or the tumor is larger than 5 cm, and small
clusters of cancer cells larger than 0.2 mm but smaller than 2 mm are seen in the lymph nodes or the
tumor is larger than 5 cm, and the cancer has spread to 1-3 axillary lymph nodes or lymph nodes near
the breastbone (found during a sentinel node biopsy).

Stage IIIB describes invasive breast cancer in which: the tumor is indefinite in size and has spread to
the chest wall or skin of the breast, causing inflammation or an ulcer and may have spread to 9 axillary
lymph nodes or may have spread to lymph nodes near the breastbone.

Stage IIIC describes invasive breast cancer in which: there may be no evidence of disease in the breast
or, if a tumor is present, it may be any size and may have spread to the chest wall or skin of the breast
and cancer has spread to 10 or more axillary lymph nodes or cancer has spread to lymph nodes above
or below the collarbone or cancer has spread to axillary lymph nodes or lymph nodes near the
breastbone.

3.3.4. Stage IV

Stage IV describes invasive breast cancer that has spread beyond the breast and surrounding lymph
nodes to other organs in the body, such as the lungs, distant lymph nodes, skin, bones, liver, and brain.

3.4. Treatment for Invasive Ductal Carcinoma

Treatments for invasive ductal carcinoma fall into two broad categories:

• Localized treatments for IDC: surgery and radiation therapy. These treatments treat the tumor and
surrounding areas, such as the chest and lymph nodes.

• Systemic treatments for IDC: chemotherapy, hormone therapy, targeted therapies. Drugs used in
systemic treatments travel through the body to kill cancer cells that may have spread and help
reduce the risk of cancer recurrence.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 11 of 39

4. Modelling Rule-Based Systems

Knowledge engineering is a discipline that is a part of Artificial Intelligence whose purpose is the design
and development of expert systems (Kendal & Creen, 2007). This is supported by instructional
methodologies, trying to represent the human knowledge and reasoning in a certain domain, within an
artificial system. The work of knowledge engineers consists of extracting the knowledge of human
experts, and in coding said knowledge so that it can be processed by a system. The problem is that the
knowledge engineer is not an expert in the field that tries to model, while the expert in the subject has
no experience modeling his knowledge (based on heuristics) in a way that can be represented
generically in a system. Knowledge engineering encompasses the scientists, technology and
methodology required to process knowledge. The goal is to extract, articulate and computerize
knowledge from an expert.

Since the task of acquiring knowledge is a difficult task, several stages have been identified. In this
context, the development of a RBS has to be incremental and cyclic. This permits to face the RBS
construction in a more systematic way (Nalepa, 2008). There are different methodologies for RBS
development, but the most accepted in the literature includes the following steps:

• Identification of the problem.

• Conceptualization.

• Formalization.

• Implementation.

• Testing.

4.1. Identification of the problem

In this phase, it must first be determined whether the problem can or should be addressed through the

AI techniques. To classify the problem as adequate, it cannot be solved algorithmically, since if it were

possible in this way, it makes no sense to start such an expensive task. In fact, expert systems can be
considered as “computational models of intelligent knowledge-based behaviour”. It must also be
necessary to have access to sufficient sources of knowledge to complete a good design. Finally, the
problem to be addressed must be of an adequate size so that it is not an unapproachable task due to
its complexity.

The next step is to find the sources of knowledge that will be necessary for the development of the
system, the most common are:

• Human experts in the domain of the problem.

• Books and manuals that explain the problem and resolution techniques.

• Examples of solved cases.

The latter will be important especially in the final validation phase, but can also be used with automatic
knowledge acquisition techniques to obtain the basic elements involved and their relationships.

With these sources of information, necessary data to solve the problem and the criteria to evaluate the
solution can be determined as well as the steps that allow the resolution and its subsequent evaluation.

At this time the knowledge engineer and the expert will be able to make a first description of the problem.
The main goal will be to specify:

• Objectives.

• Motivations.

• Resolution strategies and their justification.

• Knowledge sources.

• Types of tasks.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 12 of 39

This scheme will be the starting point to propose the following phases:

• Conceptualization.

• Formalization.

• Implementation.

• Testing.

4.2. Conceptualization

Before going into the global characteristics of the problem, it is essential to detail its basic elements and
discover the relationships between them. In particular, it is necessary to observe how the expert solves
typical problems and abstracts from them general principles that can be applied in different contexts. It
is also necessary to obtain a decomposition of the problem into subproblems, performing an analysis
by successive refinements until the knowledge engineer can get an idea of the hierarchical relationships
of the different resolution phases to the most elementary reasoning operators.

Another required element is to discover the flow of reasoning in solving the problem and specify when
and how knowledge items are needed. With this hierarchical decomposition and the flow of reasoning,
the knowledge engineer can characterize the blocks of higher reasoning and the main concepts that
define the problem. It will be mandatory to distinguish between evidence, hypotheses and necessary
actions in each of the blocks and determine the difficulty of each one resolution subtasks. In this way it
will be possible to capture the structure of the domain and the different relationships between its
elements.

4.3. Formalization

We have to consider the different reasoning schemes that can be used to model the different problem
solving needs identified in the previous phases. At this point, it is necessary to understand the nature of
the search space and the type of search that will have to be done. For this, it can be compared with
different prototypical mechanisms of resolution of problems such as classification, data abstraction,
temporal reasoning, causal structures, etc.

At this stage, the certainty and completeness of the available information, the temporal dependencies,
or the reliability and consistency of the information will also have to be analyzed. It should be discovered
which parts of the knowledge are certain facts and which are not. For the latter, some methodology must
be adapted for dealing with uncertainty, so that it can be modeled within the system (Lindley, 2014).

4.4. Implementation

At this point, decisions must be made about specifying the resolution and flow control of the information.
Decisions must be made about the specific way of representing knowledge so that it can be adapted to
the resolution strategies needed and the relationships between the different sets of knowledge. In this
phase the rules will be defined, and inevitably problems and incompleteness will be discovered that will
force a review of previous phases.

4.5. Testing

A set of representative resolved cases has to be chosen in order to check the operation of the system
with these. In this phase, errors will be discovered that will allow correcting previous pitfalls; in general
problems will appear due to lack of rules, incompleteness, lack of correction, and possible failures in the
analysis of the pre-established rules.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 13 of 39

4.6. Use case proposed methodology

We propose a concrete methodology for the acquisition of knowledge, in which we can distinguish the
following phases:

• Initial.

• Methodological.

