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1. Executive Summary 

This report is the first deliverable of UDC-CESGA, related to task 6.2 of Work Package 6 of the NEASQC 
project, UC6. The document incorporates information on the approach to the work carried out so far, 
from the project start date to the deadline established for this first deliverable.  
 
The report includes a brief description of invasive ductal carcinoma of the breast (IDC), the methodology 
followed for the modeling of a rule-based system for the diagnosis and treatment of IDC, a preliminary 
analysis to evaluate the suitability of quantum computing in this domain, a proposal about the quantum 
approximation that we want to use, and that we will later have to evaluate, and the analysis about the 
formal requirements of the application that we intend to carry out. We also include a quantum proposal 
on the uncertainty associated with reasoning in medicine. 
 
A brief summary of the IDC is necessary to place the use case in the context of the project. The 
description will range from the initial symptoms that allow the clinician to consider the possibility of IDC, 
the diagnostic process, the degree of severity of the IDC, and the possible associated treatments. 
 
The methodological description of the knowledge engineering used is necessary to understand the 
architecture of a classical rule-based system, and to be able to formalize the problem in terms of 
declarative knowledge, procedural knowledge and inferential circuits. 
 
Next, a qualitative analysis of the problem in terms of quantum logical operators is presented to illustrate 
the possibility of converting a conventional rule-based system into a quantum rule-based system. 
 
Finally, the formal requirements of the quantum rule-based system will be mentioned. Also, we will pay 
special attention to the imprecision of the information and the uncertainty associated with clinical 
practice. 
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2. Context 

2.1. Project 

In the context of the project this document describes the first stages of this use case in which we intend 
the development of a quantum rule-based system (QRBS) for Invasive Ductal Carcinoma (IDC) 
management. An inherent problem with conventional rule-based systems (RBS) is their great sensitivity 
to the number of hypotheses, data and rules of the system itself. More specifically, selecting which rules 
are applicable at each moment can greatly slow down the inferential process (Moret-Bonillo, 
Fundamentos de la Inteligencia Artificial, 2000). This process, called pattern matching, is an unresolved 
issue in Artificial Intelligence (AI). 
 
In this respect the specific characteristics of quantum computing, such as quantum superposition or 
entaglement, could increase the computational power of our programs and be useful for AI in general, 
and for RBS in particular. 
 
The algorithms and their implementation will be used to build a quantum rule-based system that solves 
a specific problem: diagnosing and treating a specific type of breast cancer known as Invasive Ductal 
Carcinoma (IDC). 

2.2. Work package 

In the context of WP6 - "Symbolic AI and graph algorithmics" - the work of the team made up of 
researchers from the UDC and CESGA is focused on the fields of artificial intelligence, oncology and 
quantum computing.  
 
We focus on a specific type of AI program, the so-called rule-based system (RBS). One of the biggest 
problems with RBS is the pattern-matching that is related to the process of rule selection. This makes 
RBS very sensitive to the size of the problem and to changing environments, which is at the core of a 
very significant increase in computational cost. In the field of artificial intelligence, the most difficult 
problems are informally known as AI-complete or AI-hard, implying that the difficulty of these 
computational problems, assuming intelligence is computational, is equivalent to that of solving the 
central artificial intelligence problem. To call a problem AI-complete reflects an attitude that it would not 
be solved by a simple specific algorithm. Current AI systems can solve very simple and/or restricted 
versions of AI-complete problems, but never in their full generality. When AI researchers attempt to 
"scale up" their systems to handle more complicated, real-world situations, the programs tend to become 
excessively brittle without commonsense knowledge or a rudimentary understanding of the situation: 
they fail as unexpected circumstances outside of its original problem context begin to appear. When 
human beings are dealing with new situations in the world, they are helped immensely by the fact that 
they know what to expect: they know what all things around them are, why they are there, what they are 
likely to do and so on. Knowledge-based systems are typically AI-hard. 
 
We place special emphasis on the principle of coherent superposition, on the intrinsically parallel 
character of quantum computing, on the probabilistic nature of quantum computing, and we describe 
some quantum operators that must be reversible. Next, we build a quantum architecture equivalent to a 
conventional inferential circuit and analyze the results.  
 
The algorithms and their implementation will be used to build a quantum rule-based system that solves 
a specific problem for the field of medicine to support the process of diagnosing and treating a specific 
type of breast cancer known as Invasive Ductal Carcinoma (IDC).  
 
In this proposal we will describe a quantum method to represent the uncertainty that may appear in the 
so-called Quantum Rule-Based Systems (QRBS). For this we will consider the following restrictions: 

  



 

Quantum Rule-Based Systems (QRBS) Models, Architecture 
and Formal Specification (D6.2) 

1.5 - Final 
 

 

© NEASQC  Consortium Partners. All rights reserved. 
 

Page 7 of 39 

 

1. We will consider that the rules of the knowledge base are written in a categorical way. For example: 
A and B → C 

2. In the resolution of a problem the facts may be affected by imprecision and the rules of the 

knowledge base have to be used to obtain valid inferences. For example: we have the fact A, which 

looks like A but it is not exactly A. We also have the fact B, which looks like B but it is not exactly B. 
This statement means that, for example, instead of “something is absolutely true” it is  “almost sure 

it is true”. The question implies the ability of making inferences with facts of the kind A and B, and 
with rules A and B → C. 

3. Uncertainty arises as a consequence of the propagation of imprecision through the inferential 
network. 

 
It is an obvious fact that uncertainty, in the most general sense possible and from any point of view, is 
a problem of the first magnitude - still unresolved - in the field of artificial intelligence and, more 
specifically, in Rule-Based Systems. There are lots of  different terms and kinds of “representation of 
inexact knowledge”: probability, subjective probability, imprecision, uncertainty, degrees of belief, 
fuzziness… and all of those terms refer to different concepts and are treated with different mathematical 
models. Regardless of the completeness of our system, the inherent subjectivity of the uncertainty 
associated with the information that is used when trying to solve a real case, has involved the 
development of a multitude of approaches and models to try to solve the problems of inexact knowledge 
representation and reasoning . The mathematical orientation of the different approaches varies 
depending on the model in question. Therefore, different models produce different results. In this context 
we can mention, among others: 
 

1. Categorical approaches such as the so-called Differential Interpretation (Ledley & Lusted, 1959) 
2. Probabilistic approaches such as Bayesian Networks (Pearl, 1986) 
3. Quasi-statistical approaches such as the Certainty Factors Method (Shortliffe & Buchanan, 

1975) or Evidential Theory (Shaffer, 1976) 
4. Fuzzy methods such as Fuzzy Logic (Zadeh, 1965) 

 
It appears to be clear that we cannot forget the potential of emerging theories and applications, among 
which Quantum Computing stands out and it is intrinsically probabilistic. The question is, therefore, 
how can we model the subjective uncertainty (here “uncertainty” refers to the strength of the causal 
relation between facts.) of rule-based systems and achieve coherent results using the resources 
of quantum computing? In short, it is about establishing synergies between artificial intelligence and 
quantum computing to solve the problem of uncertainty. 
 
In this context, we will focus the question from the perspective of the Theory of Quantum Circuits. For 
this we will builtd the quantum operators equivalent to the classic  {and, or} operators. We will also try 
to develop a classic inferential circuit and build the equivalent quantum circuit. To model the uncertainty 
we propose the use of projections of the corresponding quantum states along the Z axis of the Bloch 
sphere and, to model the subjectivity, the parameter DELTA (δ). This approach makes it possible the 
construction of a general quantum gate to represent any situation of uncertainty and express it in a 
probabilistic manner. The proposed approach will be widely evaluated and verified from different points 
of view. We expect that the results obtained after this exhaustive validation process allow us to conclude 
that Quantum Computation is an effective and efficient method to solve uncertainty problems in Artificial 
Intelligence. 
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3. Invasive Ductal Carcinoma (IDC) 

Invasive ductal carcinoma, sometimes referred to as infiltrating ductal carcinoma, is the most common 
type of breast cancer. About 80% of all cases of breast cancer are invasive ductal carcinomas. Invasive 
means that the cancer has "invaded" or spread into the surrounding breast tissues. Ductal means that 
the cancer started in the milk ducts, which are the "pipes" that carry milk from the milk-producing lobules 
to the nipple. Carcinoma refers to any cancer that begins in the skin or in other tissues that line internal 
organs, such as breast tissue. Collectively, "invasive ductal carcinoma" refers to cancer that has 
penetrated the wall of the milk duct and has begun to invade the tissues of the breast. Over time, invasive 
ductal carcinoma can spread to the lymph nodes and possibly other areas of the body (Figure 1). 

 

 

Figure 1: Invasive Ductal Carcinoma 

Although this carcinoma can affect women of any age, it becomes more common as a woman ages. 
According to the American Cancer Society (American Cancer Society, 2019) approximately two-thirds 
of women who are diagnosed with invasive breast cancer are 55 years of age or older. Invasive ductal 
carcinoma also affects men. 

3.1. Signs and Symptoms of Invasive Ductal Carcinoma 

Invasive ductal carcinoma may not cause any symptoms at first. An abnormal area often appears on a 
screening mammogram (x-ray of the breast), leading to further testing. In some cases, the first sign of 
breast cancer is a recent lump or mass in the breast. According to the American Cancer Association 
(American Cancer Society, 2019) any of the following unusual changes in the breast can be an indication 
of breast cancer, including invasive ductal carcinoma:  

• inflammation of the breast or part of it.  

• skin irritation or pitting.  

• breast pain, nipple pain or nipple inversion. 

• redness, scaling, or thickening of the nipple or breast skin.  

• a nipple discharge other than milk.  

• a lump in the armpits. 
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3.2. Diagnosis of Invasive Ductal Carcinoma 

The diagnosis of invasive ductal carcinoma usually includes a combination of procedures, physical 
examinations and imaging studies and PET.  

• Physical examination of the breasts: The physicians may notice a small lump in the breast during 
the physical examination. They will also feel the lymph nodes under the armpit and above the 
collarbone to check for swelling or other abnormalities. 

• Mammogram: Invasive  ductal  carcinoma  is  usually found with a mammogram, a test that takes 
X-ray images of the breast. Mammograms are performed in apparently healthy women to detect 
early signs of breast cancer. A key feature of invasive breast cancer is the presence of spiculated 
margins, which means that on the mammography the physician sees an abnormality that presents 
projecting finger-like projections. These projections reveal the "invasion" of the cancer into other 
tissues. If a screening mammogram highlights a suspicious area, additional mammograms are 
usually done to gather more information about the area in question. Mammography is done on both 
breasts.  

• Ultrasounds: Sound waves from the breast to obtain additional images of the tissue. This study can 
be used to complement mammography.  

• Breast MRI: MRI uses magnetic fields, radio waves, and a computer to generate images of tissues 
inside the body. In certain cases, the physician may use breast MRI to gather more information 
about a possibly affected area.  

• Biopsy: If the results of a mammogram or other imaging test suggest an abnormality, the physician 
will probably want to do a biopsy. A biopsy involves removing some or all of the abnormal-looking 
tissue so that a pathologist (a doctor trained to diagnose cancer from biopsy samples) can look at it 
under a microscope. 

3.3. Staging Invasive Ductal Carcinoma Severity 

Staging is the process used to estimate the extent of invasive ductal carcinoma spread from its original 
location. The stage of the cancer is based on three pieces of information:  

• the size of the tumor  

• whether the cancer has spread to the lymph nodes and, if so, to what degree 

• whether the cancer has spread to other parts of the body 

Invasive ductal carcinoma is described on a scale from stage I (the earliest stage) to stage IV (the most 
advanced stage). 

3.3.1. Stage I 

Stage I describes invasive breast cancer (cancer cells take in or invade the normal breast tissue around 
them). Stage I is divided into subcategories, known as IA and IB.  
 
Stage IA describes invasive breast cancer in which the tumor is up to 2 cm and the cancer has not 
spread beyond the breast; no lymph nodes are affected. 
 
Stage IB describes invasive breast cancer in which: there is no tumor in the breast; in contrast, small 
groups of cancer cells greater than 0.2 mm but less than 2 mm are observed in the lymph nodes or 
there is a breast tumor smaller than 2 cm and small groups of cancer cells larger than 0.2 mm but 
smaller than 2 mm in the lymph nodes. 

3.3.2. Stage II 

Stage II is divided into subcategories IIA and IIB.  
 
Stage IIA describes invasive breast cancer in which: there is no tumor in the breast, but cancer cells 
(larger than 2mm) are found in 1-3 axillary lymph nodes (under the arm) or in lymph nodes near the 
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breastbone (found during a sentinel node biopsy) or the tumor is 2 cm or smaller and has spread to the 
axillary lymph nodes or the tumor is 2 to 5 cm and has not spread to the axillary lymph nodes.  
 
Stage IIB describes invasive breast cancer in which: the tumor is between 2 and 5 cm, and small groups 
of cancer cells larger than 0.2 mm but smaller than 2 mm are seen in the lymph nodes or the tumor is 2 
to 5 cm, and the cancer has spread to 1-3 axillary lymph nodes or lymph nodes near the breastbone 
(found during a sentinel node biopsy) or the tumor is larger than 5 cm but has not spread to the axillary 
lymph nodes. 

3.3.3. Stage III 

Stage III is divided into subcategories IIIA, IIIB, and IIIC.  
 
Stage IIIA describes invasive breast cancer in which: there is no tumor in the breast or the tumor may 
be any size, and cancer was found in 4-9 axillary lymph nodes or lymph nodes near the breastbone 
(found during imaging studies or physical examination) or the tumor is larger than 5 cm, and small 
clusters of cancer cells larger than 0.2 mm but smaller than 2 mm are seen in the lymph nodes or the 
tumor is larger than 5 cm, and the cancer has spread to 1-3 axillary lymph nodes or lymph nodes near 
the breastbone (found during a sentinel node biopsy). 
 
Stage IIIB describes invasive breast cancer in which: the tumor is indefinite in size and has spread to 
the chest wall or skin of the breast, causing inflammation or an ulcer and may have spread to 9 axillary 
lymph nodes or may have spread to lymph nodes near the breastbone. 
 
Stage IIIC describes invasive breast cancer in which: there may be no evidence of disease in the breast 
or, if a tumor is present, it may be any size and may have spread to the chest wall or skin of the breast 
and cancer has spread to 10 or more axillary lymph nodes or cancer has spread to lymph nodes above 
or below the collarbone or cancer has spread to axillary lymph nodes or lymph nodes near the 
breastbone. 

3.3.4. Stage IV 

Stage IV describes invasive breast cancer that has spread beyond the breast and surrounding lymph 
nodes to other organs in the body, such as the lungs, distant lymph nodes, skin, bones, liver, and brain. 

3.4. Treatment for Invasive Ductal Carcinoma 

Treatments for invasive ductal carcinoma fall into two broad categories:  

• Localized treatments for IDC: surgery and radiation therapy. These treatments treat the tumor and 
surrounding areas, such as the chest and lymph nodes.  

• Systemic treatments for IDC: chemotherapy, hormone therapy, targeted therapies. Drugs used in 
systemic treatments travel through the body to kill cancer cells that may have spread and help 
reduce the risk of cancer recurrence. 
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4. Modelling Rule-Based Systems 

Knowledge engineering is a discipline that is a part of Artificial Intelligence whose purpose is the design 
and development of expert systems (Kendal & Creen, 2007). This is supported by instructional 
methodologies, trying to represent the human knowledge and reasoning in a certain domain, within an 
artificial system. The work of knowledge engineers consists of extracting the knowledge of human 
experts, and in coding said knowledge so that it can be processed by a system. The problem is that the 
knowledge engineer is not an expert in the field that tries to model, while the expert in the subject has 
no experience modeling his knowledge (based on heuristics) in a way that can be represented 
generically in a system. Knowledge engineering encompasses the scientists, technology and 
methodology required to process knowledge. The goal is to extract, articulate and computerize 
knowledge from an expert. 
 