• Structured.

• Evaluation.

These four phases really constitute a complete knowledge engineering methodology - not just
acquisition - since the final result obtained after its application should be a perfectly operational expert
system.

• Scheme of the Initial Phase
▪ Carrying out unstructured or directed interviews.
▪ Obtaining examples for joint analysis by human experts and knowledge engineers.
▪ Establishment of an initial set of rules.

• Scheme of the Methodological Phase
▪ Macroscopic structuring of the knowledge obtained in the previous phase.
▪ Global organization, and tentative, of the system under development.
▪ Establishment of classes, and classification of all those information elements that share

characteristics.

• Scheme of the Structured Phase
▪ Organization and microscopic structuring of the information sets that share characteristics.
▪ Design and construction of prototypes and individual modules.
▪ Evaluation and refinement, separately, of each and every one of the prototypes and modules

built.

• Scheme of the Evaluation Phase
▪ Integration of modules.
▪ Optimization of the control structures.
▪ Adequacy of the interfaces and the mechanisms of explanation and justification.
▪ Validation of the system in the laboratory.
▪ Validation of the system in its real working environment.
▪ Going back (when going back is no longer necessary, we will have obtained an operating

expert system, ready for eventual commercialization.)

4.7. RBS Architecture

In computer science, RBS are used to store and manipulate knowledge to interpret information in a
useful way. It is often used in artificial intelligence applications and research.

Normally, the term rule-based system is applied to systems involving human-crafted or curated rule sets.
Rule-based systems constructed using automatic rule inference, such as rule-based machine learning,
are normally excluded from this system type.

A typical rule-based system (Figure 2) has four basic components (Nalepa, 2008):

• The list of rules, which is a specific type of knowledge base.

• The inference engine or semantic reasoner, which infers information or takes action based on the
interaction of input and the rule base. The interpreter executes a production system program by
performing the following match-resolve-act cycle:
▪ In the first phase, “matching”, the left-hand sides of all productions are matched against the

contents of the “working memory”. The working memory is a module in which the declarative
knowledge (initial information, proven facts, working hypothesis) that represents the actual
state of the problem under consideration is stored. It interacts with the knowledge base to
infer new facts. This is a dynamic process. When the working memory does not change then
the inferential process ends. As a result of the matching process, a conflict set is obtained,

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 14 of 39

which consists of “instantiations” of all satisfied productions. An instantiation of a production
is an ordered list of working memory elements that satisfies the left-hand side of the
production.

▪ In the second phase, “conflict-resolution”, one of the production instantiations in the conflict
set is chosen for execution. If no productions are satisfied, the interpreter halts.

▪ In the third phase, “action”, the actions of the production selected in the conflict-resolution
phase are executed. These actions may change the contents of the working memory. At the
end of this phase, execution returns to the first phase. Although the user/expert can solve
the conflicts, there are specific and automatic ways for conflict resolution. This is usually
linked with the search strategy, and can be implemented in the form of meta-rules. For
example: IF we have two rules that can be fired THEN apply first the more specific one.

• The temporary working memory, that contains all the pieces of information the rule-based system
is working with. It can hold both the premises and the conclusions of the rules.

• The user interface or other connection to the outside world through which input and output signals
are received and sent.

Figure 2: Typical architecture of a rule-based system

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 15 of 39

5. Quantum Rule-Based Systems

Quantum Rule-Based Systems (QRBS) are defined as those Rule-Based Systems (RBS) that use the
formalism of Quantum Computing (QC) for representing knowledge and for making inferences.

5.1. General issues in QRBS

Let us consider the following set of rules:

a. R1: IF A and B THEN X
b. R2: IF X or C THEN Y
c. R3: IF Y and (D or E) THEN R

In conventional RBS, any categorical rule can be represented by the logical operators {and, or, not} that
relate statements that are always true. Thus, rule R1 should be interpreted as follows: If statement A is
true, and statement B is true, then we can conclude without uncertainty that statement X is true. The
three previously defined rules can be represented classically by means of the inferential circuit of
Figure 3. In any case, if we consider imprecision, these rules can be fired when, e.g. A=almost certain,
B=probably yes and C=perhaps.

Figure 3: Classical representation of the inferential circuit of the example

However, if we choose the formalism of Quantum Computing we need reversible quantum gates to
represent the previous inferential circuit.

In conventional RBS, any categorical rule can be represented by the logical operators {and, or, not} that
relate statements that are always true. The truth tables of these conventional logical operators are the
following (Table 1).

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 16 of 39

X Y not X X and Y X or Y

0 0 1 0 0

0 1 1 0 1

1 0 0 0 1

1 1 0 1 1

Table 1: Truth tables of the classical logical operators {not, and, or}

In order to translate the classical RBS inferencial circuit of Figure 3 to a quantum environment, we need
to rewrite the logical operators {not, and, or}, following the restrictions imposed by quantum computing.
For that, we need reversible quantum gates such as the CNOT gate (Figure 4), or the Toffoli gate
(Figure 5) also named CCNOT gate. Figure 6 shows how to build an {and} gate using a Toffoli gate.
Figure 7 shows the same for the {not} gate and Figure 8 shows how to build an {or} gate using the Toffoli
and the CNOT gates.

Figure 4: The CNOT gate

Figure 5: The CCNOT gate also named Toffoli gate

Figure 6: AND gate using the Toffoli gate

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 17 of 39

Figure 7: NOT gate using the Toffoli gate

Figure 8: OR gate using the Toffoli and the CNOT gates

With these ideas in mind, we can simulate in a quantum manner, the quantum circuits that are equivalent
to the classical logical operators.

For example, Figure 9 illustrates the quantum circuit of the quantum-AND. We have included two extra
Hadamard gates to simulate the behaviour of this circuit with all possible input vectors. The idea is to
obtain a homogeneous distribution of 0s and 1s in the input that permits to infer the Truth Tables of the
classical logic operators {and, or}.

Figure 9: The Quantum-AND circuit

Table 2 illustrates the results of a simulation performed with both, classical-AND and quantum-AND,
using the IBM Quantum Experience simulator (1048 shots.)

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 18 of 39

Input Vector
Input Truth

Table

Output

Truth Table

Measured

Percentage

Estimated

Percentage Precision

000 00 0 25.0 25.0 1.000

010 01 0 24.8 25.0 0.992

100 10 0 24.9 25.0 0.996

111 11 1 25.3 25.0 0.988

Table 2: Classic-AND versus Quantum-AND

From the results shown in Table 2, it can be easily verified that after a few shots, the outputs are:

1. For output 0 = 25.0+24.8+24.9 which is very close to 75%
2. For output 1 = 25.3 which is close to 25 %

It appears to be clear that ANY classical inferential circuit can be represented as a quantum inferential
circuit. More specifically, and in this case, the quantum representation of the circuit of Figure 3 would
be that of Figure 10.

Figure 10: Quantum circuit representation of rules R1, R2 and R3

We will also focus on developing methods to present rules, their relations and inferential circuits in
classical rule-based systems (RBS) using a set of reversible unitary quantum gates and quantum

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 19 of 39

circuits. The task will also be to develop a general and scalable methodology by using the concept of
uncertainty in RBS which can be represented with a single unitary matrix in the QRBS.

5.2. Uncertainty in QRBS

Uncertainty is one of the fundamental problems of artificial intelligence (AI). In particular, it is one of the
essential problems of the so-called Rule-Based Systems (RBS), and at the same time one of the most
complex to deal with. Broadly speaking, we can consider that the origin of the uncertainty is related to
one or several of the following causes (Lindley, 2014):

• It may happen that the information available is incomplete. In many cases the information available
is not sufficient to make a categorical decision.

• Sometimes the available information we handle is wrong. Not always the information we manage is
completely true.

• The information we use is usually imprecise. In many domains there are data that are difficult to
quantify.

• Normally the real world is non-deterministic. Intelligent systems are not always governed by
deterministic laws, so that general laws are not always applicable. Many times the same causes
produce different effects without there being any apparent explanation.

• Our model is often incomplete. There are many phenomena whose cause is unknown. In addition,
the lack of agreement between experts in the same field is frequent. Both circumstances make it
difficult to include knowledge in a RBS.

• It may happen that, even if our model is complete, it contains inaccurate information.

Despite the large number of procedures that exist, any model that tries to quantify the uncertainty needs
to include a large number of parameters. An example is the case of Bayesian networks (Pearl, 1986),
in which we need to specify all a priori and conditional probabilities. However, a large part of this
information is not usually available, so it must be estimated subjectively. In fact, subjective labels can
be treated from different points of view. Consider the following example… fever is a symptom that is
relevant when T > 37ºC. Now, say that we have a patient presenting T = 38ºC. It is obvious that the
patient has fever. But the physician will pay different attention if the fever of the patient is moderate,
high, or very high… question; is 38ºC very high fever, or moderate, or -even- significant? It depends on
the context. This leads to a very interesting problem: The Symbolic Processing of Numeric Variables.

In summary, the treatment of inaccuracy in the inputs is, together with the representation of knowledge
and learning, one of the fundamental problems of artificial intelligence (AI). In this context, and in a
recent work, a quantum method to represent the uncertainty that may appear in the so-called QRBS is
described (Moret-Bonillo, Emerging technologies in artificial intelligence: quantum rule-based systems,
2018).

5.2.1. Starting point

In quantum computing, the Bloch sphere is a geometric representation of the pure state space of a two-
level quantum system. By extension, the set of pure states of an arbitrary finite number of levels is also
usually called the Bloch sphere. In this case the Bloch sphere is no longer a sphere, but it has a
geometric structure known as a symmetric space (Yanofsky & Mannucci, 2008). Consider Figure 11,
which represents a Bloch sphere.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 20 of 39

Figure 11: Schematic representation of a Bloch sphere

This sphere is important because it allows us to visualize the state of a QuBit. Note that it is a three-
dimensional space in which the state of a QuBit |ψ〉 is represented by:

• The module, which is always 1. The meaning of this is that the QuBit is an energetically closed
system.

• The angle θ, which represents the displacement of the QuBit along the Z axis, from the north pole
to the south pole of the sphere.

• The angle ϕ, which represents the phase of the system that is inherent in complex vector spaces.

Given that the Bloch sphere locates |0〉 at the north pole, and since the direction of rotation on the Z

axis is from top to bottom, we assume that a TRUE statement is represented by a |0〉, and a FALSE

statement is represented by means of a |1〉.

5.2.2. Representing the Uncertainty in QRBS

The question we are now asking is the following: assumed a given Quantum Rule-Based System, is
there any quantum property that allows to represent the imprecision associated with the facts and the
uncertainty associated with the rules?

To try to answer the previous question let's look at the angle θ of the Bloch sphere.

• When θ = 0 radians → |0〉 → The associated statement is true.

• When θ = π radians → |1〉 → The associated declaration is false.

• When 0 < θ < π → Both statements are in superposition, and the associated statement is neither

true nor false, or - in an equivalent way - it is true and it is false simultaneously.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 21 of 39

The election of the angle is due to the fact that considering the Bloch sphere, the location of |0> and the
location of |1>, the imprecision could be considered as a projection of the input state |X> on the Z-axis.

For practical reasons we will call “Credibility” to our confidence in a given fact. In such way that:

• Credibility = 100 → The fact is true

• Credibility = 0 → The fact is false

We also relate the concept of credibility with the concept of “Degree of Disbelief” associated to a given
fact. The relation between these two concepts is as follows:

• Credibility = 100 – Disbelief

For the reasons just explained, the quantification of Z displacements in a Bloch sphere could be used
to quantify our credibility associated to a given fact.

To define a general procedure capable of representing any degree of uncertainty (or certainty) it would
be convenient to have a single quantum gate that, of course respecting all the restrictions imposed by
quantum mechanics, brings us closer to analog world. In this context there are already several universal
gates, but none of them explicitly works with imprecise information in the domain of artificial intelligence.
In this regard, and taking into account what has been described so far, our proposal is as follows:

Let DELTA (δ) be the degree of subjective disbelief that we can associate with a fact in a rule-based
system. It is trivial that the parameter δ can be converted into an ALPHA angle (α) that satisfies the
restrictions of Z displacements. Now suppose that our subjective disbelief δ is defined in the closed
interval [0, 100]. Obviously:

• If δ = 0 → Our credibility in the fact is total → The fact is true

• If δ = 100 → Our credibility in the negation of the fact is total → The fact is false

• If 0 < δ < 100 → There is subjective disbelief in the fact under consideration

The following equation establishes the correspondence between δ and α, so that δ is compatible with
the concept of subjective disbelief, and α is compatible with the restrictions imposed by the Bloch sphere:

• α =
π×δ

100
 radians

Now let us define THETA (θ) = (π − α) / 2 as the angle of rotation, or displacement, in Z. Table 3
illustrates the values of ALPHA (α) - in degrees and in radians - as a function of the values of DELTA
(δ) -defined in the interval [0, 100], and the corresponding values of THETA (θ) - expressed in radians.