Since the task of acquiring knowledge is a difficult task, several stages have been identified. In this 
context, the development of a RBS has to be incremental and cyclic. This permits to face the RBS 
construction in a more systematic way (Nalepa, 2008). There are different methodologies for RBS 
development, but the most accepted in the literature includes the following steps:  

• Identification of the problem. 

• Conceptualization. 

• Formalization. 

• Implementation. 

• Testing. 

4.1. Identification of the problem 

In this phase, it must first be determined whether the problem can or should be addressed through the 

AI techniques. To classify the problem as adequate, it cannot be solved algorithmically, since if it were 

possible in this way, it makes no sense to start such an expensive task. In fact, expert systems can be 
considered as “computational models of intelligent knowledge-based behaviour”. It must also be 
necessary to have access to sufficient sources of knowledge to complete a good design. Finally, the 
problem to be addressed must be of an adequate size so that it is not an unapproachable task due to 
its complexity.  
 
The next step is to find the sources of knowledge that will be necessary for the development of the 
system, the most common are:  

• Human experts in the domain of the problem.  

• Books and manuals that explain the problem and resolution techniques.  

• Examples of solved cases.  

The latter will be important especially in the final validation phase, but can also be used with automatic 
knowledge acquisition techniques to obtain the basic elements involved and their relationships.  
 
With these sources of information, necessary data to solve the problem and the criteria to evaluate the 
solution can be determined as well as the steps that allow the resolution and its subsequent evaluation.  
 
At this time the knowledge engineer and the expert will be able to make a first description of the problem. 
The main goal will be to specify:  

• Objectives.  

• Motivations.  

• Resolution strategies and their justification.  

• Knowledge sources. 

• Types of tasks. 
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This scheme will be the starting point to propose the following phases: 

• Conceptualization. 

• Formalization. 

• Implementation. 

• Testing. 

4.2. Conceptualization 

Before going into the global characteristics of the problem, it is essential to detail its basic elements and 
discover the relationships between them. In particular, it is necessary to observe how the expert solves 
typical problems and abstracts from them general principles that can be applied in different contexts. It 
is also necessary to obtain a decomposition of the problem into subproblems, performing an analysis 
by successive refinements until the knowledge engineer can get an idea of the hierarchical relationships 
of the different resolution phases to the most elementary reasoning operators.  
 
Another required element is to discover the flow of reasoning in solving the problem and specify when 
and how knowledge items are needed. With this hierarchical decomposition and the flow of reasoning, 
the knowledge engineer can characterize the blocks of higher reasoning and the main concepts that 
define the problem. It will be mandatory to distinguish between evidence, hypotheses and necessary 
actions in each of the blocks and determine the difficulty of each one resolution subtasks. In this way it 
will be possible to capture the structure of the domain and the different relationships between its 
elements. 

4.3. Formalization 

We have to consider the different reasoning schemes that can be used to model the different problem 
solving needs identified in the previous phases. At this point, it is necessary to understand the nature of 
the search space and the type of search that will have to be done. For this, it can be compared with 
different prototypical mechanisms of resolution of problems such as classification, data abstraction, 
temporal reasoning, causal structures, etc.  
 
At this stage, the certainty and completeness of the available information, the temporal dependencies, 
or the reliability and consistency of the information will also have to be analyzed. It should be discovered 
which parts of the knowledge are certain facts and which are not. For the latter, some methodology must 
be adapted for dealing with uncertainty, so that it can be modeled within the system (Lindley, 2014). 

4.4. Implementation 

At this point, decisions must be made about specifying the resolution and flow control of the information. 
Decisions must be made about the specific way of representing knowledge so that it can be adapted to 
the resolution strategies needed and the relationships between the different sets of knowledge. In this 
phase the rules will be defined, and inevitably problems and incompleteness will be discovered that will 
force a review of previous phases. 

4.5. Testing 

A set of representative resolved cases has to be chosen in order to check the operation of the system 
with these. In this phase, errors will be discovered that will allow correcting previous pitfalls; in general 
problems will appear due to lack of rules, incompleteness, lack of correction, and possible failures in the 
analysis of the pre-established rules. 



 

Quantum Rule-Based Systems (QRBS) Models, Architecture 
and Formal Specification (D6.2) 

1.5 - Final 
 

 

© NEASQC  Consortium Partners. All rights reserved. 
 

Page 13 of 39 

 

4.6. Use case proposed methodology 

We propose a concrete methodology for the acquisition of knowledge, in which we can distinguish the 
following phases:  

• Initial. 

• Methodological. 

• Structured. 

• Evaluation. 

These four phases really constitute a complete knowledge engineering methodology - not just 
acquisition - since the final result obtained after its application should be a perfectly operational expert 
system.  

• Scheme of the Initial Phase  
▪ Carrying out unstructured or directed interviews.  
▪ Obtaining examples for joint analysis by human experts and knowledge engineers. 
▪ Establishment of an initial set of rules.  

• Scheme of the Methodological Phase  
▪ Macroscopic structuring of the knowledge obtained in the previous phase.  
▪ Global organization, and tentative, of the system under development.  
▪ Establishment of classes, and classification of all those information elements that share 

characteristics.  

• Scheme of the Structured Phase  
▪ Organization and microscopic structuring of the information sets that share characteristics.  
▪ Design and construction of prototypes and individual modules. 
▪ Evaluation and refinement, separately, of each and every one of the prototypes and modules 

built. 

• Scheme of the Evaluation Phase  
▪ Integration of modules.  
▪ Optimization of the control structures.  
▪ Adequacy of the interfaces and the mechanisms of explanation and justification. 
▪ Validation of the system in the laboratory.  
▪ Validation of the system in its real working environment.  
▪ Going back (when going back is no longer necessary, we will have obtained an operating 

expert system, ready for eventual commercialization.) 

4.7. RBS Architecture 

In computer science, RBS are used to store and manipulate knowledge to interpret information in a 
useful way. It is often used in artificial intelligence applications and research. 
 
Normally, the term rule-based system is applied to systems involving human-crafted or curated rule sets. 
Rule-based systems constructed using automatic rule inference, such as rule-based machine learning, 
are normally excluded from this system type.  
 
A typical rule-based system (Figure 2) has four basic components (Nalepa, 2008):  

• The list of rules, which is a specific type of knowledge base. 

• The inference engine or semantic reasoner, which infers information or takes action based on the 
interaction of input and the rule base. The interpreter executes a production system program by 
performing the following match-resolve-act cycle:  
▪ In the first phase, “matching”, the left-hand sides of all productions are matched against the 

contents of the “working memory”. The working memory is a module in which the declarative 
knowledge (initial information, proven facts, working hypothesis) that represents the actual 
state of the problem under consideration is stored. It interacts with the knowledge base to 
infer new facts. This is a dynamic process. When the working memory does not change then 
the inferential process ends. As a result of the matching process, a conflict set is obtained, 
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which consists of “instantiations” of all satisfied productions. An instantiation of a production 
is an ordered list of working memory elements that satisfies the left-hand side of the 
production. 

▪ In the second phase, “conflict-resolution”, one of the production instantiations in the conflict 
set is chosen for execution. If no productions are satisfied, the interpreter halts. 

▪ In the third phase, “action”, the actions of the production selected in the conflict-resolution 
phase are executed. These actions may change the contents of the working memory. At the 
end of this phase, execution returns to the first phase. Although the user/expert can solve 
the conflicts, there are specific and automatic ways for conflict resolution. This is usually 
linked with the search strategy, and can be implemented in the form of meta-rules. For 
example: IF we have two rules that can be fired THEN apply first the more specific one. 

• The temporary working memory, that contains all the pieces of information the rule-based system 
is working with. It can hold both the premises and the conclusions of the rules. 