DELTA (Subjective
Disbelief)

ALPHA (Degrees) ALPHA (Radians) THETA (Radians)

0 0 0 π/2

25 45 π/4 3π/8

50 90 π/2 π/4

75 135 3π/4 π/8

100 180 π 0

Table 3: Correspondence between the values of the parameters DELTA, ALPHA and THETA

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 22 of 39

We will now define, based on the angle θ, the following Matrix:

𝑀(𝜃) = (
sin (𝜃) cos (𝜃)
cos (𝜃) −sin (𝜃)

)

This matrix verifies that:

 (
sin (𝜃) cos (𝜃)
cos (𝜃) −sin (𝜃)

) × (
sin (𝜃) cos (𝜃)
cos (𝜃) −sin (𝜃)

) = (
1 0
0 1

)

In this context:

• If α = 0 → M (θ) |0〉 = M (π / 2) |0⟩ = |0⟩
• If α = π / 4 → M (θ) |0〉 = M (3π / 8) |0⟩ = 0.924 |0⟩ + 0.383 |1⟩
• If α = π / 2 → M (θ) |0〉 = M (π / 4) |0⟩ = 0.707 |0⟩ + 0.707 |1⟩
• If α = 3π / 4 → M (θ) |0〉 = M (π / 8) |0⟩ = 0.383 |0⟩ + 0.924 |1⟩
• If α = π → M (θ) |0〉 = M (0) |0⟩ = |1⟩

Obviously:

• If α = 0 → there is no disbelief in the fact, the credibility is total and the fact is true

• If α = π → there is no disbelief in the negation of the fact, the credibility is none and the fact is false

Uncertainty appears when ALPHA is between 0 and π.

In Appendix A we can see how to implement the quantum AND and OR gates and the M gate using
myQLM. We also implemented the inferential circuit of section 5.1 using that gates and executed a
simulation using the PyLinalg QPU (Atos, 2016-2020).

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 23 of 39

6. Formal Specification Approach

Formal Specification Approach Critical Systems Development usually involves a plan-based software
process. Both the system requirements and the system design are expressed in detail and carefully
analysed and checked before implementation begins.

If a formal specification of the software is developed, this usually comes after the system requirements
have been specified but before the detailed system design. There is a tight feedback loop between the
detailed requirements specification and the formal specification. One of the main benefits of formal
specification is its ability to uncover problems and ambiguities in the system requirements. Figure 12
shows specification and design activities may be carried out in parallel streams.

There is a two-way relationship between each stage in the process. Information is fed from the
specification to the design process and vice versa.

Figure 12: Formal specification in the software process

Two fundamental approaches to formal specification can be used to write detailed specifications for
software systems. These are:

• Algebraic approaches where the system is described in terms of operations and their relationships.

• Model-based approaches where a model of the system is built using mathematical constructs such
as sets and sequences and the system operations are defined by how they modify the system state.

We will focus on the algebraic approaches. The algebraic method of formal specification defines the
abstract data type in terms of the relationships between the type operations. Figure 13 illustrates the
structure of an algebraic specification.

Figure 13: Structure of an algebraic specification

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 24 of 39

The body of the specification has four components:

• The introduction that declares the sort (the type name) of the entity being specified. A sort is the
name of a set of objects with common characteristics. It is similar to a type in a programming
language. The introduction may also include an “imports” declaration, where the names of
specifications defining other sorts are declared. Importing a specification makes these sorts
available for use.

• The description part, where the operations are described informally. This makes the formal
specification easier to understand. The formal specification complements this description by
providing an unambiguous syntax and semantics for the type operations.

• The signature part defines the syntax of the interface to the object class or abstract data type. The
names of the operations that are defined, the number and sorts of their parameters, and the sort of
operation results are described in the signature.

• The axioms part defines the semantics of the operations by defining a set of axioms that characterize
the behaviour of the abstract data type. These axioms relate the operations used to construct entities
of the defined sort with operations used to inspect its values.

We will follow these specifications but with minor changes to improve readability, that is, we will put
the informal description of each operation and the axioms next to the operation signatures. And the
axioms will be mainly focused in specifying pre and post conditions of each operation.

6.1.1. Formal specification of facts and the working memory

As said, the basic element of a RBS is a fact. It can be defined as the smallest unit of information that
can be separately added to or removed from the working memory of a rule-based system.

The simplest way to define a fact is to use attribute-value pairs, that is, we define an attribute, and we
define the value that this attribute takes. The attribute will be the identifier of the fact while the value will
be a literal belonging to some existing data type. The simplest facts are Boolean facts, that is, an attribute
and a boolean value indicating if the attribute is true or false: (rain true). This can be extended to other
data types (strings, numeric values, enumerated values, etc.) to obtain different types of facts: (name
"Bob Smith") (age 34) (gender Male).

In complex systems, fact can be grouped to form complex structures, e.g., we can use the previous
facts to form the person fact like this “(person (name "Bob Smith") (age 34) (gender Male))” but in this
document we will try to keep things simple, so will assume that a fact is simply an attribute-value pair.

In Table 4 we can see the formal specification of a fact. For each element that we will include in this
formal specification a description of the element is also added (showing the name and an informal
description) and the relevant operations. For each operation we will consider the following elements. If
any of them is not necessary (a function without inputs, for example) then it won’t be included in the
table:

• Signature. With the inputs and outputs separated by an arrow “→”. If the operation has no return
value then simply the output is not represented (nor the arrow).

• Objective. Informal description of the objective of the operation.

• Input values.

• Output values.

• Preconditions. Conditions that must be true in order for the operation to be executed.

• Postconditions. Conditions that will be true upon completion of the operation.

The operations depicted here are the minimum operations needed. A given implementation probably
would include more operations, in order to make it easier to work with the different elements.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 25 of 39

Element

Element fact

Description Represents a working memory element composed by a pair attribute-value.

Operations

Signature fact(attribute, value) → fact

Objective Creates a new fact based on an attribute and a value.

Inputs attribute Represented by a valid identifier.

value Represented as a literal value of one of the accepted data types:

boolean, integer, string, enumeration, etc.

Outputs A fact element.

Preconditions The identifier must be valid.

The literal value must be a valid value of the corresponding data type.

Postconditions A new fact is created as an attribute-value pair.

Table 4: Formal specification of a fact.

Since facts are defined as working memory elements, it would now be appropriate to define how the
working memory works. To do so, we will create a new element, called working memory, which is
responsible for asserting and retracting facts. Its formal specification is included in Table 5.

Element

Element working_memory

Description Element that contains all the pieces of information the rule-based system is

working with.

Operations

Signature working_memory() → working_memory

Objective Creates a new working_memory.

Outputs A working_memory element.

Postconditions A new empty working_memory is created.

Signature assert(fact)

Objective Adds facts to the working memory.

Inputs fact A fact element.

Preconditions The fact is valid.

Postconditions The given fact is added to the working_memory.

If a fact with the same attribute was already present in the working memory

that fact is retracted before this new fact is inserted.

Signature retract(fact)

Objective Removes facts from the working memory.

Inputs fact A fact element.

Preconditions The fact is valid.

Postconditions The given fact is removed from the working_memory.

Signature reset()

Objective Initializes the working memory removing all the facts from it.

Postconditions The working_memory is empty.

Table 5: Formal specification of a working memory element.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 26 of 39

6.1.2. Formal specification of rules and the inference engine

After defining facts, we must define rules in more detail. Rules are like if-then statements in procedural
languages, but they are not used in a procedural way. Whereas if-then statements are executed at a
specific time and in a specific order, according to how the programmer writes them, a rule ’s “then” part
can be executed whenever the “if” part is satisfied. This makes rules less obviously deterministic than a
typical procedural program because the inference engine decides the order in which they are fired.

Rules are composed by a left-hand side (LHS), that is the premise, and a right-hand side (RHS), that is
the conclusion. Before defining a rule, we must define in detail those parts.

The left-hand side of a rule (the “if” part) consists of patterns that match facts; they are not function calls.
Therefore, a LHS is composed of three parts, a fact, an operator, and a value or literal. The simplest
LHS is that formed by an attribute, and equality operator (is) and a boolean value. For example (rain is
true). With other data types we can uses other operators, for example, with numeric values we can have
the following: less than (lt), less or equal than (le), greater than (gt), greater or equal than (ge), etc.

Also in the LHS we have to take into account the connective constraints. Quite often, matching with a
literal value or a variable is not enough. Therefore, it is usual to add logic connective constraints to the
LHS part of a rule, that is, the “and”, “or” and “not” clauses. This way we can construct a LHS part of a
rule that is a composite of LHS clauses connected by logic operators: “(rain is true) and (outside is true)”.

The formal specification of a LHS element is included in Table 6. It includes three generative operations
to create a LHS element. There is a primitive operation that allows to create a LHS element from a fact,
an operator and a value; and there are also included two other operations to allow the creation of LHS
elements that are a result of applying the logical clauses to already existing LHS elements.

Element

Element lhs

Description Represents the left-hand side (LHS) part of a rule.

Operations

Signature lhs(fact, operator, value) → lhs

Objective Creates a new lhs element.

Inputs fact A fact element.

operator An operator of a given data type.

value A value of a given data type.

Outputs A lhs element.

Preconditions The fact is valid.

The operator is defined in the value data type.

Postconditions A new lhs elements is created.

Signature lhs(lhs, logical_operator, lhs) → lhs

Objective Creates a new lhs element combining two previously created lhs elements with

a binary logical operator.

Inputs Lhs A lhs element.

logical_operator A binary logical operator to perform a logical operation.

Lhs A lhs element.

Outputs A lhs element.

Preconditions The lhs elements are valid.

The binary logical operator is “or” or “and”.

Postconditions A new lhs elements is created that is the result of a logical combination of two

previous lhs elements.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 27 of 39

Signature lhs(logical_operator, lhs) → lhs

Objective Creates a new lhs element combining applying an unary logical operator to a

previously created lhs element.

Inputs logical_operator An unary logical operator.

Lhs A lhs element.

Outputs A lhs element.

Preconditions The unary logical operator is “not”.

The lhs element is valid.

Postconditions A new lhs elements is created that is the result of applying an unary logical

operator to a previous lhs element.

Table 6: Formal specification of a LHS element.

The right-hand side of a rule (RHS), on the other hand, is made up of function calls and their parameters.
The simplest function call is an assignment function (set) that has two arguments, a fact, and a value.
The function “set” assigns a value to a fact. If the fact is already in the working memory its value changes
according with the RHS, if not, it is asserted in the working memory with the value specified. That is,
“set” is calling the assert operation in the working memory. For example, a RHS can be (set wet_floor
true) and therefore we have the following rule: if (rain is true) => (set wet_floor true). Table 7 shows the
formal specification of a RHS element.

Element

Element rhs

Description Represents the right-hand side (RHS) part of a rule.

Operations

Signature rhs(function, parameters, …) → rhs

Objective Creates a new rhs element.

Inputs function A function.

parameters A list of parameters for the function separated by commas.

If the function has no parameters it can be empty.

Outputs A rhs element.

Preconditions The function is valid and the parameters are valid for that function.

Postconditions A new rhs elements is created.

Table 7: Formal specification of a RHS element.

Once we have defined a LHS and a RHS it is easy to define a rule as a combination of them (Table 8).

Element

Element rule

Description Represents a rule formed by a LHS and a RHS.

Operations

Signature rule(lhs, rhs) → rule

Objective Creates a new rule element.

Inputs lhs A lhs element.

rhs A rhs element.

Outputs A rule element.

Preconditions The input elements (lhs and rhs) are well formed.

Postconditions A new rule elements is created.

Table 8: Formal specification of a rule element.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 28 of 39

Finally, once we have defined the rules, we must define the specification of the inference engine. This
engine controls the whole process of applying the rules to the working memory in order to obtain the
outputs of the system.

In previous sections we have seen that the inference engine has three phases of functioning: match,
conflict resolution and act. Let us describe in more detail the elements of the inference engine that
perform these phases to better comprehend how this engine works internally:

• Pattern matcher: The match phase is performed by the patter matcher. The purpose of the pattern
matcher is to decide which rules apply, given the current contents of the working memory. This is
the most expensive part of the process or a rule-based system the pattern since the matcher might
need to search through millions of combinations of facts to find those combinations that satisfy rules.
If we are dealing with inaccurate information we can consider the following example: Rule: IF A is
true THEN B is possible. Fact: A is almost true. Matcher: A is present in the rule and it is also a fact
with a given degree of belief. Inferential Generalized Modus Ponens: B could be possible.