• The user interface or other connection to the outside world through which input and output signals 
are received and sent.  

 

Figure 2: Typical architecture of a rule-based system 
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5. Quantum Rule-Based Systems 

Quantum Rule-Based Systems (QRBS) are defined as those Rule-Based Systems (RBS) that use the 
formalism of Quantum Computing (QC) for representing knowledge and for making inferences.  

5.1. General issues in QRBS  

Let us consider the following set of rules: 

 

a. R1: IF A and B THEN X  
b. R2: IF X or C THEN Y  
c. R3: IF Y and (D or E) THEN R  

 

In conventional RBS, any categorical rule can be represented by the logical operators {and, or, not} that 
relate statements that are always true. Thus, rule R1 should be interpreted as follows: If statement A is 
true, and statement B is true, then we can conclude without uncertainty that statement X is true. The 
three previously  defined  rules  can be represented classically by means of the inferential circuit of 
Figure 3. In any case, if we consider imprecision, these rules can be fired when, e.g. A=almost certain, 
B=probably yes and C=perhaps. 

 

 

Figure 3: Classical representation of the inferential circuit of the example 

However, if we choose the formalism of Quantum Computing we need reversible quantum gates to 
represent the previous inferential circuit.  
 
In conventional RBS, any categorical rule can be represented by the logical operators {and, or, not} that 
relate statements that are always true. The truth tables of these conventional logical operators are the 
following (Table 1). 
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X Y not X X and Y X or Y 

0 0 1 0 0 

0 1 1 0 1 

1 0 0 0 1 

1 1 0 1 1 

Table 1: Truth tables of the classical logical operators {not, and, or} 

In order to translate the classical RBS inferencial circuit of Figure 3 to a quantum environment, we need 
to rewrite the logical operators {not, and, or}, following the restrictions imposed by quantum computing. 
For  that, we need reversible quantum gates such as the CNOT gate (Figure 4), or the Toffoli gate 
(Figure 5) also named CCNOT gate. Figure 6 shows how to build an {and} gate using a Toffoli gate. 
Figure 7 shows the same for the {not} gate and Figure 8 shows how to build an {or} gate using the Toffoli 
and the CNOT gates. 
 
 

 

Figure 4: The CNOT gate 

 

Figure 5: The CCNOT gate also named Toffoli gate 

 

 

Figure 6: AND gate using the Toffoli gate 
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Figure 7: NOT gate using the Toffoli gate 

 

 

Figure 8: OR gate using the Toffoli and the CNOT gates 

With these ideas in mind, we can simulate in a quantum manner, the quantum circuits that are equivalent 
to the classical logical operators.  
 
For example, Figure 9 illustrates the quantum circuit of the quantum-AND. We have included two extra 
Hadamard gates to simulate the behaviour of this circuit with all possible input vectors. The idea is to 
obtain a homogeneous distribution of 0s and 1s in the input that permits to infer the Truth Tables of the 
classical logic operators {and, or}. 

 
 

 

Figure 9: The Quantum-AND circuit 

Table 2 illustrates the results of a simulation performed with both, classical-AND and quantum-AND, 
using the IBM Quantum Experience simulator (1048 shots.) 
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Input Vector 
Input Truth 

Table 

Output 

Truth Table 

Measured 

Percentage 

Estimated 

Percentage Precision 

000 00 0 25.0 25.0 1.000 

010 01 0 24.8 25.0 0.992 

100 10 0 24.9 25.0 0.996 

111 11 1 25.3 25.0 0.988 

Table 2: Classic-AND versus Quantum-AND 

From the results shown in Table 2, it can be easily verified that after a few shots, the outputs are:  
 

1. For output 0 = 25.0+24.8+24.9 which is very close to 75% 
2. For output 1 = 25.3 which is close to 25 % 

It appears to be clear that ANY classical inferential circuit can be represented as a quantum inferential 
circuit. More specifically, and in this case, the quantum representation of the circuit of Figure 3 would 
be that of Figure 10. 

 

 

Figure 10: Quantum circuit representation of rules R1, R2 and R3 

We will also focus on developing methods to present rules, their relations and inferential circuits in 
classical rule-based systems (RBS) using a set of reversible unitary quantum gates and quantum 
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circuits. The task will also be to develop a general and scalable methodology by using the concept of 
uncertainty in RBS which can be represented with a single unitary matrix in the QRBS. 

 

5.2.  Uncertainty in QRBS 

Uncertainty is one of the fundamental problems of artificial intelligence (AI). In particular, it is one of the 
essential problems of the so-called Rule-Based Systems (RBS), and at the same time one of the most 
complex to deal with. Broadly speaking, we can consider that the origin of the uncertainty is related to 
one or several of the following causes (Lindley, 2014): 

• It may happen that the information available is incomplete. In many cases the information available 
is not sufficient to make a categorical decision. 

• Sometimes the available information we handle is wrong. Not always the information we manage is 
completely true. 

• The information we use is usually imprecise. In many domains there are data that are difficult to 
quantify. 

• Normally the real world is non-deterministic. Intelligent systems are not always governed by 
deterministic laws, so that general laws are not always applicable. Many times the same causes 
produce different effects without there being any apparent explanation. 

• Our model is often incomplete. There are many phenomena whose cause is unknown. In addition, 
the lack of agreement between experts in the same field is frequent. Both circumstances make it 
difficult to include knowledge in a RBS. 

• It may happen that, even if our model is complete, it contains inaccurate information. 

 

Despite the large number of procedures that exist, any model that tries to quantify the uncertainty needs 
to include a large number of parameters. An example is the case of Bayesian networks (Pearl, 1986), 
in which we need to specify all a priori and conditional probabilities. However, a large part of this 
information is not usually available, so it must be estimated subjectively. In fact, subjective labels can 
be treated from different points of view. Consider the following example… fever is a symptom that is 
relevant when T > 37ºC. Now, say that we have a patient presenting T = 38ºC. It is obvious that the 
patient has fever. But the physician will pay different attention if the fever of the patient is moderate, 
high, or very high… question; is 38ºC very high fever, or moderate, or -even- significant? It depends on 
the context. This leads to a very interesting problem: The Symbolic Processing of Numeric Variables. 
 
In summary, the treatment of inaccuracy in the inputs is, together with the representation of knowledge 
and learning, one of the fundamental problems of artificial intelligence (AI). In this context, and in a 
recent work, a quantum method to represent the uncertainty that may appear in the so-called QRBS is 
described (Moret-Bonillo, Emerging technologies in artificial intelligence: quantum rule-based systems, 
2018). 

5.2.1. Starting point  

In quantum computing, the Bloch sphere is a geometric representation of the pure state space of a two-
level quantum system. By extension, the set of pure states of an arbitrary finite number of levels is also 
usually called the Bloch sphere. In this case the Bloch sphere is no longer a sphere, but it has a 
geometric structure known as a symmetric space (Yanofsky & Mannucci, 2008). Consider Figure 11, 
which represents a Bloch sphere. 
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Figure 11: Schematic representation of a Bloch sphere 

This sphere is important because it allows us to visualize the state of a QuBit. Note that it is a three-
dimensional space in which the state of a QuBit |ψ〉 is represented by: 

• The module, which is always 1. The meaning of this is that the QuBit is an energetically closed 
system. 

• The angle θ, which represents the displacement of the QuBit along the Z axis, from the north pole 
to the south pole of the sphere. 

• The angle ϕ, which represents the phase of the system that is inherent in complex vector spaces. 

Given that the Bloch sphere locates |0〉  at the north pole, and since the direction of rotation on the Z 

axis is from top to bottom, we assume that a TRUE statement is represented by a |0〉, and a FALSE 

statement is represented by means of a |1〉. 

5.2.2. Representing the Uncertainty in QRBS  

The question we are now asking is the following: assumed a given Quantum Rule-Based System, is 
there any quantum property that allows to represent the imprecision associated with the facts and the 
uncertainty associated with the rules? 
 