• Agenda: The agenda is in charge of the conflict resolution phase. The agenda stores the list of rules
that could potentially be fired (the conflict set) and is responsible for using the conflict strategy to
decide which of the rules, out of all those that apply, have the highest priority, and should be fired
first.

• Execution engine: Finally, the execution engine is in charge of the act phase. Once the agenda has
decided what rule to fire, it has to execute that rule’s action part. Therefore, the execution engine is
the component of a rule engine that fires the rules.

These elements are the active part of the inference engine, who are in charge of making it work. There
are also passive elements that store the elements needed by these active parts. These passive
elements are:

• Working memory: stores the facts that the inference engine uses to work with.

• Rule base: list of rules that composes the knowledge adquired by the system.

Since we are going to describe the upper level of abstraction of a rule engine, we do not need to formally
specify all these internal parts, but it is useful to know their existence for formalizing the rule engine
itself. We only have described in detail the working memory because it is directly related with the facts.
In Table 9 we can see the formal specification of a rule engine.

Element

Element rule_engine

Description Represents a rule engine element.

Operations

Signature rule_engine() → rule_engine

Objective Creates a new rule_engine with all its internal elementes (pattern matcher,

agenda, execution engine, rule base and working memory).

Outputs A rule_engine element.

Postconditions A new empty rule_engine is created.

Signature add_rule(rule)

Objective Adds a new rule to the rule base.

Inputs rule A rule element.

Preconditions The rule is valid.

Postconditions The rule is added to the rule base.

Signature delete_rule(rule)

Objective Deletes a given rule from the rule base.

Inputs rule A rule element.

Preconditions The rule is valid.

Postconditions Removes the given rule form the rule_base.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 29 of 39

Signature pattern_match()

Objective Performs a pattern matching between the facts of the working memory and the

rules of the rule base. The result is a list of activated rules that go into the

agenda.

Preconditions The rule base has at least one rule.

Postconditions The agenda of the inference engine is filled with the activated rules given the

facts stored in the working memory.

Signature fire_rule()

Objective Fires the rule with the higher priority in the agenda, modifying the working

memory if necessary.

Preconditions The agenda has at least one rule activated.

Postconditions The rule is fired executing the RHS action as specified.

Signature reset_engine()

Objective Resets the rule engine to its initial state emptying the agenda and working
memory.

Postconditions The agenda and the working memory are empty.

Table 9: Formal specification of a rule engine.

6.1.3. Functioning of the inference engine

In the previous sections we have described the formal specification of facts, rules, the working memory
and the rule engine, as they are the basic elements of a inferential system based on rules. Nevertheless,
we are not describing how these elements should be used, as that is a job for another element, the
inferential reasoner, a much high level element that decides the inferential strategy that it is needed to
follow.

Since the inferential reasoner is a high level element whose functioning strongly depends on the
characteristics of the domain and of the problem, we will only briefly describe here how it would work.
There are two main strategies for the inferential reasoner to follow: forward chaining and backward
chaining:

• Forward chaining: is the main strategy followed by an inferential reasoner based on rules. The
functioning is as described previously, the rule engine matches the LHS part of the rules with the
working memory and fires one of the rules activated by the facts. It is a forward strategy from facts
to conclusions with the aim to reach a final conclusion to our problem.

• Backward chaining: works in the opposite way as forward chaining, it is a backward strategy from
conclusions to facts following a behavior called goal seeking. A backward-chaining reasoner starts
with a final conclusion and actively tries to satisfy the LHS conditions of the rules pointing to that
conclusion. If the reasoner determines that, for satisfying those LHS conditions, it needs to fire some
other rules, then it focuses in trying to fullfill the LHS conditions of those new rules.

It is also possible to use a combination of the two chaining methods to solve the same problem, changing
the strategy as needed during the execution of the rules.

In Figure 14 we can see an example of how it would be the functioning of a inferential reasoner using
forward chaining and the formal specification described previously. We are working with the same
example described in section 5.1.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 30 of 39

Creation of the working memory and the rule engine

wm = working_memory()

re = rule_engine()

Definition of rules

r1 = rule(lhs(lhs(A, is, true), and, lhs(B, is, true)), rhs(set, X, true))

r2 = rule(lhs(lhs(X, is, true), or, lhs(C, is, true)), rhs(set, Y, true))

r3 = rule(lhs(lhs(Y, is, true), and, lhs(lhs(D, is, true), or, lhs(E, is, true))),

 rhs(set, R, true))

Assert facts into the working memory

wm.assert(A, true)

wm.assert(B, false)

wm.assert(C, true)

wm.assert(D, true)

wm.assert(E, false)

Follow a forward chaining strategy

do {

 re.pattern_match()

 re.fire_rule()

} while (agenda has rules)

Figure 14: forward chaining strategy of an inferential reasoner using the formal specification
described.

6.1.4. Uncertainty management

Finally, we left out the uncertainty from the formal specification because we wanted to formally describe
the basic functioning of a RBS. But uncertainty exists in the real world and it is something that we want
to include in our system, and also take advantage of the probabilistic nature of QuBits for representing
this uncertainty. For including uncertainty in our model we have to modify the fact specification to include
a new parameter in his generative function, the degree of uncertainty over that fact, as we can see in
Table 10.

Element

Element Fact

Description Represents a working memory element composed by a pair attribute-value

affected by a degree of uncertainty.

Operations

Signature fact(attribute, value, uncertainty) → fact

Objective Creates a new fact based on an attribute and a value.

Inputs attribute Represented by a valid identifier.

value Represented as a literal value of one of the accepted data types:

boolean, integer, string, enumeration, etc.

uncertainty Degree of uncertainty of that attribute having that value.

Outputs A fact element.

Preconditions The identifier must be valid.

The literal value must be a valid value of the corresponding data type.

Postconditions A new fact is created as an attribute-value pair with a degree of uncertainty.

Table 10: Formal specification of a fact with uncertainty.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 31 of 39

Also, we must include the uncertainty in the functioning of the rule engine, for that reason we must
modify the pattern_match() and the fire_rule() functions as we can see in Table 11, not changing their
interfaces but their internal working.

Element

Element quantum_rule_engine

Description Represents a working memory element composed by a pair attribute-value.

Operations

Signature pattern_match()

Objective Performs a pattern matching between the facts of the working memory and the

rules of the rule base. The result is a list of activated rules that go into the

agenda. The pattern match has to take into account that the fact can be

affected of uncertainty and thus be partially true (or false).

Preconditions The rule base has at least one rule.

Postconditions The agenda of the inference engine is filled with the activated rules given the

facts stored in the working memory.

Signature fire_rule()

Objective Fires the rule with the higher priority in the agenda, modifying the working

memory if necessary.

Preconditions The agenda has at least one rule activated.

Postconditions The rule is fired executing the RHS action as specified. The uncertainty of the

facts is taken into account in order to calculate the uncertainty of the

conclusions.

Table 11: Formal specification of a rule engine with uncertainty.

As there may be different approaches on how to combine the uncertainty of the facts into the uncertainty
of the conclusions, and even the rules themselves may be affected by uncertainty, it has been preferred
in this formal specification not to go into such low-level details, as they are dependent on the particular
implementation we are considering.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 32 of 39

7. Acronyms and Abbreviations

Term Definition

IDC Invasive Ductal Carcinoma

QRBS Quantum Rule-Based Systems

RBS Rule-Based Systems

Table 12: Acronyms and Abbreviations

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 33 of 39

8. List of Figures

Figure 1: Invasive Ductal Carcinoma .. 8

Figure 2: Typical architecture of a rule-based system .. 14

Figure 3: Classical representation of the inferential circuit of the example ... 15

Figure 4: The CNOT gate .. 16

Figure 5: The CCNOT gate also named Toffoli gate ... 16

Figure 6: AND gate using the Toffoli gate ... 16

Figure 7: NOT gate using the Toffoli gate ... 17

Figure 8: OR gate using the Toffoli and the CNOT gates ... 17

Figure 9: The Quantum-AND circuit .. 17

Figure 10: Quantum circuit representation of rules R1, R2 and R3 .. 18

Figure 11: Schematic representation of a Bloch sphere ... 20

Figure 12: Formal specification in the software process ... 23

Figure 13: Structure of an algebraic specification ... 23

Figure 14: forward chaining strategy of an inferential reasoner using the formal specification described.

 ... 30

Figure 15: myQLM implementation of the Q-AND gate .. 36

Figure 16: Results of the simulation of the Q-AND gate ... 36

Figure 17: myQLM implementation of the Q-OR gate ... 36

Figure 18: Results of the simulation of the Q-OR gate ... 36

Figure 19: myQLM implementation of the example circuit .. 37

Figure 20: Results of the simulation of the example circuit (for the sake of brevity only some results are

shown) ... 37

Figure 21: myQLM implementation of the M gate ... 38

Figure 22: myQLM implementation of the example circuit with M gates ... 38

Figure 23: Results of the simulation of the example circuit with the M gate for some cases of uncertainty

 ... 39

file:///D:/Descargas/000_DELIVERABLE_6.2_Answers_to_Reviewer_Comments_Revised.docx%23_Toc69719922

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 34 of 39

9. List of Tables

Table 1: Truth tables of the classical logical operators {not, and, or} ... 16

Table 2: Classic-AND versus Quantum-AND .. 18

Table 3: Correspondence between the values of the parameters DELTA, ALPHA and THETA 21

Table 4: Formal specification of a fact. .. 25

Table 5: Formal specification of a working memory element. ... 25

Table 6: Formal specification of a LHS element. .. 27

Table 7: Formal specification of a RHS element. .. 27

Table 8: Formal specification of a rule element... 27

Table 9: Formal specification of a rule engine... 29

Table 10: Formal specification of a fact with uncertainty. ... 30

Table 11: Formal specification of a rule engine with uncertainty. ... 31

Table 12: Acronyms and Abbreviations ... 32

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 35 of 39

10. Bibliography

American Cancer Society. (2019). Breast Cancer Facts & Figures 2019-2020. Atlanta: American
Cancer Society, Inc.

Atos. (2016-2020). qat.pylinalg: Python Linear-algebra simulator. Obtenido de
https://myqlm.github.io/myqlm_specific/qat-pylinalg.html

Commission Européenne, 7. C. (10 de 2016). Grant Agreement. Obtenido de
https://shirocommunity.bull.com/ext/fpop/clouddbappliance/shareddocuments/GRANT/Grant%
20Agreement-732051-CloudDBAppliance.pdf

Kendal, S. L., & Creen, M. (2007). An Introduction to Knowledge Engineering. Springer.
Ledley, R. S., & Lusted, L. B. (1959). Reasoning Foundations of Medial Diagnosis. Science, 9-21.
Lindley, D. V. (2014). Understanding Uncertainty, Revised Edition. John Wiley & Sons Ltd.
Moret-Bonillo, V. (2000). Fundamentos de la Inteligencia Artificial. Universidade da Coruña.
Moret-Bonillo, V. (2018). Emerging technologies in artificial intelligence: quantum rule-based systems.

Progress in Artificial Intelligence 7, 155-166.
Nalepa, G. J. (2008). Methodologies and Technologies for Rule-Based Systems Design and

Implementation. Towards Hybrid Knowledge Engineering. Springer.
Pearl, J. (1986). Fusion, propagation, and structuring in belief networks. Artificial Intelligence, Volume

29, Issue 3, 241-288.
Project, 7. C. (07 de 11 de 2016). Consortium Agreement. Obtenido de

https://shirocommunity.bull.com/ext/fpop/clouddbappliance/shareddocuments/Consortium%20
Agreement/DESCA%20CloudDBAppliance.Final.2016-11-07.pdf

Shaffer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press.
Shortliffe, E. H., & Buchanan, B. G. (1975). A model of inexact reasoning in medicine. Mathematical

biosciences, 351-379.
Yanofsky, N. S., & Mannucci, M. A. (2008). Quantum Computing for Computer Scientists. Cambridge

University Press.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, Volume 8, Issue 3, 338-353.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 36 of 39

Appendix A. Examples and simulations

The defined quantum gates, as well as the example circuit and the M gate, have been implemented and
simulated using myQLM. The figures below only show the lines of code that define the circuits and their
gates, and they all have been simulated using the PyLinalg QPU.