To try to answer the previous question let's look at the angle θ of the Bloch sphere. 

• When θ = 0 radians → |0〉 → The associated statement is true. 

• When θ = π radians → |1〉 → The associated declaration is false. 

• When 0 < θ < π → Both statements are in superposition, and the associated statement is neither 

true nor false, or - in an equivalent way - it is true and it is false simultaneously. 
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The election of the angle is due to the fact that considering the Bloch sphere, the location of |0> and the 
location of |1>, the imprecision could be considered as a projection of the input state |X> on the Z-axis. 
 
For practical reasons we will call “Credibility” to our confidence in a given fact. In such way that: 

• Credibility = 100 → The fact is true 

• Credibility = 0 → The fact is false 

We also relate the concept of credibility with the concept of “Degree of Disbelief” associated to a given 
fact. The relation between these two concepts is as follows: 

• Credibility = 100 – Disbelief 

For the reasons just explained, the quantification of Z displacements in a Bloch sphere could be used 
to quantify our credibility associated to a given fact. 
 
To define a general procedure capable of representing any degree of uncertainty (or certainty) it would 
be convenient to have a single quantum gate that, of course respecting all the restrictions imposed by 
quantum mechanics, brings us closer to analog world. In this context there are already several universal 
gates, but none of them explicitly works with imprecise information in the domain of artificial intelligence. 
In this regard, and taking into account what has been described so far, our proposal is as follows: 
 
Let DELTA (δ) be the degree of subjective disbelief that we can associate with a fact in a rule-based 
system. It is trivial that the parameter δ can be converted into an ALPHA angle (α) that satisfies the 
restrictions of Z displacements. Now suppose that our subjective disbelief δ is defined in the closed 
interval [0, 100]. Obviously: 

• If δ = 0 → Our credibility in the fact is total → The fact is true 

• If δ = 100 → Our credibility in the negation of the fact is total → The fact is false 

• If 0 < δ < 100 → There is subjective disbelief in the fact under consideration 

The following equation establishes the correspondence between δ and α, so that δ is compatible with 
the concept of subjective disbelief, and α is compatible with the restrictions imposed by the Bloch sphere: 

• α =
π×δ

100
 radians 

Now let us define THETA (θ) = (π − α) / 2 as the angle of rotation, or displacement, in Z. Table 3 
illustrates the values of ALPHA (α) - in degrees and in radians - as a function of the values of DELTA 
(δ) -defined in the interval [0, 100], and the corresponding values of THETA (θ) - expressed in radians. 
 
 
 
 
 
 
 

DELTA (Subjective 
Disbelief) 

ALPHA (Degrees) ALPHA (Radians) THETA (Radians) 

0 0 0 π/2 

25 45 π/4 3π/8 

50 90 π/2 π/4 

75 135 3π/4 π/8 

100 180 π 0 

Table 3: Correspondence between the values of the parameters DELTA, ALPHA and THETA 
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We will now define, based on the angle θ, the following Matrix: 

 

𝑀(𝜃) =  (
sin (𝜃) cos (𝜃)
cos (𝜃) −sin (𝜃)

) 

This matrix verifies that: 

 

 (
sin (𝜃) cos (𝜃)
cos (𝜃) −sin (𝜃)

)  ×   (
sin (𝜃) cos (𝜃)
cos (𝜃) −sin (𝜃)

) =   (
1 0
0 1

) 

 

In this context: 

• If α = 0  → M (θ) |0〉 = M (π / 2) |0⟩ = |0⟩ 
• If α = π / 4  → M (θ) |0〉 = M (3π / 8) |0⟩ = 0.924 |0⟩ + 0.383 |1⟩ 
• If α = π / 2  → M (θ) |0〉 = M (π / 4) |0⟩ = 0.707 |0⟩ + 0.707 |1⟩ 
• If α = 3π / 4 → M (θ) |0〉 = M (π / 8) |0⟩ = 0.383 |0⟩ + 0.924 |1⟩ 
• If α = π  → M (θ) |0〉 = M (0) |0⟩ = |1⟩ 

Obviously: 

• If α = 0 → there is no disbelief in the fact, the credibility is total and the fact is true 

• If α = π → there is no disbelief in the negation of the fact, the credibility is none and the fact is false 

Uncertainty appears when ALPHA is between 0 and π. 
 
In Appendix A we can see how to implement the quantum AND and OR gates and the M gate using 
myQLM. We also implemented the inferential circuit of section 5.1 using that gates and executed a 
simulation using the PyLinalg QPU (Atos, 2016-2020). 
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6. Formal Specification Approach 

Formal Specification Approach Critical Systems Development usually involves a plan-based software 
process. Both the system requirements and the system design are expressed in detail and carefully 
analysed and checked before implementation begins.  
 
If a formal specification of the software is developed, this usually comes after the system requirements 
have been specified but before the detailed system design. There is a tight feedback loop between the 
detailed requirements specification and the formal specification. One of the main benefits of formal 
specification is its ability to uncover problems and ambiguities in the system requirements. Figure 12 
shows specification and design activities may be carried out in parallel streams. 
 
There is a two-way relationship between each stage in the process. Information is fed from the 
specification to the design process and vice versa. 

 
 

 

Figure 12: Formal specification in the software process 

Two fundamental approaches to formal specification can be used to write detailed specifications for 
software systems. These are: 

• Algebraic approaches where the system is described in terms of operations and their relationships. 

• Model-based approaches where a model of the system is built using mathematical constructs such 
as sets and sequences and the system operations are defined by how they modify the system state. 

We will focus on the algebraic approaches. The algebraic method of formal specification defines the 
abstract data type in terms of the relationships between the type operations. Figure 13 illustrates the 
structure of an algebraic specification. 

 

Figure 13: Structure of an algebraic specification 
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The body of the specification has four components: 

• The introduction that declares the sort (the type name) of the entity being specified. A sort is the 
name of a set of objects with common characteristics. It is similar to a type in a programming 
language. The introduction may also include an “imports” declaration, where the names of 
specifications defining other sorts are declared. Importing a specification makes these sorts 
available for use. 

• The description part, where the operations are described informally. This makes the formal 
specification easier to understand. The formal specification complements this description by 
providing an unambiguous syntax and semantics for the type operations. 

• The signature part defines the syntax of the interface to the object class or abstract data type. The 
names of the operations that are defined, the number and sorts of their parameters, and the sort of 
operation results are described in the signature. 

• The axioms part defines the semantics of the operations by defining a set of axioms that characterize 
the behaviour of the abstract data type. These axioms relate the operations used to construct entities 
of the defined sort with operations used to inspect its values.  

 
We will follow these specifications but with minor changes to improve readability, that is, we will put 
the informal description of each operation and the axioms next to the operation signatures. And the 
axioms will be mainly focused in specifying pre and post conditions of each operation.  

6.1.1. Formal specification of facts and the working memory 

As said, the basic element of a RBS is a fact. It can be defined as the smallest unit of information that 
can be separately added to or removed from the working memory of a rule-based system. 
 
The simplest way to define a fact is to use attribute-value pairs, that is, we define an attribute, and we 
define the value that this attribute takes. The attribute will be the identifier of the fact while the value will 
be a literal belonging to some existing data type. The simplest facts are Boolean facts, that is, an attribute 
and a boolean value indicating if the attribute is true or false: (rain true). This can be extended to other 
data types (strings, numeric values, enumerated values, etc.) to obtain different types of facts: (name 
"Bob Smith") (age 34) (gender Male). 
 
In complex systems, fact can be grouped to form complex structures, e.g., we can use the previous 
facts to form the person fact like this “(person (name "Bob Smith") (age 34) (gender Male))” but in this 
document we will try to keep things simple, so will assume that a fact is simply an attribute-value pair.  
 
In Table 4 we can see the formal specification of a fact. For each element that we will include in this 
formal specification a description of the element is also added (showing the name and an informal 
description) and the relevant operations. For each operation we will consider the following elements. If 
any of them is not necessary (a function without inputs, for example) then it won’t be included in the 
table: 

• Signature. With the inputs and outputs separated by an arrow “→”. If the operation has no return 
value then simply the output is not represented (nor the arrow). 

• Objective. Informal description of the objective of the operation. 

• Input values. 

• Output values. 

• Preconditions. Conditions that must be true in order for the operation to be executed. 

• Postconditions. Conditions that will be true upon completion of the operation. 
 
The operations depicted here are the minimum operations needed. A given implementation probably 
would include more operations, in order to make it easier to work with the different elements. 
 



 

Quantum Rule-Based Systems (QRBS) Models, Architecture 
and Formal Specification (D6.2) 

1.5 - Final 
 

 

© NEASQC  Consortium Partners. All rights reserved. 
 

Page 25 of 39 

 

Element 

Element fact 

Description Represents a working memory element composed by a pair attribute-value. 

Operations 

Signature fact(attribute, value) → fact 

Objective Creates a new fact based on an attribute and a value. 

Inputs attribute Represented by a valid identifier. 

value Represented as a literal value of one of the accepted data types: 

boolean, integer, string, enumeration, etc. 

Outputs A fact element. 

Preconditions The identifier must be valid. 

The literal value must be a valid value of the corresponding data type. 

Postconditions A new fact is created as an attribute-value pair. 

Table 4: Formal specification of a fact. 

Since facts are defined as working memory elements, it would now be appropriate to define how the 
working memory works. To do so, we will create a new element, called working memory, which is 
responsible for asserting and retracting facts. Its formal specification is included in Table 5. 
 

Element 

Element working_memory 

Description Element that contains all the pieces of information the rule-based system is 

working with. 

Operations 

Signature working_memory() → working_memory 

Objective Creates a new working_memory. 

Outputs A working_memory element. 

Postconditions A new empty working_memory is created. 

Signature assert(fact)  

Objective Adds facts to the working memory. 

Inputs fact A fact element. 

Preconditions The fact is valid. 

Postconditions The given fact is added to the working_memory. 

If a fact with the same attribute was already present in the working memory 

that fact is retracted before this new fact is inserted. 

Signature retract(fact)  

Objective Removes facts from the working memory. 

Inputs fact A fact element. 

Preconditions The fact is valid. 

Postconditions The given fact is removed from the working_memory. 

Signature reset()  

Objective Initializes the working memory removing all the facts from it.  

Postconditions The working_memory is empty. 

 

Table 5: Formal specification of a working memory element. 
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6.1.2. Formal specification of rules and the inference engine 

After defining facts, we must define rules in more detail. Rules are like if-then statements in procedural 
languages, but they are not used in a procedural way. Whereas if-then statements are executed at a 
specific time and in a specific order, according to how the programmer writes them, a rule ’s “then” part 
can be executed whenever the “if” part is satisfied. This makes rules less obviously deterministic than a 
typical procedural program because the inference engine decides the order in which they are fired. 
 
Rules are composed by a left-hand side (LHS), that is the premise, and a right-hand side (RHS), that is 
the conclusion. Before defining a rule, we must define in detail those parts. 
 
The left-hand side of a rule (the “if” part) consists of patterns that match facts; they are not function calls. 
Therefore, a LHS is composed of three parts, a fact, an operator, and a value or literal. The simplest 
LHS is that formed by an attribute, and equality operator (is) and a boolean value. For example (rain is 
true). With other data types we can uses other operators, for example, with numeric values we can have 
the following: less than (lt), less or equal than (le), greater than (gt), greater or equal than (ge), etc. 
 
Also in the LHS we have to take into account the connective constraints. Quite often, matching with a 
literal value or a variable is not enough. Therefore, it is usual to add logic connective constraints to the 
LHS part of a rule, that is, the “and”, “or” and “not” clauses. This way we can construct a LHS part of a 
rule that is a composite of LHS clauses connected by logic operators: “(rain is true) and (outside is true)”.  
 
The formal specification of a LHS element is included in Table 6. It includes three generative operations 
to create a LHS element. There is a primitive operation that allows to create a LHS element from a fact, 
an operator and a value; and there are also included two other operations to allow the creation of LHS 
elements that are a result of applying the logical clauses to already existing LHS elements. 
 
 

Element 

Element lhs 

Description Represents the left-hand side (LHS) part of a rule. 

Operations 

Signature lhs(fact, operator, value) → lhs 

Objective Creates a new lhs element. 

Inputs fact A fact element. 

operator An operator of a given data type. 

value A value of a given data type. 

Outputs A lhs element. 

Preconditions The fact is valid. 

The operator is defined in the value data type. 

Postconditions A new lhs elements is created. 

Signature lhs(lhs, logical_operator, lhs) → lhs 

Objective Creates a new lhs element combining two previously created lhs elements with 

a binary logical operator. 

Inputs Lhs A lhs element. 

logical_operator A binary logical operator to perform a logical operation.  

Lhs A lhs element. 

Outputs A lhs element. 

Preconditions The lhs elements are valid. 

The binary logical operator is “or” or “and”. 

Postconditions A new lhs elements is created that is the result of a logical combination of two 

previous lhs elements. 
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Signature lhs(logical_operator, lhs) → lhs 

Objective Creates a new lhs element combining applying an unary logical operator to a 

previously created lhs element. 

Inputs logical_operator An unary logical operator.  

Lhs A lhs element. 

Outputs A lhs element. 

Preconditions The unary logical operator is “not”. 

The lhs element is valid. 

Postconditions A new lhs elements is created that is the result of applying an unary logical 

operator to a previous lhs element. 

Table 6: Formal specification of a LHS element. 

The right-hand side of a rule (RHS), on the other hand, is made up of function calls and their parameters. 
The simplest function call is an assignment function (set) that has two arguments, a fact, and a value. 
The function “set” assigns a value to a fact. If the fact is already in the working memory its value changes 
according with the RHS, if not, it is asserted in the working memory with the value specified. That is, 
“set” is calling the assert operation in the working memory. For example, a RHS can be (set wet_floor 
true) and therefore we have the following rule: if (rain is true) => (set wet_floor true). Table 7 shows the 
formal specification of a RHS element. 
 

Element 

Element rhs 

Description Represents the right-hand side (RHS) part of a rule. 

Operations 

Signature rhs(function, parameters, …) → rhs 

Objective Creates a new rhs element. 

Inputs function A function. 

parameters A list of parameters for the function separated by commas. 

If the function has no parameters it can be empty. 

Outputs A rhs element. 

Preconditions The function is valid and the parameters are valid for that function. 

Postconditions A new rhs elements is created. 

Table 7: Formal specification of a RHS element. 

Once we have defined a LHS and a RHS it is easy to define a rule as a combination of them (Table 8). 
 

Element 

Element rule 

Description Represents a rule formed by a LHS and a RHS. 

Operations 

Signature rule(lhs, rhs) → rule 

Objective Creates a new rule element. 

Inputs lhs A lhs element. 

rhs A rhs element. 

Outputs A rule element. 

Preconditions The input elements (lhs and rhs) are well formed. 

Postconditions A new rule elements is created. 

Table 8: Formal specification of a rule element. 
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Finally, once we have defined the rules, we must define the specification of the inference engine. This 
engine controls the whole process of applying the rules to the working memory in order to obtain the 
outputs of the system. 
 
In previous sections we have seen that the inference engine has three phases of functioning: match, 
conflict resolution and act. Let us describe in more detail the elements of the inference engine that 
perform these phases to better comprehend how this engine works internally: 

• Pattern matcher: The match phase is performed by the patter matcher. The purpose of the pattern 
matcher is to decide which rules apply, given the current contents of the working memory. This is 
the most expensive part of the process or a rule-based system the pattern since the matcher might 
need to search through millions of combinations of facts to find those combinations that satisfy rules. 
If we are dealing with inaccurate information we can consider the following example: Rule: IF A is 
true THEN B is possible. Fact: A is almost true. Matcher: A is present in the rule and it is also a fact 
with a given degree of belief. Inferential Generalized Modus Ponens: B could be possible. 