A.1 Simulation of the Q-AND gate in myQLM

Q-AND Gate

prog = Program()
qbits = prog.qalloc(3)
prog.apply(H, qbits[0])
prog.apply(H, qbits[1])
prog.apply(CCNOT, qbits[0],qbits[1],qbits[2])

Figure 15: myQLM implementation of the Q-AND gate

State |000> probability=0.2499999999999999

State |010> probability=0.2499999999999999

State |100> probability=0.2499999999999999

State |111> probability=0.2499999999999999

Figure 16: Results of the simulation of the Q-AND gate

A.2 Simulation of the Q-OR gate in myQLM

Q-OR Gate

prog = Program()
qbits = prog.qalloc(3)
prog.apply(H, qbits[0])
prog.apply(H, qbits[1])
prog.apply(CCNOT, qbits[0],qbits[1],qbits[2])
prog.apply(CNOT, qbits[0], qbits[2])
prog.apply(CNOT, qbits[1], qbits[2])

Figure 17: myQLM implementation of the Q-OR gate

State |000> probability=0.2499999999999999

State |011> probability=0.2499999999999999

State |101> probability=0.2499999999999999

State |111> probability=0.2499999999999999

Figure 18: Results of the simulation of the Q-OR gate

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 37 of 39

A.3 Simulation of the example circuit

Quantum circuit

prog = Program()
qbits = prog.qalloc(9)

A(q0) and B(q1) then X(q2)

prog.apply(H, qbits[0])
prog.apply(H, qbits[1])
prog.apply(CCNOT, qbits[0], qbits[1], qbits[2])

X(q2) or C(q3) then Y(q4)

prog.apply(H, qbits[3])
prog.apply(CCNOT, qbits[2], qbits[3], qbits[4])
prog.apply(CNOT, qbits[2], qbits[4])
prog.apply(CNOT, qbits[3], qbits[4])

Y(q4) and (D(q5) or E(q6)) then R(q8)

prog.apply(H, qbits[5])
prog.apply(H, qbits[6])
prog.apply(CCNOT, qbits[5], qbits[6], qbits[7])
prog.apply(CNOT, qbits[5], qbits[7])
prog.apply(CNOT, qbits[6], qbits[7])
prog.apply(CCNOT, qbits[4], qbits[7], qbits[8])

Figure 19: myQLM implementation of the example circuit

State |000000000> probability=0.031249999999999976

State |000000110> probability=0.031249999999999976

State |000001010> probability=0.031249999999999976

State |000001110> probability=0.031249999999999976

State |000110000> probability=0.031249999999999976

State |000110111> probability=0.031249999999999976

State |000111011> probability=0.031249999999999976

State |000111111> probability=0.031249999999999976

State |010000000> probability=0.031249999999999976

. . .

State |100111011> probability=0.031249999999999976

State |100111111> probability=0.031249999999999976

State |111010000> probability=0.031249999999999976

State |111010111> probability=0.031249999999999976

State |111011011> probability=0.031249999999999976

State |111011111> probability=0.031249999999999976

State |111110000> probability=0.031249999999999976

State |111110111> probability=0.031249999999999976

State |111111011> probability=0.031249999999999976

State |111111111> probability=0.031249999999999976

Figure 20: Results of the simulation of the example circuit (for the sake of brevity only some results
are shown)

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 38 of 39

A.4 Definition of the M gate

def m_matrix(theta):
 return np.array(
 [

 [np.sin(theta), np.cos(theta)],

 [np.cos(theta), -np.sin(theta)]

]

)

M = AbstractGate("M", [float], matrix_generator=m_matrix, arity=1)

Figure 21: myQLM implementation of the M gate

A.5 Simulation of circuits with the M gate

Quantum circuit

prog = Program()
qbits = prog.qalloc(9)

A(q0) and B(q1) tM(thetas[])en X(q2)

prog.apply(M(thetas[0]), qbits[0])
prog.apply(M(thetas[1]), qbits[1])
prog.apply(CCNOT, qbits[0], qbits[1], qbits[2])

X(q2) or C(q3) tM(thetas[])en Y(q4)

prog.apply(M(thetas[2]), qbits[3])
prog.apply(CCNOT, qbits[2], qbits[3], qbits[4])
prog.apply(CNOT, qbits[2], qbits[4])
prog.apply(CNOT, qbits[3], qbits[4])

Y(q4) and (D(q5) or E(q6)) tM(thetas[])en R(q8)

prog.apply(M(thetas[3]), qbits[5])
prog.apply(M(thetas[4]), qbits[6])
prog.apply(CCNOT, qbits[5], qbits[6], qbits[7])
prog.apply(CNOT, qbits[5], qbits[7])
prog.apply(CNOT, qbits[6], qbits[7])
prog.apply(CCNOT, qbits[4], qbits[7], qbits[8])

Figure 22: myQLM implementation of the example circuit with M gates

As we can appreciate on the figure above, the circuit is the exact same as the one with the Hadamard
gates, but the M gates allow us to introduce the uncertainty into the circuit seamlessly. This code is part
of a function that receives as an argument the uncertainty of the facts (the variable thetas, that is a list
with the uncertainty of each fact) and returns the program to be executed in the QLM.

Quantum Rule-Based Systems (QRBS) Models, Architecture
and Formal Specification (D6.2)

1.5 - Final

© NEASQC Consortium Partners. All rights reserved.

Page 39 of 39

Results for case [0, 0, 20, 0, 0]

Prob. true: 1.0 | Prob. false: 0.0

Total prob.: 1.0

Results for case [20, 60, 0, 0, 20]

Prob. true: 0.994 | Prob. false: 0.006

Total prob.: 1.0

Results for case [40, 80, 0, 20, 20]

Prob. true: 0.943 | Prob. false: 0.057

Total prob.: 1.0

Results for case [60, 100, 20, 0, 0]

Prob. true: 1.0 | Prob. false: 0.0

Total prob.: 1.0

Results for case [80, 80, 20, 0, 20]

Prob. true: 0.92 | Prob. false: 0.08

Total prob.: 1.0

Results for case [100, 60, 20, 20, 20]

Prob. true: 0.875 | Prob. false: 0.125

Total prob.: 1.0

Results for case [0, 40, 0, 0, 0]

Prob. true: 1.0 | Prob. false: 0.0

Total prob.: 1.0

Results for case [20, 20, 0, 0, 20]

Prob. true: 0.999 | Prob. false: 0.001

Total prob.: 1.0

Results for case [40, 0, 0, 20, 0]

Prob. true: 1.0 | Prob. false: 0.0

Total prob.: 1.0

Results for case [60, 20, 0, 20, 20]

Prob. true: 0.989 | Prob. false: 0.011

Total prob.: 1.0

Results for case [100, 60, 20, 0, 20]

Prob. true: 0.934 | Prob. false: 0.066

Total prob.: 1.0

Figure 23: Results of the simulation of the example circuit with the M gate for some cases of
uncertainty