• Agenda: The agenda is in charge of the conflict resolution phase. The agenda stores the list of rules 
that could potentially be fired (the conflict set) and is responsible for using the conflict strategy to 
decide which of the rules, out of all those that apply, have the highest priority, and should be fired 
first. 

• Execution engine: Finally, the execution engine is in charge of the act phase. Once the agenda has 
decided what rule to fire, it has to execute that rule’s action part. Therefore, the execution engine is 
the component of a rule engine that fires the rules. 

 
These elements are the active part of the inference engine, who are in charge of making it work. There 
are also passive elements that store the elements needed by these active parts. These passive 
elements are: 

• Working memory: stores the facts that the inference engine uses to work with. 

• Rule base: list of rules that composes the knowledge adquired by the system. 
 
Since we are going to describe the upper level of abstraction of a rule engine, we do not need to formally 
specify all these internal parts, but it is useful to know their existence for formalizing the rule engine 
itself. We only have described in detail the working memory because it is directly related with the facts. 
In Table 9 we can see the formal specification of a rule engine. 
 

Element 

Element rule_engine 

Description Represents a rule engine element. 

Operations 

Signature rule_engine() → rule_engine 

Objective Creates a new rule_engine with all its internal elementes (pattern matcher, 

agenda, execution engine, rule base and working memory). 

Outputs A rule_engine element. 

Postconditions A new empty rule_engine is created. 

Signature add_rule(rule)  

Objective Adds a new rule to the rule base. 

Inputs rule A rule element. 

Preconditions The rule is valid. 

Postconditions The rule is added to the rule base. 

Signature delete_rule(rule)  

Objective Deletes a given rule from the rule base. 

Inputs rule A rule element. 

Preconditions The rule is valid. 

Postconditions Removes the given rule form the rule_base. 
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Signature pattern_match()  

Objective Performs a pattern matching between the facts of the working memory and the 

rules of the rule base. The result is a list of activated rules that go into the 

agenda. 

Preconditions The rule base has at least one rule. 

Postconditions The agenda of the inference engine is filled with the activated rules  given the 

facts stored in the working memory. 

Signature fire_rule()  

Objective Fires the rule with the higher priority in the agenda, modifying the working 

memory if necessary. 

Preconditions The agenda has at least one rule activated. 

Postconditions The rule is fired executing the RHS action as specified. 

Signature reset_engine()  

Objective Resets the rule engine to its initial state emptying the agenda and working 
memory. 

Postconditions The agenda and the working memory are empty. 

Table 9: Formal specification of a rule engine. 

6.1.3. Functioning of the inference engine 

In the previous sections we have described the formal specification of facts, rules, the working memory 
and the rule engine, as they are the basic elements of a inferential system based on rules. Nevertheless, 
we are not describing how these elements should be used, as that is a job for another element, the 
inferential reasoner, a much high level element that decides the inferential strategy that it is needed to 
follow. 
 
Since the inferential reasoner is a high level element whose functioning strongly depends on the 
characteristics of the domain and of the problem, we will only briefly describe here how it would work. 
There are two main strategies for the inferential reasoner to follow: forward chaining and backward 
chaining: 
 

• Forward chaining: is the main strategy followed by an inferential reasoner based on rules. The 
functioning is as described previously, the rule engine matches the LHS part of the rules with the 
working memory and fires one of the rules activated by the facts. It is a forward strategy from facts 
to conclusions with the aim to reach a final conclusion to our problem. 

• Backward chaining: works in the opposite way as forward chaining, it is a backward strategy from 
conclusions to facts following a behavior called goal seeking. A backward-chaining reasoner starts 
with a final conclusion and actively tries to satisfy the LHS conditions of the rules pointing to that 
conclusion. If the reasoner determines that, for satisfying those LHS conditions, it needs to fire some 
other rules, then it focuses in trying to fullfill the LHS conditions of those new rules.  

 
It is also possible to use a combination of the two chaining methods to solve the same problem, changing 
the strategy as needed during the execution of the rules. 
 
In Figure 14 we can see an example of how it would be the functioning of a inferential reasoner using 
forward chaining and the formal specification described previously. We are working with the same 
example described in section 5.1.  
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# Creation of the working memory and the rule engine 

wm = working_memory() 

re = rule_engine() 

 

# Definition of rules 

r1 = rule(lhs(lhs(A, is, true), and, lhs(B, is, true)), rhs(set, X, true)) 

r2 = rule(lhs(lhs(X, is, true), or, lhs(C, is, true)), rhs(set, Y, true)) 

r3 = rule(lhs(lhs(Y, is, true), and, lhs(lhs(D, is, true), or, lhs(E, is, true))),  

              rhs(set, R, true)) 

 

# Assert facts into the working memory 

wm.assert(A, true) 

wm.assert(B, false) 

wm.assert(C, true) 

wm.assert(D, true) 

wm.assert(E, false) 

 

# Follow a forward chaining strategy 

do { 

    re.pattern_match() 

    re.fire_rule() 

} while (agenda has rules)  

Figure 14: forward chaining strategy of an inferential reasoner using the formal specification 
described. 

6.1.4. Uncertainty management 

Finally, we left out the uncertainty from the formal specification because we wanted to formally describe 
the basic functioning of a RBS. But uncertainty exists in the real world and it is something that we want 
to include in our system, and also take advantage of the probabilistic nature of QuBits for representing 
this uncertainty. For including uncertainty in our model we have to modify the fact specification to include 
a new parameter in his generative function, the degree of uncertainty over that fact, as we can see in 
Table 10. 
 

Element 

Element Fact 

Description Represents a working memory element composed by a pair attribute-value 

affected by a degree of uncertainty. 

Operations 

Signature fact(attribute, value, uncertainty) → fact 

Objective Creates a new fact based on an attribute and a value. 

Inputs attribute Represented by a valid identifier. 

value Represented as a literal value of one of the accepted data types: 

boolean, integer, string, enumeration, etc. 

uncertainty Degree of uncertainty of that attribute having that value. 

Outputs A fact element. 

Preconditions The identifier must be valid. 

The literal value must be a valid value of the corresponding data type.  

Postconditions A new fact is created as an attribute-value pair with a degree of uncertainty. 

Table 10: Formal specification of a fact with uncertainty. 

 



 

Quantum Rule-Based Systems (QRBS) Models, Architecture 
and Formal Specification (D6.2) 

1.5 - Final 
 

 

© NEASQC  Consortium Partners. All rights reserved. 
 

Page 31 of 39 

 

Also, we must include the uncertainty in the functioning of the rule engine, for that reason we must 
modify the pattern_match() and the fire_rule() functions as we can see in Table 11, not changing their 
interfaces but their internal working. 
 

Element 

Element quantum_rule_engine 

Description Represents a working memory element composed by a pair attribute-value. 

Operations 

Signature pattern_match()  

Objective Performs a pattern matching between the facts of the working memory and the 

rules of the rule base. The result is a list of activated rules that go into the 

agenda. The pattern match has to take into account that the fact can be 

affected of uncertainty and thus be partially true (or false). 

Preconditions The rule base has at least one rule. 

Postconditions The agenda of the inference engine is filled with the activated rules given the 

facts stored in the working memory. 

Signature fire_rule()  

Objective Fires the rule with the higher priority in the agenda, modifying the working 

memory if necessary. 

Preconditions The agenda has at least one rule activated. 

Postconditions The rule is fired executing the RHS action as specified. The uncertainty of the 

facts is taken into account in order to calculate the uncertainty of the 

conclusions. 

Table 11: Formal specification of a rule engine with uncertainty. 

As there may be different approaches on how to combine the uncertainty of the facts into the uncertainty 
of the conclusions, and even the rules themselves may be affected by uncertainty, it has been preferred 
in this formal specification not to go into such low-level details, as they are dependent on the particular 
implementation we are considering. 
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7. Acronyms and Abbreviations 

 

Term Definition 

IDC Invasive Ductal Carcinoma 

QRBS Quantum Rule-Based Systems  

RBS Rule-Based Systems  

Table 12: Acronyms and Abbreviations 
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Appendix A. Examples and simulations 

The defined quantum gates, as well as the example circuit and the M gate, have been implemented and 
simulated using myQLM. The figures below only show the lines of code that define the circuits and their 
gates, and they all have been simulated using the PyLinalg QPU. 

A.1 Simulation of the Q-AND gate in myQLM 
 

# Q-AND Gate 

prog = Program()  
qbits = prog.qalloc(3)  
prog.apply(H, qbits[0]) 
prog.apply(H, qbits[1]) 
prog.apply(CCNOT, qbits[0],qbits[1],qbits[2])  

Figure 15: myQLM implementation of the Q-AND gate 

State |000> probability=0.2499999999999999  

State |010> probability=0.2499999999999999  

State |100> probability=0.2499999999999999  

State |111> probability=0.2499999999999999  

Figure 16: Results of the simulation of the Q-AND gate 

A.2 Simulation of the Q-OR gate in myQLM 
 

# Q-OR Gate 

prog = Program()  
qbits = prog.qalloc(3)  
prog.apply(H, qbits[0]) 
prog.apply(H, qbits[1]) 
prog.apply(CCNOT, qbits[0],qbits[1],qbits[2]) 
prog.apply(CNOT, qbits[0], qbits[2]) 
prog.apply(CNOT, qbits[1], qbits[2])  

Figure 17: myQLM implementation of the Q-OR gate 

State |000> probability=0.2499999999999999  

State |011> probability=0.2499999999999999  

State |101> probability=0.2499999999999999  

State |111> probability=0.2499999999999999   

Figure 18: Results of the simulation of the Q-OR gate 
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A.3 Simulation of the example circuit 
 

# Quantum circuit 

prog = Program() 
qbits = prog.qalloc(9) 
 

# A(q0) and B(q1) then X(q2) 

prog.apply(H, qbits[0]) 
prog.apply(H, qbits[1]) 
prog.apply(CCNOT, qbits[0], qbits[1], qbits[2]) 
 

# X(q2) or C(q3) then Y(q4) 

prog.apply(H, qbits[3]) 
prog.apply(CCNOT, qbits[2], qbits[3], qbits[4]) 
prog.apply(CNOT, qbits[2], qbits[4]) 
prog.apply(CNOT, qbits[3], qbits[4]) 
 

# Y(q4) and (D(q5) or E(q6)) then R(q8) 

prog.apply(H, qbits[5]) 
prog.apply(H, qbits[6]) 
prog.apply(CCNOT, qbits[5], qbits[6], qbits[7]) 
prog.apply(CNOT, qbits[5], qbits[7]) 
prog.apply(CNOT, qbits[6], qbits[7]) 
prog.apply(CCNOT, qbits[4], qbits[7], qbits[8])  

Figure 19: myQLM implementation of the example circuit 

State |000000000> probability=0.031249999999999976 

State |000000110> probability=0.031249999999999976 

State |000001010> probability=0.031249999999999976 

State |000001110> probability=0.031249999999999976 

State |000110000> probability=0.031249999999999976 

State |000110111> probability=0.031249999999999976 

State |000111011> probability=0.031249999999999976 

State |000111111> probability=0.031249999999999976 

State |010000000> probability=0.031249999999999976 

. . . 

State |100111011> probability=0.031249999999999976 

State |100111111> probability=0.031249999999999976 

State |111010000> probability=0.031249999999999976 

State |111010111> probability=0.031249999999999976 

State |111011011> probability=0.031249999999999976 

State |111011111> probability=0.031249999999999976 

State |111110000> probability=0.031249999999999976 

State |111110111> probability=0.031249999999999976 

State |111111011> probability=0.031249999999999976 

State |111111111> probability=0.031249999999999976  

Figure 20: Results of the simulation of the example circuit (for the sake of brevity only some results 
are shown) 

 
 
 
 



 

Quantum Rule-Based Systems (QRBS) Models, Architecture 
and Formal Specification (D6.2) 

1.5 - Final 
 

 

© NEASQC  Consortium Partners. All rights reserved. 
 

Page 38 of 39 

 

A.4 Definition of the M gate 
 

def m_matrix(theta): 
    return np.array( 
        [ 

            [np.sin(theta), np.cos(theta)], 

            [np.cos(theta), -np.sin(theta)] 

        ] 

    ) 

M = AbstractGate("M", [float], matrix_generator=m_matrix, arity=1)  

Figure 21: myQLM implementation of the M gate 

A.5 Simulation of circuits with the M gate 
 

# Quantum circuit 

prog = Program() 
qbits = prog.qalloc(9) 
 

# A(q0) and B(q1) tM(thetas[])en X(q2) 

prog.apply(M(thetas[0]), qbits[0]) 
prog.apply(M(thetas[1]), qbits[1]) 
prog.apply(CCNOT, qbits[0], qbits[1], qbits[2]) 
 

# X(q2) or C(q3) tM(thetas[])en Y(q4) 

prog.apply(M(thetas[2]), qbits[3]) 
prog.apply(CCNOT, qbits[2], qbits[3], qbits[4]) 
prog.apply(CNOT, qbits[2], qbits[4]) 
prog.apply(CNOT, qbits[3], qbits[4]) 
 

# Y(q4) and (D(q5) or E(q6)) tM(thetas[])en R(q8) 

prog.apply(M(thetas[3]), qbits[5]) 
prog.apply(M(thetas[4]), qbits[6]) 
prog.apply(CCNOT, qbits[5], qbits[6], qbits[7]) 
prog.apply(CNOT, qbits[5], qbits[7]) 
prog.apply(CNOT, qbits[6], qbits[7]) 
prog.apply(CCNOT, qbits[4], qbits[7], qbits[8])  

Figure 22: myQLM implementation of the example circuit with M gates 

As we can appreciate on the figure above, the circuit is the exact same as the one with the Hadamard 
gates, but the M gates allow us to introduce the uncertainty into the circuit seamlessly. This code is part 
of a function that receives as an argument the uncertainty of the facts (the variable thetas, that is a list 
with the uncertainty of each fact) and returns the program to be executed in the QLM. 
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Results for case [0, 0, 20, 0, 0] 

Prob. true: 1.0 | Prob. false: 0.0 

Total prob.: 1.0 

 

Results for case [20, 60, 0, 0, 20] 

Prob. true: 0.994 | Prob. false: 0.006 

Total prob.: 1.0 

 

Results for case [40, 80, 0, 20, 20] 

Prob. true: 0.943 | Prob. false: 0.057 

Total prob.: 1.0 

 

Results for case [60, 100, 20, 0, 0] 

Prob. true: 1.0 | Prob. false: 0.0 

Total prob.: 1.0 

 

Results for case [80, 80, 20, 0, 20] 

Prob. true: 0.92 | Prob. false: 0.08 

Total prob.: 1.0 

 

Results for case [100, 60, 20, 20, 20] 

Prob. true: 0.875 | Prob. false: 0.125 

Total prob.: 1.0 

 

Results for case [0, 40, 0, 0, 0] 

Prob. true: 1.0 | Prob. false: 0.0 

Total prob.: 1.0 

 

Results for case [20, 20, 0, 0, 20] 

Prob. true: 0.999 | Prob. false: 0.001 

Total prob.: 1.0 

 

Results for case [40, 0, 0, 20, 0] 

Prob. true: 1.0 | Prob. false: 0.0 

Total prob.: 1.0 

 

Results for case [60, 20, 0, 20, 20] 

Prob. true: 0.989 | Prob. false: 0.011 

Total prob.: 1.0 

 

Results for case [100, 60, 20, 0, 20] 

Prob. true: 0.934 | Prob. false: 0.066 

Total prob.: 1.0  

Figure 23: Results of the simulation of the example circuit with the M gate for some cases of 
uncertainty 


